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Abstract

Sophisticated information technologies are needed for effective data acquisition and integration from a growing body of the bio-

medical literature. Successful term identification is key to getting access to the stored literature information, as it is the terms (and

their relationships) that convey knowledge across scientific articles. Due to the complexities of a dynamically changing biomedical

terminology, term identification has been recognized as the current bottleneck in text mining, and—as a consequence—has become

an important research topic both in natural language processing and biomedical communities. This article overviews state-of-the-art

approaches in term identification. The process of identifying terms is analysed through three steps: term recognition, term classifi-

cation, and term mapping. For each step, main approaches and general trends, along with the major problems, are discussed. By

assessing previous work in context of the overall term identification process, the review also tries to delineate needs for future work

in the field.
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1. Introduction

The current growth of biomedical knowledge has

spurred interest in natural language processing (NLP)

and information technologies such as information retrie-

val (IR) and information extraction (IE), which are

helpful to cope with an increasingly large body of bio-

medical articles. These applications depend on term

identification as the single most crucial step for accessing

information stored in literature. Terms (such as names
of genes, proteins, gene products, organisms, drugs,

chemical compounds, etc.) are the means of scientific

communication as they are used to identify domain con-
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cepts: there is no possibility to understand an article

without precise identification of terms that are used to
communicate the knowledge. A term corresponds to

an author�s textual representation of a particular con-

cept, and the goal of term identification is to recognize

the term and capture its underlying meaning. Automat-

ing this process enables the large-scale processing of the

biomedical literature by identifying terms across authors

and scientific documents.

The identification of terminology in the biomedical
literature is one of the most challenging research topics

in the last few years both in NLP and biomedical com-

munities. Despite the availability of numerous manually

corrected and curated terminological resources, several

reports claimed that many term occurrences would not

be identified in text if straightforward dictionary/data-

base look-up was used [1–3]. Barriers to successful term

identification include extensive lexical variations, which
prevent some terms from being recognized in free text,
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term synonymy (when a concept is represented with sev-

eral terms), and term homonymy (when a term has sev-

eral meanings), which create uncertainties regarding the

exact term identity. Further, maintenance of termino-

logical resources is complicated by a constantly chang-

ing terminology. Some terms typically appear in a very
short time period, and some of them do not last for long.

New terms are introduced in the domain vocabulary on

a daily basis, and—given the number of names intro-

duced around the world—it is practically impossible to

have up-to-date terminologies that are produced and cu-

rated manually. A related problem is the lack of firm

naming conventions. Guidelines do exist for some types

of biomedical entities, but they do not impose restric-
tions to domain experts who are still by no means ob-

liged to use them when coining a new term.

Consequently, along with ‘‘well-formed’’ terms, ad hoc

names exist, which are problematic for automatic term

identification systems. For example, there is a gene name

‘‘bride of sevenless’’ (FlyBase [4] ID FBgn0000206) with

its acronym ‘‘boss’’, as well as a protein that has been

named after a Chinese breakfast noodle ‘‘yotiao’’
(Swiss-Prot [5] ID Q99996) [6]. Even if biologists start

to use exclusively ‘‘well-formed’’ and approved names,

there are still a huge number of documents containing

‘‘legacy’’ and ad hoc terms.

Therefore, dynamic approaches are needed to locate

and identify terms in documents. Much of the work

has been devoted to automatic term recognition

(ATR), which is concerned with the tagging of textual
units that are related to domain-specific concepts. While

covering ATR in great detail, this review also tries to put

ATR in context of the overall task of term identification,

which goes beyond term recognition to include term

classification and term mapping, which are concerned

with finding appropriate term categories and links to

referent data sources, respectively.
2. Term identification task

We differentiate three main steps for the successful

identification of terms from literature: term recognition,

term classification, and term mapping (see Fig. 1).
Fig. 1. Term identification consists of three steps: term recognition,

term classification, and term mapping.
Term recognition is a non-trivial task of marking sin-

gle or several adjacent words that indicate the presence

of domain concepts. Its main goal is to differentiate be-

tween terms and non-terms. As term recognition does

not further narrow down the specific meaning of a con-

cept, it is often combined with term classification (or
term categorization), which assigns terms to broad bio-

medical classes, such as genes, proteins or mRNAs. Cat-

egorized terms are useful for applications that work with

specific term classes, such as systems that extract infor-

mation on protein–protein interactions. Also, term clas-

sification is important for ontology management, where

terms representing novel concepts are automatically

mapped to specific parts of the ontology. While classifi-
cation helps to establish some broad notion of the

nature of a biomedical concept, it is not sufficient for

establishing term identity. This is done by term mapping,

which links terms to well-defined concepts of referent

data sources, such as controlled vocabularies or data-

bases. The linking definitely establishes the exact term

identity (with respect to the referent data source).

