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Analytical Description of the Transmembrane Voltage Induced on
Arbitrarily Oriented Ellipsoidal and Cylindrical Cells
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*Fachbereich Biologie, Biophysik, Universitéat Rostock, D-18051 Rostock, and TInstitut fiir Biologie, Humboldt-Universitét Berlin, D-10115
Berlin, Germany

ABSTRACT We present an analytical equation for the transmembrane voltage (A¢) induced by a homogeneous AC field on
arbitrarily oriented cells of the general ellipsoidal shape. The equation generalizes the Schwan equation for spherical cells and
describes the dependence of A¢ on field frequency, cell size and shape, membrane capacitance, conductivities of cytoplasm,
membrane and external medium, the location of the membrane site under consideration, and on the orientation of the cell with
respect to the field. The derivation is based on the fact that the cytoplasm and the Maxwellian equivalent body of the whole
cell are both of a general ellipsoidal shape and must thus exhibit constant local fields. The constant fields allow for a relatively
simple description of the potentials on the internal and external membrane sides, leading to A¢. For this, the properties of
cytoplasm, membrane, and external medium have been introduced into a special, finite element model. We found that A¢ can
be unambiguously defined for non-spherical cells, provided that the membrane thickness is thin in comparison to the cell

dimensions.

INTRODUCTION

As far as we are aware, Fricke (1953) was the first person
to express the direct current (DC) steady-state transmem-
brane voltage (A¢) for a cell of the general ellipsoidal
shape with negligible membrane conductance and a
highly polarizable cytoplasm. In Fricke’s brilliant paper,
he presented the A¢ induced at the poles of an oriented
cell of the general ellipsoidal shape in its most universal
form,
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Ad, ak. D
Ad,, E, a, and n, stand for the induced transmembrane
voltage at the pole, the field strength, the semiaxis oriented
in field direction, and the depolarizing factor along semiaxis
a, respectively. Expressions for the depolarizing factors are
given in the appendix. Depending on the axial ratio of the
ellipsoid, the depolarizing factor can take on values varying
between 0 and 1. For the spherical shape (¢ = b = ¢ = R,
n, = ny, = n, = 4), Fricke’s equation can be reduced to the
well-known expression,

A¢ = 1.5RE. 2)

The detailed A¢ equation published by Bernhardt and Pauly
(1973) is based on the knowledge of Stratton (1941) and
Fricke (1953). Models for the description of the impedance
properties of cells and cell suspensions were pioneered by
Schwan (for a summary see: Schwan, 1957). Other authors
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have applied the knowledge developed by Schwan (Neu-
mann et al., 1989; Zimmermann, 1982). Although the main
focus of Schwan’s work was the frequency and time depen-
dence of biological material properties, he also dealt with
the induced transmembrane voltage. Analytical A¢d equa-
tions are commonly named after Schwan to honor his role in
the research into electrical properties of biological cells
(Marszalek et al., 1990; Schwan, 1983; H.P. Schwan, per-
sonal information). Several attempts to improve and extend
the equations to specific electric properties of the media and
cells of the spherical (DeBruin and Krassowska, 1999) and
nonspherical geometry (Gimsa and Wachner, 1999; Jerry et
al., 1996; Kotnik and Miklavcic, 2000) and to properties,
like the surface conductance (Grosse and Schwan, 1992) or
the influence of deformational forces on the membrane
permeabilization (Sukhorukov et al., 1998) exist.

We think that a complete A¢ equation must describe the
dependence of A¢ on i) cell size and shape, ii) field fre-
quency, iii) the membrane capacitance, iv) the conductivi-
ties of cytoplasm, membrane and external medium, v) the
site at the membrane, e.g. given by the angle dependence,
and vi) the orientation of the cell with respect to the external
field. Analytical expressions for the A¢ for cells of the
general ellipsoidal shape, meeting all of the above demands
(i)—~(vi) have, to our knowledge, not yet been published.
Recently, we considered the polarization of spheroidal cells
(Gimsa and Wachner, 1999). We also derived an analytical
equation for A¢ for two orientations of the symmetry axis,
parallel and perpendicular to the external field. Our expres-
sion meets points (i)—(iv) but is restricted to the poles of the
cell. Nevertheless, it also applies to oriented cells of the
general ellipsoidal shape when the respective depolarizing
factor is assumed. In this paper, we extend our expression to
points (v) and (vi) to meet all above criteria. We consider a
single shell cell model of the general ellipsoidal shape with
an arbitrary orientation of the inducing field.
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THEORY AND DISCUSSION

