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Summary This paper reviews recent studies on the spatial epidemiology of human schistoso-
miasis in Africa. The integrated use of geographical information systems, remote sensing and
geostatistics has provided new insights into the ecology and epidemiology of schistosomiasis
at a variety of spatial scales. Because large-scale patterns of transmission are influenced by
climatic conditions, an increasing number of studies have used remotely sensed environmen-
tal data to predict spatial distributions, most recently using Bayesian methods of inference.
Such data-driven approaches allow for a more rational implementation of intervention strate-
gies across the continent. It is suggested that improved incorporation of transmission dynamics
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Africa into spatial models and assessment of uncertainties inherent in data and modelling approaches
represent important future research directions.
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1. Introduction
Spatial epidemiology is the study of the spatial variation in
patterns of infection and disease and of the causes and con-
sequences of such heterogeneity. The scientific study of the
spatial epidemiology of schistosomiasis and other helminths

� Based on a presentation to the Royal Society of Tropical Medicine
and Hygiene Meeting on 24 May 2006, entitled ‘Fresh from the Field:
Exploring Geographic Heterogeneity of Disease Burdens Within
Africa’.
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as been greatly enhanced by the use of geographical infor-
ation systems (GIS) and remote sensing (RS) over the past

0 years. The former has enabled data to be georeferenced,
tored, extracted, integrated in new ways and displayed by
he user (Robinson, 2000), whilst the latter has provided
igh-resolution data on climate and land cover features (Hay
t al., 2006). Since Cross et al. first used LandsatTM satel-
ite data to predict the occurrence of schistosomiasis in
he Philippines and the Caribbean (Cross and Bailey, 1984;

ross et al., 1984), an increasing number of studies have
mployed GIS/RS to predict the distribution of schistoso-
iasis on the basis of associations between infection and

arge-scale environmental variables (Brooker et al., 2001,
002a, 2002b; Clements et al., 2006a, 2006b; Malone et al.,

e and Hygiene. Published by Elsevier Ltd. All rights reserved.
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994, 2001; Moodley et al., 2003; Raso et al., 2005, 2006).
he emphasis of most of these studies has been to iteratively
evelop more accurate and statistically robust risk mod-
ls, increasingly adopting a Bayesian inferential platform.
ess emphasis has been given to assessing either the uncer-
ainties inherent in geographical data (Agumya and Hunter,
002) or the practical application of models in the context
f large-scale control activities (Brooker et al., 2002c).

Here, I provide a brief review of how recent field and
odelling studies have improved our understanding of the

patial epidemiology of schistosomiasis in Africa, but also
ttempt to illustrate the relevance of this research in the
argeting of large-scale schistosomiasis control programmes
s well as to identify future research directions. My focus
s schistosomiasis in Africa since this is where both the dis-
ase burden and the need for control remain greatest. For
pplications of GIS/RS for the study of the epidemiology and
ontrol of Asian schistosomiasis, the reader is referred to a
ecent excellent review by Yang et al. (2005).

. Spatial heterogeneity of schistosomiasis

chistosomiasis in Africa is due predominately to Schis-
osoma mansoni, which causes intestinal schistosomiasis,
nd S. haematobium, which causes urinary schistosomia-
is. The geographical distribution of schistosomiasis across
he continent was first comprehensively mapped nearly 20
ears ago through a synthesis of historical records, docu-
ents and published reports, including hospital-based data

Doumenge et al., 1987). However, this traditional carto-
raphic approach has the disadvantage that the derived
aps cannot be updated easily and it is therefore unable

o reflect recent epidemiological trends. For instance,
hanges in transmission have occurred as a consequence
f (i) man-made ecological changes such as the con-
truction of large dams and irrigation schemes and (ii)
he successful implementation of control (Fenwick et
l., 2006). A more recent project has employed GIS to

evelop a comprehensive database of human helminth infec-
ion in Africa and provides district-level spatial descrip-
ions across the continent, thereby identifying areas for
hich further information is required (Brooker et al.,
000). Building upon this work, the WHO has recently
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igure 1 Patterns of the spatial structure of Schistosoma manso
emivariograms and best-fitted lines of exponential spatial models fo
odel (GAM) residuals of longitude, latitude, rainfall, elevation and
ata from Brooker et al. (2002a), Traore et al. (1998) and Kabaterein
o approximately 120 km.
S. Brooker

stablished a global helminth databank that also includes
ata on coverage of anthelmintic treatment programmes
www.who.int/wormcontrol/databank/en/).