Mapped terms are annotated with referent identifiers
(IDs) that act as keys to supplementary information

such as preferred and synonymous terms, or sequence

information. The mapping of terms is essential in any

data integration efforts where acquired knowledge on

specific biomedical concepts is aggregated across differ-

ent data sources.

To give an example of the term identification steps,

consider a hypothetical sentence such as �p53 protein

suppresses mdm2 expression� in an article on human sig-

nal transduction. We use term recognition to find the

term boundaries for the two entities of interest (p53 pro-

tein and mdm2). Then, we categorize the first entity (p53

protein) as a protein, while the second entity, mdm2,

which does not convey any explicit class information,

is classified as a gene. Finally, we map the terms to ref-

erence databases. In the example above, mdm2 could be
assigned to a reference gene database, such as Locu-

sLink [7], and given a specific database ID (LocusID

4193 for Homo sapiens), while p53 protein could be

linked to a protein repository such as Swiss-Prot

(Swiss-Prot ID P04637 for Homo sapiens). Of the many

challenges in identifying mdm2 as the LocusID 4193 en-

tity, consider the need for contextual clues to classify it

as a gene (as opposed to a protein or other molecular
class), and that mapping is complicated by several Loc-

usLink entries for mdm2 (for different species).

Note that each of the three steps of the identification

process can be considered a classification problem. Term

recognition is a general binary classification that ar-

ranges lexical units from free text into two groups: terms

and non-terms. Classification further groups them into

broad semantic classes, while mapping attempts to
determine the exact ‘‘knowledge space’’ that is assigned

to a given term by a fine-grained classification.
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So far, we have discussed the major steps in term

identification. It is worthwhile to study additional com-

ponents and underlying resources that are part of the

identification process. As can be seen in Fig. 2, term

identification is linked to lexical resources and dictio-

naries, which are compiled from referent databases,
such as LocusLink, FlyBase, or SwissProt. They assist

the term identification process at different levels: dictio-

naries are directly applicable for detecting names in

texts, while specifically designed lexical resources, such

as lists of functional words, are useful for term classifi-

cation (these resources are optional for methods that

work with dictionary-independent surface clues). A nor-

malization component interfaces between the dictionaries
and the term identification steps. It serves different pur-

poses, such as taking care of lexical variations in dictio-

nary-based term recognition, or selecting a preferred

term for term mapping. We will be reviewing different

normalization strategies in context of term mapping,

which heavily depends on the normalization of term

variants (see Section 2.3). There is an additional compo-

nent (not shown in Fig. 2) that is often associated with
term identification: the recognition of acronyms. Acro-

nyms are very common, with many authors defining

ad hoc abbreviations for biomedical concepts. The

understanding of acronyms is facilitated through auto-

mated compilation of acronym dictionaries, which link

acronyms to their expanded forms. We will be discuss-

ing acronym recognition (and the construction of acro-

nym dictionaries) under the topic of term recognition
(Section 2.1).

Although methodologically and conceptually clear,

the term identification process does not necessarily com-

ply with the sequential order of the steps as depicted in

Figs. 1 and 2. Some of the steps can be merged, as in the
Fig. 2. From text to database IDs: term recognition and classification

are essential steps to take before mapping terms to database IDs. Term

normalization is important for recognizing variant terms at various

stages in the term identification process. Dictionaries and lexical

resources are compiled from diverse databases and can be used for

tasks such as term recognition or mapping.
traditional named entity (NE) recognition task,1 where

term recognition and classification are performed to-

gether. Also, if term recognition is based on dictio-

nary/database look-up, then the corresponding term

IDs (and, consequently, the term mapping) can be ob-

tained directly from the matching entries (in cases when
there is no ambiguity, see Section 2.3.2). Similarly, there

are classification algorithms that effectively map terms

to specific dictionary entries, blurring the distinction be-

tween classification and mapping. We will nevertheless

be using this schematic process flow to group and dis-

cuss the tremendous amount of published work on term

identification. Therefore, the review will be featuring a

separate section for term recognition, term classifica-
tion, and term mapping. We aim at giving a comprehen-

sive overview of general trends, main approaches,2 and

major problems for each of the steps, while giving the

reader a chance to understand a specific methodology

in the larger context of term identification.