A finite element ansatz for A¢ of the oriented
single shell model

Biological cells are usually negligibly magnetizable, and
they are small with respect to wavelength at frequencies
below a few GHz. Under these conditions, potential
distribution can be directly obtained by solving Laplace’s
equation, which is the basis of the following derivations.
Explicit solutions require surfaces of the second degree
(Maxwell, 1873; Stratton, 1941). The general ellipsoid is
the most complex but finite surface of the second degree.
For the single shell ellipsoidal model, an additional geo-
metrical restriction applies: an explicit solution requires
that the two interfaces of the shell can be described
within the same coordinate system, which is determined
by the foci of the ellipsoidal surfaces. For a given thick-
ness of the shell, e.g., along a certain principal axis, the
foci determine the confocal shell of nonconstant thick-
ness. A feature of such models is that a homogeneous
body, i.e., the Maxwellian equivalent body, of the same
external geometry can be found for all frequencies. For a
given frequency, the body possesses certain electrical
properties and exhibits the same external field distribu-
tion as the shelled model. The effective internal field £,
of the body is constant. Its surface potential is identical to
the potential at the external membrane side of the cell
model. The potential at the internal membrane side can be
calculated from the cytoplasmic field E; that is constant,
because the cytoplasmic surface is also ellipsoidal. For
the oriented ellipsoidal cell A¢ at the poles with a per-
pendicular orientation to the field vanishes. A¢ is at
maximum at the pole pointing in field direction. Here the
external field, £,.., E;, and, consequently, the transmem-
brane field are in parallel (Fricke, 1953; please compare
to Figs. 1, and 4). For a negligibly thin membrane A¢ at
the pole of semiaxis a, pointing in field direction, is given
by the difference of the potentials at the external and
internal membrane side,

Ad)a = (Eloc - Ei)a~ (3)

In the DC case, the effective local field is amplified with
respect to the external field for a cell with a nonconductive
membrane. The maximum field amplification factor is re-
lated to the ellipsoid’s axis ratio and can be expressed by the
depolarizing factors (see Eq. 1 and the Appendix). These
factors are obtained by solving Lapace’s equation (Landau
and Lifschitz, 1985; Osborn, 1945; Stille, 1944; Stoner,
1945; Stratton, 1941; see also Kotnik and Miklavcic, 2000).
We recently introduced a related parameter, the influential
radius, for modeling the polarization of spheroidal cells by
a special, finite element ansatz (Gimsa and Wachner, 1999).
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FIGURE 1 Sketch of the influential radius for a spherical, poorly polar-
izable object, e.g., an air bubble. The symmetry plane is assumed to be at
0 V. For a sphere, the depolarizing factor n = 5 and R;,; = 1.5 R. The
potential at the pole ¢, corresponds to the undisturbed potential at
distance R;,; from the symmetry plane. The constant local field can be
calculated from ¢,,,.. Please note that (inside the object) the distances from
each equipotential line to the 0 V plane are reduced by a factor of R/R;,q
compared to a situation a great distance from the object or where the object
is absent.

The influential radius ;4 is defined along the semiaxis a by
the depolarizing factor n, along that axis,

1
Ainfl = 1_7}1a a. (4)

The maximum local field is given by a;,q E/a. Figure 1
demonstrates the relations for a nonpolarizable sphere (a =
R, a;,q = Ri,p). For a cell, A¢ is at maximum for Fricke’s
conditions of a negligible membrane conductance and a
highly polarizable cytoplasm (see Eq. 1; Fricke, 1953). The
maximum at pole a is a;,q E (Please note that such condi-
tions cannot as easily be met with alternating current (AC).
At higher frequencies, when the membrane impedance de-
creases as a result of capacitive bridging, “metallic” cyto-
plasmic properties or an infinitely high permittivity are
required).