Aside from the obvious benefits of data capture and visu-
lisation, the integrated use of GIS and RS, coupled with
eostatistical techniques, has allowed the robust quantifi-
ation of spatial heterogeneity in schistosome infection pat-
erns. In particular, geostatistics can determine whether
atterns are due to either random stochastic processes
nd/or variability in the estimated prevalence because of
mall population sizes for some units, or are, in fact, caused
y specific variables such as environmental heterogene-
ty (Bailey and Gatrell, 1995). At the community level, a
seful tool to quantify the spatial structure of infection
atterns is the semivariogram, which describes the spatial
orrelation of observations and is computed by measuring
he mean-squared difference of pairs of observations that
re separated by the same distance (Chiles and Delfiner,
999). Figure 1 presents semivariograms for the prevalence
f S. mansoni in three different transmission settings across
frica. In each setting, the variogram exhibits considerable
patial structure up to a range of 70 km, even after remov-
ng large-scale trend effects. After this distance, there was
n apparent lack of spatial correlation or structure. These
esults therefore suggest that spatial factors in addition to
limatic factors are influencing the spatial distribution of S.
ansoni prevalence at distances of up to 50 km. This knowl-

dge can help to determine the spatial scale at which various
eographical factors influence spatial distributions and to
dentify optimal sampling strategies.

Improved accuracy of geographical positioning systems
as facilitated the investigation of household patterns both
f schistosome infection (Clennon et al., 2004; Utzinger et
l., 2003) and associated morbidity, including hepatomegaly
nd fibrosis (Booth et al., 2004). Because patterns of infec-
ion and disease vary strongly by demographic variables,
uch as age and sex, it is important that analysis takes
dequate account of these factors as well as the spatial cor-
elation in the data. Bayesian spatial modelling can provide

moothed estimates of the intensity of schistosome infection
hile adjusting for spatial correlation and the highly aggre-
ated distributions of egg counts as well as individual-level
ovariates such as age and sex (Brooker et al., 2006a).

ni in (A) Cameroon, (B) Mali and (C) Uganda. Omnidirectional
r de-trended log prevalence data based on Generalized Additive
maximum land surface temperature. Based on parasitological

e et al. (2004). Note: at the equator, 1 decimal degree equates

http://www.who.int/wormcontrol/databank/en/
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Spatial epidemiology of African schistosomiasis

Recent theoretical work on the persistence of infectious
diseases using transmission models indicates that persis-
tence typically decreases with increasing spatial hetero-
geneity (Hagenaars et al., 2004; Woolhouse et al., 1998).
The significance of spatial heterogeneity of schistosomiasis
to the overall transmission and the effectiveness of differ-
ent intervention strategies is poorly understood at present
(Gurarie and King, 2005). An important first step to improv-
ing our understanding is better quantification of observed
heterogeneities across a variety of spatial scales, and is an
area that merits further study.

3. Landscape epidemiology of schistosomiasis

Schistosomiasis occurs across the African continent in
numerous geographic landscapes of varied characteristics,
in which specific climatic, physical and human character-
istics influence the intensity of transmission. Through a
knowledge of the characteristics necessary for the trans-
mission of infection, it is possible to understand and pre-
dict the spatial and temporal distribution of infection.
The idea of using landscape features to understand the
spatial heterogeneity of infectious diseases extends back
to the 1930s through the work of the Russian parasitol-
ogist Evgenii Pavlovsky who coined the phrase ‘landscape
epidemiology’.

The schistosome parasite requires a molluscan interme-
diate host in which to undergo development, and freshwa-
ter snails form an essential component in the lifecycle of
schistosomiasis. This ties transmission to landscapes where
people and snails come together at the same water habitat.
Numerous factors act to determine the rate of transmission
in a given location. These include biotic and abiotic fea-
tures, such as climatic, physical and chemical factors that
affect the survival and development of schistosome para-
sites and snail host populations (Sturrock, 1993), as well as
socioeconomic and behavioural characteristics of the human
community such as water contact behaviour and the ade-
quacy of water and sanitation, which affect the frequency
and intensity of exposure to infected water (Bundy and
Blumenthal, 1990).