2.1. Term recognition

Term recognition denotes a set of procedures that are

used to systematically recognize pertinent terms in liter-

ature, i.e., to ‘‘highlight’’ lexical units that are related to

relevant domain concepts. The performance of ATR

systems is typically assessed in terms of precision and re-

call. Precision measures the correctness of the lexical

units that are suggested as terms, and is usually mea-

sured as the ratio of correct (‘‘true positives’’) and all
suggested units (both ‘‘true positives’’ and ‘‘false posi-

tives’’).3 Recall denotes the degree to which concepts

in a document are recognized, and is usually measured

by the ratio of the correctly recognized terms (‘‘true pos-

itives’’) and all domain-relevant terms occurring in a gi-

ven document (‘‘true positives’’ and ‘‘false negatives’’).

Although ATR systems naturally aim at high precision

and high recall, there is a trade-off between the two mea-
sures: high precision can be typically achieved at lower

recall points, and vice versa. The overall performance

is typically measured by a single score (called the F-mea-

sure), which is defined as the harmonic mean of the pre-

cision and recall values:
1 The NE recognition task has been defined within the Message
Understanding Conferences (MUCs). The role of NEs and other MUC
tasks in biomedical text processing has been discussed by Hirschman
and colleagues [2].

2 In many cases we will provide evaluation of methods as reported
by respective authors. However, the corresponding testing sets and
evaluation strategies are typically different. A direct comparison of the
performance of different methods is therefore problematic.

3 ‘‘True positives’’ refers to lexical units that are correctly recog-
nized as terms, while ‘‘false positives’’ denote non-term units that are
wrongly suggested as terms. Terms that are not recognized are usually
referred to as ‘‘false negatives.’’



M. Krauthammer, G. Nenadic / Journal of Biomedical Informatics 37 (2004) 512–526 515
F -measure ¼ 2 � precision � recall
precisionþ recall

:

Since the vast majority of terms are noun phrases

(NPs), the main strategy in many ATR systems is to ex-

tract specific NPs (typically referred to as term candi-

dates) and then to estimate their ‘‘termhoods,’’ i.e.,

likelihood of representing domain-specific concepts.

Further, many ATR systems consider multi-word NPs,

as the majority of biomedical terms contain several

words (e.g., almost 90% biomedical terms in the
GENIA4 corpus are compounds [9]).

In the following sections we will be discussing different

approaches to ATR, starting with dictionary-based rec-

ognition of biomedical terms. We then examine rule-

based (or knowledge engineering) systems that mainly

use term internal evidence in order to locate potential

terms. We also consider statistical and machine-learning

methods that chiefly rely on external evidence presented
through surrounding (contextual) information. We fur-

ther look at hybrid approaches that combine different

methods and use a mixture of complementary resources.

As was pointed out in [2], the majority of ATR ap-

proaches in the biomedical domain target specific enti-

ties (mainly gene and protein names), thus integrating

term recognition and term classification. The main rea-

son for performing both tasks in parallel is that it is
more difficult to identify features that apply to terms

‘‘in general’’ than features that are specific to individual

term classes. Thus, the majority of ATR approaches re-

viewed here perform both term recognition and term

classification. However, we will also mention general

ATR approaches that work without semantic knowl-

edge of the domain and that are focused on the term rec-

ognition only.

2.1.1. Dictionary-based approaches

Dictionary-based methods for ATR use existing ter-

minological resources in order to locate term occur-

rences in text. However, as indicated earlier, it has

been claimed that many term occurrences could not be

recognized in text if straightforward dictionary/database

look-up is used [1–3]. Hirschman and associates [2] pre-
sented the problems encountered in an experiment with

a simple pattern matching used to locate gene references

using an extensive list of gene names from FlyBase.