Figure 2 demonstrates the relations of a finite element
ansatz for modeling the membrane polarization (For details
see: Gimsa and Wachner, 1999). Its geometry ensures the
correct reflection of the potentials at the pole at the internal
and external membrane side of the membrane. Only three
elements of equal cross-sectional area are required. The
impedance Z* of ecach element is given by the geometry
(cross-sectional area A4 and length /) and the electric prop-
erties (specific conductivity o and permittivity €e,),

o* = 0 t+ jwee,. %)
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FIGURE 2 Oriented single-shell ellipsoid with sketches of the three
finite elements and the RC-lump model for cytoplasm (i), membrane (m),
and external medium (e), respectively. The symmetry plane of the model is
assumed to be at 0 V. The elements possess the same cross-sectional area
A. The length of the external medium element is given by the influential
radius (Rj,q). In the model, the potential ¢, is fixed. ¢, depends on the
voltage divider properties of the elements. The maximum ¢, is ¢y =
Ry, E. The impedance of each element is given by Eq. 5 and can be
modeled by an RC-pair.

o* and j are the complex, specific conductivity of the
considered medium and —1°, respectively. Eq. 5 applies to
each resistor—capacitor (RC)-pair of the RC-lump model in
Fig. 2. Starting from the finite element model, for a cell with
semiaxis a oriented in field direction A¢ at the axis’ pole
can be expressed by the voltage divider properties of the
lump model (compare to Figs. 1 and 2),

Ad)a = aEloc - aEi

(Z:k+ Zﬂni) d)O,a ZT(;[)O.a
T Zh AR+ 7Y, I+ 7R+ 7T,

Z*
= % 7% 4 7% ik (6)

¢, stands for the potential at the influential radius distance
from the symmetry plane along axis a (compare to Figs. 2
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FIGURE 3 Reduced scheme for modeling A¢ in the range from DC up
to frequencies above the capacitive membrane bridging. The permittive
components of the internal and external media are cancelled out, allowing
for a reduction in the number of parameters to be introduced into Eq. 6.

and 3). The indices i, m, and e stand for the impedance of
cytoplasm, membrane, and external medium, respectively,
according to Eq. 5. Index a refers to the geometry along
semiaxis a. Please note that no axis index must be assumed
for the membrane impedance. The membrane elements can
be assumed to possess the same geometry along each prin-
cipal axis. The length / in Eq. 5 must be replaced by the
respective expression according to Fig. 2. The cross-sec-
tional area 4 is cancelled out.

The parameter dependence of A¢ at the poles of
the oriented single shell model

When Ad is considered in the frequency range from DC up
to frequencies of the capacitive membrane bridging (see
below; Eq. 8) the permittive properties of the internal and
external media can be neglected. Accordingly, the lump
model of Fig. 2 reduces to that of Fig. 3.

Please note that the complete model, according to Eq. 6
and the scheme of Fig. 2, can be applied in cases where
higher frequencies or nonregular membrane properties
should also be considered. In this case, the permittive prop-
erties of the internal and external media and their possible
structural (e.g., due to internal membrane systems) and
nonstructural (e.g., due to Debye effects) dispersions can be
included as well. The reduced scheme allows for a reduction
in the number of parameters to be introduced into Eq. 6. A
further simplification is possible by expressing the mem-
brane properties by area-specific parameters. The properties
of a membrane of thickness d are described by the arca-
specific capacitance C and conductance g. These values are
given by €,€,/d, and o,,/d, respectively. As long as C and
g are kept constant, the model behavior will be largely
insensitive to changes in membrane thickness. Physically, it
is difficult to assume a membrane thickness lower than €,/C
because this would lead to a relative membrane permittivity
lower than unity. Nevertheless, for biological cells, C is
approximately 10”2 F/m?, leading to a lower membrane
thickness limit of about 1 nm, negligibly low with respect to
the cell size. Assuming a negligibly thin membrane, the cell
and the cytoplasm would be of the same ellipsoidal shape,
i.e., resemble surfaces of the second degree. Thus, the
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FIGURE 4 Schematic cut through an ellipsoidal cell with a confocal
membrane thickness. The inducing external field £, the local field £, ., and
the cytoplasmic field E; are oriented along a principal semiaxis with the
pole X. A¢ is 0 V for all points of the symmetry plane oriented perpen-
dicular to that semiaxis. The amplitude of £, is given by the potential at
point X and its distance from the symmetry plane. The amplitude of £ is
given by the potential at point Y and its distance from the symmetry plane.
A¢ at point X is defined as the potential difference X — Y. For A¢ at point
X', see text.

equivalent body of the cell and its cytoplasm must exhibit a
constant field (Maxell, 1873; Fricke, 1953; Landau and
Lifschitz, 1985). When a principal axis, e.g., a, is oriented
in parallel to the external field £, the local field E,,. and the
cytoplasmic field E; are also parallel to that axis. Fig. 4
demonstrates these relationships.