Here, it is worth highlighting an important feature of the
transmission dynamics of schistosomiasis relevant to under-
standing spatial distributions. Overall transmission success
depends crucially on the establishment, survival and fecun-
dity of adult schistosomes in the human host, and depends
less on the survival and fecundity of the two free-living
aquatic stages, the miracidia and cercaria, and of the
infected snail hosts (Anderson, 1987). This is because the
lifespan of adult worms is substantially longer (3—6 years)
than those of either infected snail hosts (weeks) or free-
living stages (hours). For this reason, the most significant
determinants of the intensity of transmission are changes
in water contact patterns through improved water and
sanitation and health education, or changes in parasite
mortality through the implementation of population-based

chemotherapy. However, if these factors remain unchanged,
then the rate of parasite establishment and hence the pat-
terns of schistosomiasis are primarily determined by the
distribution and abundance of its intermediate hosts, fresh-
water snails.
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The most important determinants of the population
ynamics of snails are temperature and rainfall (reviewed in
turrock, 1993). The optimal temperature for snail develop-
ent and survival is around 25 ◦C. Above 30 ◦C snail mortal-

ty increases, and thermal death occurs at 40 ◦C. However,
nails are less sensitive to low temperatures than schisto-
ome parasites in snails. Uninfected snails can therefore
e found in high altitude areas of endemic countries where
ow temperatures inhibit larval development in snails. Sev-
ral studies have demonstrated marked spatial and temporal
eterogeneity in snail population dynamics owing to fluctu-
tions in rainfall (Sturrock, 1993). However, it is difficult to
uantify precisely the spatial relationships between rainfall
nd snail population dynamics and schistosome transmis-
ion since the effect of rainfall varies according to snail
pecies and geographical location. Moreover, seasonal fluc-
uations in snail dynamics are of limited significance to over-
ll parasite transmission since adult schistosomes typically
ave a longer lifespan relative to such seasonal fluctuations
Anderson, 1987).

Delineation of the climatic limits of schistosome trans-
ission at continental scales has been enhanced by the

ntegrated use of GIS and satellite sensor data (Brooker,
002; Brooker and Michael, 2000; Kabatereine et al., 2004;
alone et al., 2001; Moodley et al., 2003). However, such
road-scale patterns belie the tremendous complexity and
ariability in transmission between different foci and even
ithin the same focus. This focal distribution is suggested to

eflect the small-scale distribution of habitats suitable for
nail species and the multiple factors that determine habi-
at suitability (Woolhouse et al., 1991, 1998). These include
hysical and chemical factors such as pH, vegetation and
ater velocity (Sturrock, 1993), and man-made ecological
hanges such as the construction of large dams and irriga-
ion schemes (Jordan and Webbe, 1993). Genetic differences
n interspecific and intraspecific intermediate host—parasite
nteractions and infectivity may also play a role (Rollinson et
l., 2001), although this aspect remains poorly understood.
espite these small-scale heterogeneities and generative
echanisms, it is suggested that large-scale environmental

nd climatic factors influence the broader-scale patterns of
arasite transmission, such that climate-based risk maps can
e developed.

. Risk mapping of schistosomiasis

n initial risk mapping studies, predictions were largely
ased either on simple threshold analysis (Malone et al.,
001) or on traditional regression modelling (Brooker et al.,
001, 2002a, 2002b) to predict the presence/absence of
nfection or the prevalence above a certain threshold. In
uch regression modelling, however, spatial correlation in
nfection and environmental data, as illustrated in Figure 1,
s ignored. This omission can underestimate the standard
rrors of the covariate coefficient and lead to erroneous
nference of the importance of some covariates in explaining

ariation in infection patterns (Chiles and Delfiner, 1999).

Bayesian methods of inference, which offer a flexible
nd robust modelling approach, have increasingly been
pplied in spatio-epidemiological studies (Diggle et al.,
998) and have several implicit advantages over traditional,
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Figure 2 Predicted intensity of infection (eggs/g faeces) with
Schistosoma mansoni in East Africa, adjusted for environmental
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requentist regression approaches. First, they can readily
ake into account the spatial variability in the epidemio-
ogical and environmental data, whereby spatial processes
re assumed to be normally distributed according to a cross-
orrelation function, typically defined by the semivariogram
f the spatial process (Chiles and Delfiner, 1999). Second,
he Bayesian paradigm can account for model uncertainty
y assuming that the model itself, as the parameter val-
es, varies as a random quantity (Clyde and George, 2004).
n this approach, model uncertainty has a straightforward
robabilistic interpretation.