They reported on an extremely low precision rate (2%

for full articles and 7% for abstracts) with recall in the

range 31% (for abstracts) to 84% (for full articles).5
4 The GENIA corpus is a manually annotated collection of 2000
biomedical abstracts [8], in which term occurrences are tagged and
further classified using the GENIA ontology. The GENIA resources
are freely available at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/.

5 In this experiment, precision and recall were calculated by
considering only genes that have been curated and (manually) assigned
to the (whole) documents by FlyBase curators.
The main reason for such poor precision was homon-

ymy, as many gene names shared their lexical represen-

tation with common English words (e.g., gene names/

abbreviations such as an, by, can, and for). Even addi-

tional filtering and discarding shorter names (which

are typically more ambiguous than longer ones) resulted
in maximal precision of only 29% (in abstracts). In these

experiments, the recall errors (i.e., missed gene names)

were mostly due to the fact that some genes appeared

only in tables or figures, which were not processed.

However, in general, lower recall is typically caused by

spelling (or other) variations. For example, Tuason

and colleagues [3] reported that name variations could

account for up to 79% of the missing genes if straight-
forward string matching was used. In their experiments

with mouse gene names (similar to those reported in [2]),

the overall recall was only 36.2%. They indicated that

‘‘punctuation’’ variation (e.g., bmp-4 and bmp4), using

different numerals (e.g., syt4 and syt iv) or different tran-

scriptions of Greek letters (e.g., iga and ig alpha), as well

as word order variations (e.g., integrin alpha 4 and al-

pha4 integrin) were the most frequent causes of the gene
name recognition failures (see also Section 2.3, where we

discuss term variation and ambiguity in the context of

term mapping).

Some ATR approaches combine dictionaries with

additional processing to support the term recognition

process. Krauthammer and colleagues [10] suggested a

method based on approximate string comparison to rec-

ognize gene and protein names and their variations. In
their approach, both protein dictionaries (compiled

from GenBank [11]) and target text are encoded using

the ‘‘nucleotide’’ code (a four-letter encoding over the

{A, C, G, T} alphabet). Then, the BLAST [12,13] tech-

niques (used for alignment of DNA and protein se-

quences in databases) are applied to the converted text

in order to identify character sequences that are similar

(i.e., may be aligned) to existing gene and protein names
(also encoded by the corresponding nucleotide codes).

In the experiments, the system achieved 78.8% recall

with the overall precision of 71.7%.

Tsuruoka and Tsujii [14] suggested a probabilistic

generator of spelling variants based on edit-distance

operations (namely substitution, deletion, insertion of

characters and digits). Only terms with edit distance less

or equal to one were considered as spelling variants. The
main aims in their approach were to support expansion

of (term-based) queries in order to boost IR recall (a set

of generated variants was used instead of a single term

to retrieve documents), and to augment existing term

dictionaries with variants in order to improve dictio-

nary-based recognition of terms in raw corpora. Re-

cently, Tsuruoka and Tsujii [15] further described an

adjusted method for approximate string matching
against a dictionary of protein terms. In order to address

the peculiarities of biomedical terms, they tuned the cost

http://www.mitre.org/public/biocreative/
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function for edit operations (e.g., substitution of a space

with a hyphen (or vice versa) is considerably less ‘‘ex-

pensive’’ than substitution of any other two different

characters). Also, to tackle the problem of false positive

matches, they additionally used a naı̈ve Bayesian classi-

fier (with contextual and term features) trained on pro-
tein names found in the GENIA corpus. Using the

two-step approach (approximate string matching with

filtering false positives) they achieved precision of

73.5% at recall of 67.2% (F-measure: 70.2%).

2.1.2. Rule-based approaches

Rule-based approaches generally attempt to recover

terms by re-establishing associated term formation pat-
terns that have been used to coin the terms in question.6

The main approach is to (typically manually) develop

rules that describe common naming structures for cer-

tain term classes using either orthographic or lexical

clues, or more complex morpho-syntactic features. Also,

in many cases, dictionaries of typical term constituents

(e.g., terminological heads, affixes, and specific acro-

nyms) are used to assist in term recognition. However,
knowledge engineering approaches are known to be ex-

tremely time-consuming for development, and—since

rules are typically very specific—their adjustment to

other entities is usually difficult.