At point X, the pole of axis a of the ellipsoidal cell, A¢p
is at maximum. This point has the largest distance from the
symmetry plane, which is defined by the other two semi-
axes. Because, at the pole, E, E| ., and E,, are in parallel,
this also applies to the transmembrane field. A¢ at point X
is given by Eq. 6. Using Egs. 4 and 5, after some rearrange-
ments, the following expression can be obtained (for details
of the derivation see: Gimsa and Wachner, 1999):

Qinp 7
1 Ainnn — A fﬁ,
1+ag ;4‘7 1+fT

1 ( 0.0; N
f;:,a N 27TC\aO-e + (ainﬂ - a)O'i g

Ap, =

with

®)

/> fea» Oe, and o stand for the external field frequency, the
characteristic frequency of membrane polarization along
semiaxis a, and the conductivities of the external and inter-
nal media. Please note that f_ , is the —3-dB frequency of
the A¢ amplitude. Eqs. 7 and 8 were derived for area-
specific membrane parameters. Assuming the respective
influential radii, the equations are valid for the poles of cells
of the general ellipsoidal, the spheroidal, and the spherical
shape.

1891

The site dependence of A¢ for the oriented
ellipsoidal cell

As already pointed out in the introduction, a complete
Schwan equation should also describe the angle dependence
of A¢. In the following, we will derive an expression for the
angle dependence. For surface points that are not poles of
the ellipsoid, e.g., X" in Fig. 4, the definition of A¢ is not
clear per se. Under geometric criteria A¢ may, e.g., be the
potential difference X’ — Y’ when Y’ is, for example,
defined by the shortest transmembrane distance. Similarly,
A¢ may be the potential difference X' — Z’, when Z’ is the
crossing point of a line through the ellipsoid’s center and X’
with the internal membrane surface. For a given point X',
other possibilities can also be conceived to define a refer-
ence point at the inner membrane surface. Nevertheless, at
the ellipsoid’s poles all Ap-definitions should be consistent
and for any definition the following considerations should
hold.

Let us assume A¢ for a given point X’ at the external
surface to be defined in two different ways, a correct and a
slightly incorrect one, e.g., as the potential differences X’ —
Y and X' — Z', respectively. In this case, for geometric
reasons, a reduction of the membrane thickness reduces the
distance of the points Y’ and Z'. This in turn reduces the
error in A¢ related to a possible potential difference Y' —
Z', more since the cytoplasmic conductivity is much higher
than that of the membrane and the potential difference Y’ —
7' will thus be much smaller than A¢. As a result, any two
different definitions of A¢ will approximate each other and
match the correct value for a negligibly thin membrane.
Furthermore, the voltage drop over a given distance within
the cytoplasm is much lower than over the membrane for all
points far from the cell equator. In practice, errors smaller
than in the 1% range can be expected for cells with a
semiaxis length and membrane thickness of the order of 10
pm and 10 nm, respectively.

These considerations show that Eq. 3 can be used to
calculate A¢ when a is replaced by d, the distance of a given
point to the symmetry (0 V) plane. Similarly, Eq. 7 can be
normalized by the factor d/a, leading to

1 Ainfl

1 apg—a a
<1 +ag<0__+20_ ))\/l +J{;

Expressions for d are given below. For an ellipsoidal cell
with the a-semiaxis oriented in field direction, the symme-
try plane is determined by the semiaxes b and c. This plane
is also the reference for the perpendicularly oriented local
and cytoplasmic fields. These properties, up to now, have
allowed us to avoid the vector notation that will be intro-
duced for the general orientation.

Ad, = Ed.