The first application of Bayesian geostatistics to the risk
apping of schistosomiasis in Africa was undertaken by Raso

t al. (2005) who investigated the demographic, socioeco-
omic and environmental risk factors explaining the geo-
raphical distribution of S. mansoni infection in a small area
f western Côte d’Ivoire. An important result arising from
heir work was that small-scale spatial variation in age,
ex and socioeconomic status showed a stronger influence
n the geographical variation of infection patterns com-
ared with the environmental covariates investigated. More
ecently, Clements et al. (2006a) have developed Bayesian
eostatistical models to predict the spatial distributions of S.
aematobium and S. mansoni infections across a large area
f northwest Tanzania. Their approach highlighted impor-
ant species-specific differences in observed spatial correla-
ions, with correlations occurring over greater distances for
. haematobium than for S. mansoni. In addition, maps of
rediction error highlighted which areas need further inves-
igation if maps are to be uniformly reliable.

Attempts to predict the distribution of schistosomiasis
ave until now been based on the use of point prevalence
ata rather than estimates of infection intensity. This is
ecause prevalence is an easily collected and readily avail-
ble indicator. However, intensity is an important determi-
ant both of transmission dynamics and morbidity, the two
ndicators of greatest relevance to the design of disease
ontrol strategies (Anderson, 1987). Modelling of infection
ntensity is none the less complicated by the fact that para-
ite distributions are highly aggregated within communities.
he negative binomial distribution provides a good empirical
escription of observed distributions of egg counts, allowing
he degree of aggregation to be defined by a single param-
ter, k, an inverse measure of aggregation. To predict the
patial distribution of intensity of S. mansoni infection in
ast Africa, Clements et al. (2006b) have recently developed
Bayesian geostatistical model that explicitly incorporates a
egative binomial distribution. Results identified the role of
nvironmental risk factors in explaining spatial heterogene-
ty in infection intensity and showed how these factors can
e used to develop a predictive map (Figure 2). The link-
ge of such spatial models of intensity with mathematical
odels of schistosome transmission dynamics (Chan et al.,

996), as recently demonstrated for malaria transmission
odels (Gemperli et al., 2006), offers an exciting prospect

f maps that can estimate the effectiveness of different con-
rol strategies through space. This is clearly an area that

eeds and deserves more careful investigation.

Three additional features of risk mapping merit further
cientific study. First, the importance of different demo-
raphic, socioeconomic and environmental risk factors will
iffer according to the spatial scale of investigation. Over
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ovariates (distance to perennial water body and land surface
emperature) based on a Bayesian geostatistical negative bino-
ial model (modified from Clements et al., 2006b).

road scales, risk of helminth infection is associated with cli-
atic factors (Brooker, 2002; Brooker et al., 2006b). At local

cales of a few kilometres, transmission risk is related to the
patial heterogeneity in human demography and socioeco-
omic status (Raso et al., 2005). At the community level,
uman behavioural and snail ecological factors are impor-
ant (Woolhouse et al., 1991, 1998). Studies investigating
he importance of different risk factors at varying spatial
cales and their relative importance in transmission dynam-
cs are therefore clearly necessary.

Second, the precise extent of the spatial correlation in
ata will be influenced by local characteristics and will
herefore be expected to differ in different parts of a geo-
raphical region (Chiles and Delfiner, 1999). Modelling of
uch non-stationary spatial processes has received scant
ttention, and the few available studies have focused on
ethods that decompose the spatial domain into disjoint

egions and assume a separate stationary process in each
egion, but where the data are assumed independent across
egions (Gemperli, 2003; Kim et al., 2005). It may also
e possible to model the spatial field using a single non-
tationary process akin to ARIMA (auto-regressive integrated
oving average) models of time series analysis.
Third, risk models have considered the epidemiology of

arasite species in isolation, whereas in fact the major-
ty of human infections typically involve multiple species.
aso et al. (2006) have recently combined demographic,
nvironmental and socioeconomic data and Bayesian geo-
tatistics to assess risk factors and spatial variation of S.