A general grammar-based methodology for the rec-

ognition of medical terminology was suggested by Ana-

niadou [18], where a four-level ordered morphology was

proposed to describe term formation patterns. The sys-
tem used a morphological unification grammar and a

lexicon with instances of specific affixes, roots, and

Greek/Latin neoclassical combining forms.

Gaizauskas and colleagues [1,19,20] used a similar

approach with a terminological context-free grammar

for the recognition of protein names in EMPATHIE7

and PASTA8 systems. Their approach is based on first

determining the lexical and morphological properties
of the components of domain terms. The morphological

analysis is geared to recognize biochemical affixes such

as -ase or -in (indicating possible enzyme or protein

names). Look-up in lexical resources compiled from

publicly available resource enables the recognition of

component categories (such as a protein head) and sub-

categories (such as a protein modifier). A terminology-

parsing step is then used to parse the term components
6 While the majority of rule-based methods rely on what is typically
inside terms, some methods use ‘‘negative’’ knowledge (i.e., what is
outside terms) in order to recognize term boundaries [16]. For example,
Blake and Pratt [17] used a stop list (containing common English stop
words and some domain-specific expressions) to recognize boundaries
of terms: everything between two boundary words was considered as a
candidate term.

7 See http://www.dcs.shef.ac.uk/nlp/funded/empathie.html.
8 See http://www.dcs.shef.ac.uk/nlp/pasta/.
and combine them into single multi-token units. The

necessary grammar rules have been developed semi-au-

tomatically and manually (to capture multi-word entries

with no apparent structure). For example, names from

the protein class are described by the following rule:

protein ! protein modifier; protein head; numeral:

A recent evaluation has shown that the overall precision

of the recognizer is 84% at 82% recall for the task of rec-

ognition of 12 term classes [20].

Several systems used simpler pattern-based ap-

proaches based on orthographic and lexical peculiarities

of given term classes. For example, Fukuda and col-
leagues [21] relied mainly on simple lexical patterns

and orthographic features for the recognition of protein

names. Their system, PROPER (PROtein Proper-noun

phrase Extracting Rules),9 uses the notion of ‘‘core’’

and ‘‘feature’’ components: ‘‘core’’ terms are words that

usually bear the core of the meaning, while ‘‘feature’’

terms are keywords that describe the function and char-

acteristics of terms (e.g., protein, receptor, etc.). For
example, in the term ‘‘SAP kinase,’’ the word SAP is a

core term, while kinase is a feature term. A set of do-

main-specific filters (which are mainly orthographic) is

used for the recognition of ‘‘core’’ terms. Adjacent

annotations (‘‘core’’ and ‘‘feature’’ terms) as well as

nouns and/or adjectives between them, are considered

part of the same ‘‘core-block’’ and concatenated by

application of simple extension rules. For a small-scale
experiment, the authors reported very good results

(94.7% precision at 98.8% recall).

PROPER influenced many other systems. Naray-

anaswamy and colleagues [22] similarly consider other

types of biomedical names (in particular chemical and

source terms). Typical chemical roots and suffixes are

used to single out chemicals, while different classes of

‘‘feature’’ terms are used to perform more sophisticated
classification. In addition, contextual environments are

used for further classification (e.g., the word expression

in a context such as expression of CD40 indicates that

CD40 is a protein/gene). Franzen and colleagues [23]

developed Yapex (Yet Another Protein Extractor)10 by

adding data sources (e.g., ‘‘core’’ terms compiled from

Swiss-Prot), additional heuristic lexical filters and results

of syntactic parsing (in order to enhance the detection of
name boundaries). They reported better performance

compared to PROPER (for strict matching, Yapex�s F-
score was 67.1% compared to PROPER�s 40.7%, while

the F-scores were similar in case of sloppy matching).

In order to further improve precision, Hou and Chen

[24] considered additional filtering of candidates sug-
9 Available at: http://www.hgc.ims.u-tokyo.ac.jp/service/tooldoc/
KeX/intro.html.