)

Biophysical Journal 81(4) 1888-1896
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FIGURE 5 Sketch of a cell of the general ellipsoidal shape. The princi-
pal semiaxes a, b, and ¢, define the orthonormal coordinate system, x, y, z.
P(x, y, z) is a membrane surface point of the cell, defined in spherical
coordinates (angles a and 3). With respect to the cell, the homogeneous
external field £ has an arbitrary orientation, determined by the angles v,
and 9.

The general case

In case of a general orientation, the constant local and
cytoplasmic fields are not usually aligned to a semiaxis or to
each other. Accordingly, their 0 V' symmetry planes are
tilted differently around the center point of the ellipsoid.
Consequently, for a given point at the outer and inner
membrane sides, different distances to the respective sym-
metry planes have to be taken into account to calculate the
transmembrane voltage from the absolute values of the local
and cytoplasmic field strengths, in analogy to Eq. 3. To
overcome this problem, the vector notation will be used in
the following. The principal semiaxes a, b, and ¢ of the
ellipsoidal cell are used to determine an orthonormal coor-
dinate system, x, y, and z (Fig. 5).

The homogeneous external field E is orientated arbitrarily
within this coordinate system with the orientation being
determined by the angles y and &,

E, cos 7y cos &
E=|E/|= cosysinﬁ |E]. (10)
E, sin vy

The local vector P of the membrane point under consider-
ation shall be determined by the angles o and (3,

P, cos a cos B
P=|P,| =|cosa sinB|P| (11)
P, sin «

In Egs. 10 and 11, spherical coordinates are used, i.c., the
coordinates of a surface point of a unit sphere are multiplied
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by the absolute length of the local vector. For a given
surface point Py, Py, and P, of the ellipsoid, the following
equation holds:

P PP
2Tt aT 1. (12)
The combination of Eqgs. 11 and 12 leads to a general
expression for the local vector of the membrane point:

cos a cos 3
P =|cosasinfB
sin «
abc
(@ sin® B + b* cos® B)c* cos” a + a’b” sin*ar’

(13)

Now, Eq. 3 can be written in a general form, to obtain the
induced transmembrane potential of a cell with a negligibly
thin membrane,

A¢=Eloc'ﬁ_Ei'ﬁ=(EIOC_Ei)'ﬁ' (14)

The components of the local field E‘loc and the cytoplasmic
field E;, Ejpen> Eloes Eloce and E; ,, Eiy, E; ., respectively,

are induced along the three principal axes by the relevant
components of the external field E,, E,, E,,

Zfa-i-Z?; @E
Z8 A+ ZE+ZE a7

E gloc,d Z:lfb + Z?:l binfl (15)
loc,b % % | 9% 1 5
loc EIZ‘;C Zh Y ZE+ZE b Y
Zi A+ 7% Cin
ZE AR+ ZE ¢ T
Z?ja Ainfl
ZE AR+ ZE a T
> Ei’a Z*b b, fl
E. =|Ey o = E. . (16
T\ T ez e B (9
Z?jc Cinfl

¥+ 7% + 7%, o B
Using Egs. 15 and 16, Eq. 14 becomes (compare to Eq. 6)
VA Ainfl
AR+ ZE a
A Z:!:l binﬂ E
L 7 Ay
Zﬁ Cinfl

A

- P, (17)

where P is given by Eq. 13. This is the general expression
of the induced transmembrane potential. Neglecting the
permittivities of the cytoplasm and the external medium, the
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impedance terms in Eq. 17 can be replaced by the respective
term of Eq. 9. We thus obtain the final expression,

1 Ainfl

“E,
1 G —a foa
1+agf+7 1+j7

1 b infl

E

bmﬂ—b»\/ b
+— 1+ 5%
bo—c fc,b

1 Cin
'E

1 infl — c
(1 + cg(o_i-Fc co. C)) \/1 +£’C
(18)

where the characteristic frequencies of membrane polariza-
tion, f; ., o, and f; ., are given by Eq. 8. Please note that
these characteristic frequencies vary along the three princi-
pal axes. As a result, for an arbitrarily oriented cell, the
point of the highest induced transmembrane potential
changes with increasing frequency. For frequencies ap-
proaching that of the membrane dispersion, the point is
shifted toward the longest axis with the highest character-
istic frequency (compare to Fig. 6).

h

Geometrical simplifications
The spheroidal and cylindrical shape

The reduction of the general ellipsoidal cell shape to a
spheroidal shape (b = c) is a significant simplification,
because it allows for the introduction of closed expressions
for the depolarizing factors into Eq. 4 to obtain the influ-
ential radii for Egs. 8, 17, and 18, respectively (see Appen-
dix).