ansoni—hookworm co-infection on a local scale in Côte
’Ivoire. This approach permits the robust prediction of co-
nfection, thereby helping to guide integrated disease con-
rol programmes (Lammie et al., 2006). Spatial modelling of



local scales has been undertaken using Lot Quality Assur-
ance Sampling (LQAS) to target control finely (Brooker et
al., 2005) (Figure 3). Here, four teams, comprised of one
supervisor, two technicians and a driver, visited different

Figure 3 Distribution of Schistosoma mansoni in Uganda in
2006. Data are based on the results of a rapid mapping survey
conducted in 31 districts using the Lot Quality Assurance Sam-
pling (LQAS) technique.
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egions of the country and sampled eight schools per day
ver 3 days per district, at an overall cost of US$21 182. The
urpose of the exercise was to classify schools according to
ifferent prevalence thresholds (<20%, 20—50% and >50%)
nd the results were presented and discussed at a national
lanning workshop and used to target control more effec-
ively at subdistrict levels.

In Tanzania, Bayesian risk mapping has been used
o determine subdistricts warranting mass treatment
Clements et al., 2006a). Here, separate risk models for
. haematobium and S. mansoni were combined to make

single intervention map (as the treatment programme
nd its use of praziquantel makes no distinction between
he two schistosome species), consisting of contours that
quated to a prevalence of S. haematobium or S. mansoni
f 10% and 50%. Outside of Africa, GIS/RS applications have
uccessfully guided the control of schistosome infection
mong cattle, water buffaloes and humans in China (Yang
t al., 2005), as well as aiding the assessment and moni-
oring of ecological changes in relation to climate change
nd large water resource development projects. The above
xperiences illustrate how GIS/RS can provide a data-driven
pproach to the implementation of intervention strategies,
hereby enhancing resource allocation.

Notwithstanding this potential, it should be recognised
hat risk mapping is one of a number of alternative
pproaches that may be employed to target schistosomi-
sis control. For example, a morbidity questionnaire can
ffectively be used to identify communities with a high
revalence of S. haematobium (Lengeler et al., 2002), and
QAS has been used successfully to target control for S.
ansoni at local scales (Brooker et al., 2005). However, I
ould argue that risk mapping should be used, in the first

nstance, to exclude low-risk areas (Brooker et al., 2002b)
nd that rapid mapping techniques, such as questionnaires
nd LQAS, should subsequently be used to target control
ocally. An important area of future research is to assess
he cost effectiveness of alternative methods to identify
ommunities requiring mass treatment with praziquantel,
s has recently been demonstrated for the rapid mapping of
. mansoni (Brooker et al., 2005).

. Spatial transmission dynamics and
ncertainties

ver the past three decades, our understanding of the trans-
ission dynamics of helminths has been greatly aided by

he development of mathematical models (Anderson and
ay, 1991). Research on the transmission dynamics of schis-

osome infection and disease has traditionally focused on
hanges in disease patterns with time or, in practice, with
ge (Chan et al., 1996). The spatial dimension is also par-
icularly important for helminth transmission dynamics, but
ntil recently few studies have addressed this issue (Gurarie
nd King, 2005). By contrast, the importance of spatial
eterogeneity to microparasite transmission has received
Spatial epidemiology of African schistosomiasis

co-infection and its use as part of a fuller consideration of
polyparasitism in humans is long overdue.

5. Spatial targeting of schistosomiasis control

In a previous review (Brooker, 2002), I noted that, despite
progress in the use of GIS and RS to understand better the
epidemiology and ecology of schistosomiasis in Africa, there
had been few attempts to apply the developed methodology
to actual control scenarios. Since then, an increasing num-
ber of international initiatives have been established that
aim to reduce the disease burden caused by schistosomiasis
and other helminth infections. For instance, we have seen
the establishment of the Schistosomiasis Control Initiative
(SCI), which is currently supporting six countries in sub-
Saharan Africa to implement national control programmes
(Garba et al., 2006; Kabatereine et al., 2006). In each pro-
gramme, there is a need to define national policy and to
prioritise areas where intervention is most needed and will
produce the greatest benefit.