10 A demo is available at http://www.sics.se/humle/projects/prot-
halt/yapex.cgi.

http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
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gested by Yapex using contextual information based on

most relevant collocations that appeared with protein

names in a training corpus.

Hobbs [25] and Thomas and colleagues [26] custom-

ized an existing general NE recognizer (used in gener-

al-purpose IE engines Highlight and FASTUS [27]) for
detection of protein names. Recognition is carried out

in several phrases using a cascade of finite-state trans-

ducers, which recognize complex units (such as 3,4-dehy-

droproline or c-glutamyl proline) and ‘‘basic phrases’’

that are extended to the surrounding words using (do-

main-independent) rules for the construction of complex

noun groups.

2.1.3. Machine-learning and statistical approaches

A variety of machine-learning (ML) and statistical

techniques are used for ATR. While statistical ap-

proaches mainly address the recognition of general

terms (i.e., keywords [28]), ML-systems are usually de-

signed for a specific class of entities and, thus, integrate

term recognition and term classification. ML systems

use training data to ‘‘learn’’ features useful for term rec-
ognition and classification, but the existence of reliable

training resources is one of the main problems as they

are not widely available.11 Apart from that, the main

challenge is to select a set of discriminating features that

can be used for accurate recognition (and classification)

of term instances. Another challenge is detection of term

boundaries, which are the most difficult to ‘‘learn.’’

Several supervised ML-methods are exploited for
ATR. For example, Collier and colleagues [33] used

Hidden Markov models (HMM) and specific ortho-

graphic features (e.g., ‘‘consisting of letter and digits,’’

‘‘having initial capital letter,’’ etc.) for discovering terms

(belonging to a set of 10 classes). Each term candidate

was assigned a class of the most similar term from the

training set, with respect to the orthographic similarity.

To estimate the transition probabilities, maximum-like-
lihood estimates based on counts on the training data

(the GENIA corpus) were used. Results depended on

the quality of training resources: for example, for the

protein class (which was the most frequent in the train-
11 Few terminologically tagged biomedical corpora are available
(e.g., the GENIA corpus), since it is very time-consuming to produce
them manually. Thus, one of the major challenges is the automated
creation of tagged corpora that can be used for ML. For example,
Hatzivassiloglou and colleagues [29] used the context of ‘‘known’’
occurrences of genes, proteins, and mRNAs as training examples,
where ‘‘known’’ occurrences were explicitly disambiguated in text by
specifying their class (e.g., the SB2 gene clearly means that this
occurrence of SB2 is a gene occurrence). Craven and Kumlien [30], on
the other hand, collected a set of instances of sub-cellular locations of
proteins from the Yeast Protein Database [31] and then identified
sentences from the associated PubMed citations in order to get an
annotated corpora. A similar approach has been suggested in [32] by
using lists of curated genes from FlyBase and the articles associated
with them.
ing set), the results were encouraging (F-score of 75.9%),

while, on the other hand, instances of RNAs were very

rare, so it was difficult to learn classification features.

Similar results (the F-measure of 75% for the recognition

of Drosophila gene names) have been reported by Mor-

gan and colleagues [32], who used HMMs based on local
context and simple orthographic and case variations. In

addition to orthographic features, Shen and associates

[34] experimented with prefix/suffix information, part-

of-speech (POS) tags, and noun heads as features. They

achieved F-scores of 16.7–80% depending on the class

(overall F-score 66.1%; the protein class F-score was

70.8%), and reported that POS tags (obtained by a tag-

ger trained on the biomedical domain) proved to be
among the most useful features.

Several authors used support vector machines

(SVMs) for the recognition of named entities. Kazama

and colleagues [35] trained multi-class SVMs on the

GENIA corpus. The corpus has been annotated with

so-called B–I–O tags: B-tags denote words that are at

the beginning of a term, I-tags such that are inside a

term, while O-tags are used for words outside terms.
The tags are complemented with the appropriate class

information, i.e., a B-PROTEIN-tag denotes a word

that is at the beginning of a protein name. The method

aims at predicting these composite tags based on posi-

tion-dependent features (such as POS, prefix, and suffix

features), as well as a word cache (captures similarities

of patterns with a common keyword) and HMM state

features in order to address the data sparseness problem.
In general, an F-score of 50% was achieved. They re-