The cylindrical shape is the limiting case of an infinitely
long spheroid (b = ¢; a => b, ¢) and the depolarizing factors
for this shape are well defined (n, = 0, n, = 0.5, n, = 0.5).
These factors result in influential radii of a;,q = @, bjq =
2b, and c¢;,qn = 2¢ (Eq. 4) which allow for a further simpli-
fication of Eqgs. 8, 17, and 18, respectively. For the cylin-
drical shape, also the local vector expression (Eq. 13) can be
simplified.

The oriented ellipsoidal cell

For oriented cells with the shape of a general ellipsoid,
spheroid, cylinder, or sphere, a number of simplifications
can be introduced. For the general ellipsoidal shape, we can
start from Eq. 9. For example, when semiaxis « is oriented
in the direction of the external field, the symmetry (0 V)
planes of the local and the cytoplasmic fields are defined by
the semiaxes b and c. Consequently, the distance d of the
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FIGURE 6 Frequency dependence of A¢ according to Eq. 9 at the three
poles of a hypothetical, ellipsoidal cell for an external field strength of 100
kV/m (solid line). The three curves correspond to the three semiaxis a, b,
and c, oriented in field direction. The curves are designated by the semiaxis
oriented in field direction. For calculations, the geometry of chicken
erythrocytes, obtained from microscopic measurements, was assumed
(semiaxes length a:b:c = 7.7:4:1.85 um). A specific membrane capaci-
tance and conductance of C = 1072 F/m? and g = 125 S/m?, as well as
internal and external conductivities of o; = 0.53 S/m, and o, = 0.01 S/m,
respectively, were used. For comparison, also the curves of the complete
model (Eq. 6) are plotted (dashed lines). The frequencies of the 3-dB
decrease in the A¢ amplitude, with respect to the low-frequency plateau,
are marked. Please note that these characteristic frequencies increase with
the length of the axis oriented in field direction. The frequencies are given
by Eq. 8.

considered point to the symmetry plane is solely given by
the x-component of Eq. 13 (Figs. 1 and 4),

abc cos a cos 3

N \/(az sin? B + b? cos® B)c? cos® a + a?b* sin* o
(19)

Like in Fig. 5, o describes the angle relative to the a—b
plane, B, the angle within this plane. The external field is
oriented at 0°, 0°. Introduction of Egs. 8 and 19 into Eq. 9
results in a Schwan equation for oriented cells of the general
ellipsoidal shape.

Figure 6 presents the frequency dependence of A¢ at the
three poles of a cell model of the general ellipsoidal shape
according to Eq. 9. A¢ was calculated for a hypothetic cell
with the geometry of chicken erythrocytes and the electric
parameters of human erythrocytes at an external conductiv-
ity of 0.01 S/m. For these parameters, deviations of the
curves obtained from Eq. 9 and from the complete model
(Eq. 6) were found in the higher frequency range. Whereas
the curves obtained from Eq. 9 smoothly approach the zero
Ad¢, the complete model exhibits small, additional plateaus
in the high frequency range. After a strong decrease, two
more plateaus are reached. For our conditions, the first
plateau is due to the capacitive bridging of the external
medium element already at relatively low frequencies (at a

Biophysical Journal 81(4) 1888-1896
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few MHz). The time constant of the external medium ele-
ment is larger than that of the cytoplasmic element. The
constant plateau level at very high frequencies is reached
when the voltage divider properties are completely deter-
mined by the permittive properties of the media. As can be
seen from Fig. 6, the A¢ amplitude and the —3-dB fre-
quency differ for the axis oriented in field direction. The
longer the axis in field direction, the higher the amplitude.
This is the case, although the maximum field amplification
factor along the oriented axis, given by a;,q/a = 1/(1 — n,)
decreases with the axis length (see Fig. 1 and Eq. 4).
Obviously, the decrease of the amplification factor is over-
compensated by the increase in the axis length. Experimen-
tally, these relations can be conveniently tested in a rotating
poration field that scans the cell in a plane around two
principal axes (Gimsa et al., 1992). In parallel with the axis
length, the —3-dB frequency is shifted toward higher fre-
quencies. We suppose that the —3-dB frequency must be
roughly related to the mean membrane curvature of the
considered cell pole. Nonetheless, this relation is not fully
understood and currently subject of more detailed investi-
gation.