In Uganda, where S. mansoni is widespread, GIS and RS
have been employed to classify the country according to
different treatment strategies. Initial geographical analy-
sis indicated an absence of transmission in areas where
total annual rainfall was <850 mm or altitude was >1400 m
(Kabatereine et al., 2004). These areas were subsequently
set aside without the need for additional surveys (Brooker
et al., 2004). It was further shown that prevalence consis-
tently exceeded 50% in areas within 5 km of Lakes Victoria
and Albert, and thus these areas warranted mass treatment
without the need for further surveys. Outside these two
ecological areas, where smaller rivers and water bodies are
numerous, rapid parasitological mapping of communities at
ncreasing attention (Ferguson et al., 2005; Keeling et al.,
001; Smith et al., 2002). For instance, spatiotemporally
xplicit models of disease dynamics were used to investi-
ate the spread and control of the foot and mouth disease
utbreak in the UK (Keeling et al., 2001) and, more recently,
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o investigate the spread of pandemic influenza in South-
ast Asia (Ferguson et al., 2005). It remains surprising that
his feature has not been addressed for macroparasites given
he observed associations between environmental variables
nd transmission processes. In practical terms, such studies
ould require detailed quantitative data, both in space and

ime, and necessitate sophisticated mathematical models.
Uncertainty in models and data might also dissuade

s from developing spatially explicit models of schisto-
ome transmission. Uncertainty pervades throughout spatial
pidemiology, manifesting in all stages of data collection
nd analysis, from parasitological diagnosis, satellite sensor
nd population data to the modelling methods themselves
Agumya and Hunter, 2002; Atkinson and Graham, 2006).
uch uncertainty is particularly apparent in Africa where
ata are often extremely sparse but where there exists a
trong need for rational decision-making to help maximise
ost-effective resource allocation. Uncertain information is
asily distorted when quantified and expressed in the form
f a map, and this in turn can lead to disease control and
esource allocation decisions that are misleading; there-
ore, the analysis and management of uncertainty is of vital
mportance.

A promising platform to deal with uncertainty in sit-
ations of near-ignorance is the Dempster—Shaffer The-
ry (Dempster, 1966), a generalisation of Bayesian theory
hat is thought to represent uncertainty better in near-
gnorance situations (Luo and Caselton, 1997). Such a frame-
ork allows the inclusion of expert, although subjective,
pinion in model development as well as empirical model
arameters and therefore offers greater flexibility than
ayesian approaches when quantifying uncertain informa-
ion and more closely reflects its consequences (Luo and
aselton, 1997). Another approach able to tackle uncer-
ainty includes Fuzzy set theory, which can deal with and
ssess the extent to which a given condition is true, and has
reviously been used to develop a risk map for stable trans-
ission across Africa (Craig et al., 1999). The future applica-

ion of such knowledge-driven spatial modelling and uncer-
ainty management has the potential to enhance the use of
vailable information towards rational decision-making in
isease control.

. Conclusion

uring the last two decades, the use of GIS/RS has pro-
ided an invaluable analytical tool to understand better the
arge-scale determinants of schistosome infection and has
eveloped reliable ways to identify populations for mass
reatment. This research has provided clear evidence for the
ink between spatial patterns of schistosome infection and
limatic factors that can be determined by RS technologies.
ore recent work has explicitly incorporated spatial correla-

ions of infection into risk models and has provided a robust
ssessment of statistical uncertainty. One of the more inter-
sting aspects of recent modelling studies concerns the role

f non-climatic factors in determining spatial distributions,
specially at local scales (Raso et al., 2005). Paradoxically,
herefore, future research in this area requires detailed field
tudies on the determinants of infection at multiple spa-
ial scales. A further topic that warrants attention is the

B

B

S. Brooker

ntegration of, essentially static, spatial predictive models
ith mathematical models of transmission dynamics, and in
articular the investigation of how transmission dynamics
aries functionally in relation to environmental heterogene-
ty. Such work is underway for microparasites (Smith et al.,
002) but similar research is warranted for schistosomiasis.
ddressing these questions is not only of academic inter-
st but is also vital to the development of rational control
trategies. A final area that merits further attention, and
s indeed germane to the long-term and sustainable use of
IS/RS in schistosomiasis control, is the use of the devel-
ped approaches in post-intervention settings, but also as
art of a suite of mapping approaches to target integrated
ontrol activities.
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