ported that considering preceding class and suffix infor-

mation was helpful, while features related to POS and

prefix did not have a positive influence across all exper-

iments conducted. Several authors experimented with

additional features for SVM-based term recognition

and classification. Takeuchi and Collier [36] considered

head-noun features, and reported that their combination
with orthographic features gave better performance (F-

score of 74.2% for 10 classes). Yamamoto and associates

[37] combined boundary features (based on morpheme-

based tokenization) with morpho-lexical (POS tags,

stems), ‘‘biomedical’’ (whether a given word exists in a

compiled database of biomedical resources), and syntac-

tic features (head morpheme information). They re-

ported that, individually, ‘‘biomedical’’ features were
crucial for recognition of protein names. Lee and col-

leagues [38], however, suggested strict separation of

the recognition and classification steps in the SVM-

based NE recognition. For term recognition, they used

‘‘standard’’ features (orthographic, prefix, and suffix

information) coupled with a simple dictionary-based

refinement of boundaries of the selected candidates (by

examining the adjacent words—if they appeared in the
dictionary, they were included as part of the term). On

the other hand, a set of class-specific ‘‘functional’’ words
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and contextual information were combined as features

in the classification phase. They reported that this two-

phase model showed better performance compared to

the ‘‘standard’’ approach, mainly because discriminative

features were selected for each subtask separately.

2.1.4. Hybrid approaches

Many approaches combine different methods (typi-

cally rule and statistically based) and various resources

(pre-compiled lists of specific terms, words, affixes,

etc.) for the term recognition task.

Tanabe and Wilbur [39] presented a protein and gene

name tagger, ABGene, which has been trained on Med-

line abstracts by adapting Brill�s POS tagger [40]. Apart
from a set of transformation rules for the recognition of

single-word gene and protein names, additional filtering

and ‘‘recovering’’ of results is performed in order to im-

prove both precision and recall. More precisely, false

positive gene/protein names assigned by the tagger are

‘‘filtered-out’’ by an extensive list of pre-compiled gen-

eral (i.e., non-gene and non-protein) biomedical terms

and non-biological terms (obtained by comparing word
frequencies in Medline with a general language corpus).

On the other hand, false negative tags are ‘‘recovered’’

(i.e., tagged as genes/proteins) by an extensive list of

proteins and genes (compiled from the LocusLink data-

base and the Gene Ontology (GO) [41]). Also, context

words are consulted: if a word is surrounded by ‘‘good’’

context words, it is tagged as a protein/gene. ‘‘Good’’

context words have been generated by a probabilistic
algorithm by assigning Bayesian weights to all non-gene

names that co-occurred with known names in the train-

ing set. Compound names are also extracted by relying

on the combination of frequently occurring components

in known multi-word gene names and a set of regular

expressions. Overall, ABGene achieved precision in the

range of 60–90%.

Similarly, Proux and colleagues [42] used a cascade of
finite-state lexical tools to recognize single-word gene

names.12 Their method is based on a morphological

POS tagger, which uses a special tag (‘‘guessed’’) for

tokens that cannot be matched with classical word

transducers. Most gene names are tagged with the

‘‘guessed’’ tag, and eventually confirmed through con-

textual analysis (e.g., the presence of a word gene next

to a candidate token validates its ‘‘status’’ as a gene-
name). Special post-processing steps are necessary to re-

cover or remove erroneously tagged tokens, including

the use of a dictionary of general expressions from biol-

ogy. On a small testing corpus (750 sentences obtained

from the FlyBase database) they reported precision of
12 Proux and colleagues claimed that only a small percentage of gene
names were multi-word units. However, in training/testing corpora
described in [23] almost half of all gene/protein names were
compounds.
91.4% at the recall point of 94.4%, while when applied

on a larger corpus (25,000 abstracts) the system achieved

precision of 70%.