The oriented spheroidal cell

Reducing the oriented ellipsoidal shape to an oriented sphe-
roidal shape allows for a further simplification. As dis-
cussed above, for spheroidal cells (b = c¢), closed expres-
sions for the depolarizing factors can be given. Further, in
the oriented case, Eq. 18 can be reduced to Eq. 9. When the
symmetry axis a of the spheroidal cell is oriented perpen-
dicular to the field, the geometrical expression for d, given
by Eq. 19 is reduced to

g ab cos a cos B 20
a ya? sin’ a + b cos* 20)

For the parallel orientation of the symmetry axis to the field,
Eq. 20 can further be reduced. In this case, points of equal
A¢ form rings at the membrane surface around the symme-
try axis. This feature reduces the calculation of the distance
in between a surface point and the symmetry plane to the
two-dimensional case of an ellipse with semiaxes a and b.
To describe the equipotential rings, it is sufficient to define
a single angle ¢ with respect to the symmetry axis. Eq. 20
can be transformed into

ab cos ¢

d= 1)

ya? sin® @ + b cos® @
The spherical cell

For a sphere (¢ = b = ¢ = R) Eq. 21 becomes the
well-known expression,

d =R cos o. (22)
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Egs. 8 and 9 can further be simplified using the relation R;,4
= 3R/2.

Electric simplifications

Simplifications of the model can also be introduced for
certain electrical properties. For example, a zero membrane
conductance can be assumed (see Egs. 8 and 9 or 18). The
strongest electrical simplification that can be thought of was
introduced by Fricke, leading to Eq. 1 (Fricke, 1953). Fricke
assumed an oriented ellipsoidal cell with negligible mem-
brane conductance and a highly polarizable cytoplasm. In
this case, the whole cytoplasmic surface will be at the same
potential (e.g., 0 V). Thus, A¢ at any surface point is
directly given by the potential at the surface that can be
calculated from the constant local field and the distance to
the symmetry plane (see Fig. 1). According to these con-
siderations, the angle dependence of A¢ can easily be
introduced into Eq. 1 by exchanging a for the respective
expression for d. d is given by Egs. 19, 20, 21, and 22, for
cells of the shape of a general ellipsoid, a spheroid oriented
with the symmetry axis perpendicular, or in parallel to the
field, and a sphere, respectively. It should be mentioned that
Kotnik and Miklavcic (2000) applied Fricke’s condition to
a spheroidal cell with the symmetry axis in parallel to the
field. Accordingly, their result is identical to the combina-
tion of Egs. 1 and 21 for the respective depolarizing factors
(Egs. A4 and AS5). Using Eq. 20 instead of Eq. 21 leads to
the solution for the perpendicular orientation of the symme-
try axis to the field, missing in their paper (The respective
depolarizing factor for the other axis orientation can be
obtained from the relation of the three factors. See Appen-
dix). For Fricke’s condition also a solution for the arbitrary
orientation of the general ellipsoidal shape can easily be
derived. For an infinitely high membrane impedance, Eq. 17
can be significantly simplified. Introducing Eq. 13 into Eq.
17 leads to

Ainfl
=, Cosacos B
b cos y cos o
infl . .
Ap = €08 a sin B || cos ysin o
sin vy
Cinfl .
sin «
|E| abc

\(a* sin* B + b? cos? B)c? cos’ a
(23)
It should also be mentioned, that from a physical point of

view, Fricke’s condition reduces the A¢-problem to the
simple problem of the potential distribution at the surface of
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an ellipsoidal cavity in a dielectric, leaving a cell model that
misses almost any physiological property.

SUMMARY

The presented A¢ expression (Egs. 17 or 18) is the
complete Schwan equation fulfilling demands (i)—(vi),
raised in the Introduction. The derivation is based on the
influential radii (Fig. 1, Eq. 4) that allowed us to put up
a lump model that almost precisely reflects the Laplace
solution (for details see Gimsa and Wachner, 1999). The
advantage of this approach is the easy simplification of
the mathematical problem to be solved. Canceling the
permittive elements of the cytoplasm and the external
solution and introducing area-specific membrane proper-
ties lead to Eq. 18. Thus, Eq. 18 contains the area-
specific conductance and capacitance of the membrane
and the conductive properties of the internal and external
media. These parameters can be replaced by other phys-
iological properties, like permeabilities, ion concentra-
tions, etc. (DeBruin and Krassowska, 1999; Gimsa et al.,
1989). Long cylindrical cells or axons can be modeled by
the limiting case of the spheroidal shape, an infinitely
long cylinder. Principally, Eq. 18 can also be extended by
a surface-conductance term according to Grosse and
Schwan (1992). Nevertheless, the surface conductance
introduces lateral membrane currents that are neglected
in the finite element ansatz.

Under certain experimental conditions, the cell prop-
erties may be subject to a time-dependent change. The
cytoplasmic conductivity may, for example, change due
to ion leakage through field-induced membrane pores
(Gimsa et al., 1989). Modeling these relations may, e.g.,
be important in investigations on the dielectric membrane
breakdown (DeBruin and Krassowska, 1999; Marszalek
et al., 1990). An AC field below the frequency of mem-
brane dispersion may, in parallel to the A¢ induction,
induce a compression of the cell (Sukhorukov et al.,
1998). Such time-dependent geometry changes, in turn,
influence the induced A¢ and can be modeled by Eq. 9.
The time-dependent charging and discharging of the
membrane can be modeled when the frequency depen-
dence is transformed into a time dependence.

APPENDIX:

THE DEPOLARIZING FACTORS

For spheroids, analytic equations for the depolarizing factors were first
derived by Stratton (1941) and more detailed by Stille (1944). The
depolarizing factors were extended to the general ellipsoidal shape in
1945, independently by Stoner (1945) and Osborn (1945). Depending
on the axial ratio of the ellipsoid the depolarizing factor along a given
principal axis can take on values between 0 and 1. For the general
ellipsoid with the three principal axes a, b, and ¢ and ¢ > b > ¢, the
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depolarizing factors n,, n,, and n, depend on the axis ratios 8 = b/a and
8 = c/a. They are given by

_ pa _
ny, = \//1 _ 82 (1 _ B2) (LF(k9 ll/) LE(ks lll))’
=—n, + Bo LE(k, ¢) — o
Ny = ~ Ny \/1 — & (32_52) ,lll 32_82’
B B
n.= Vm (Bz — 82) LE(k, ‘l/) + Bz — 5 (A1)

LF and LE are the elliptical integrals that are functions of k£ and V. k and
W also depend on the axis ratios according to

h-p
k= It and 1 = arccos(d). (A2)

The elliptical integrals are then

v 1
HE= e sin ¢ 4%
]
LE(k, ) = | 1 — i sin® ¢ do. (A3)

0

The sum of the depolarizing factors along the three principal axes is always
unity (n, + n, + n, = 1). For the sum of the relative influential radii from
Eq. 4, it follows that a/a;,q + b/b;q + ¢/c;nq = 2. For numerical values of
the depolarizing factors refer to Bernhardt and Pauly (1973) or Fricke
(1953).

For oblate and prolate spheroids closed, explicit expressions can be
obtained (see, e.g., Stille 1944). For the oblate case (a < b) the factor n,
along the symmetry axis a is

1+ €
n, = eS

(e —arctane) with e= \(b/a)® — 1

(A4)
and for the prolate case (a > b):

1 - 62( l+e
= - i = 1 = (bla)?
n, 260 \log s 2e> with e = 1 — (b/a)

(AS5)

In Eqs. A4 and AS, e stands for the eccentricity of the spheroid. From the
sum of the depolarizing factors along the three principal axes being unity,
it follows that, for the spheroid, n, = 1 — 2n, with a being the symmetry
axis. For spheres (¢ = b = c), all factors are 1/3.
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