Rindflesch and colleagues [43] reported on ARBI-

TER (Assess and Retrieve BInding TERms), which

combined several approaches and resources to recognize
word sequences that corresponded to binding terms. The

approach selects NPs as potential ‘‘binding’’ terms if the

NPs map to the UMLS Metathesaurus [44] or Gen-

Bank, exhibit ‘‘abnormal’’ morphological characteristics

(compared to regular English terms), or contain heads,

which are included in a constrained list of words (such

as ligand or subunit). Similarly to PROPER�s extension
rules (see Section 2.1.2), simple binding terms are joined
into complex expressions under specific conditions (e.g.,

prepositional modification, appositival complementa-

tion, etc.). Overall, the reported precision was 79% at

72% recall. A similar approach has been implemented

for the recognition of gene, cell, and drug names in

the EDGAR system [45], where characteristic words

(such as cell, clone, and expression) occurring immedi-

ately next to target names are used to help in recognition
and classification.

Finally, while the majority of methods address a spe-

cific type of entities, a method called C/NC-value, devel-

oped by Frantzi and colleagues [46] recognizes general

terms. It has been used to recognize terminology in

many biomedical sub-domains (e.g., in the domain of

nuclear receptors [47] or from yeast corpora [48]). Term

candidates are suggested by a set of morpho-syntactic
filters, while their termhoods are estimated by a cor-

pus-based statistical measure. The measure amalgam-

ates four numerical characteristics of a candidate term,

namely the frequency of occurrence, the frequency of

occurrence as a substring of other candidate terms (in

order to tackle nested terms), the number of candidate

terms containing the given candidate term as a sub-

string, and the number of words contained in the candi-
date term. The selected list of term candidates is further

refined by taking into account the context of candidate

terms. Context factors are assigned to candidate terms

according to their co-occurrence with top-ranked con-

text words. Experiments performed on a collection of

2082 Medline abstracts have shown the precision of

91–98% for top ranked terms recognized by the C/NC-

value method [47]. The method was further augmented
by the conflation of different variants of term candidates

(e.g., unification of orthographic and inflectional vari-

ants, as well as acronyms) prior to the calculation of

termhoods [49]. The integration of variants into the

ATR process significantly improved both precision

and recall of the baseline C/NC-value method [50].

2.1.5. Acronym recognition

It is well known that biomedical terms often appear

in shortened or abbreviated forms. With many scientific
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contains 100 Medline abstracts with 168 manually marked occurrences
of acronyms [59].

14 Available at http://bionlp.stanford.edu/abbreviation/.
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articles defining ad hoc abbreviations, thousands of

newly coined acronyms appear yearly in the biomedical

literature [51,52]. Therefore, the ability to ‘‘understand’’

acronyms is obviously critical for an NLP system, so the

recognition and linking of acronyms and their expanded

forms (EFs) is an essential part of term identification.
Although there are many existing acronym repositories

in the biomedical field [52,53], it has been reported that

such resources cover only parts of the acronyms that ap-

pear in documents [54].

The discrepancy between curated acronym resources

and the wealth of acronyms defined in biomedical arti-

cles fostered the development of several acronym recog-

nition systems. In order to locate potential acronym
definitions in text, the majority of approaches use pat-

tern matching based on ‘‘parenthetical forms’’ (i.e.,

occurrences of acronyms within parentheses). Then, an

optimal definition candidate string is selected and the

candidate EF is analysed with the aim of discovering

the relation between a given acronym and the expanded

candidate EF (or its substring).

One of the first attempts to compile acronyms from
literature was by Yoshida and colleagues [55]. The sys-

tem, called PNAD-CSS (Protein Name Abbreviation

Dictionary - Construction Support System), aimed at

the recognition of protein acronyms, and the PROPER

system [21] was used for spotting (expanded) target pro-

tein names in text. Apart from initial letters of words,

they considered the initial characters of syllables in or-

der to match an acronym to a protein name. They re-
ported precision of 98.9% and recall of 95.6%.

Yu and colleagues [54] designed the rules for the rec-

ognition of gene/protein symbols and the corresponding

full names after the examination of published gene/pro-

tein nomenclatures. They combined morphological cues,

special ‘‘functional’’ keywords, and positional informa-

tion. Standard pattern matching rules have been also

adapted by two special modifications: numbers and spe-
cial characters are ignored for mapping short forms to

full names, and the identification of special abbrevia-

tions and the corresponding forms (such as Y for tyro-

sine) has been included. The manual evaluation has

shown that the approach achieved 93% precision and

73% recall.

Similar but more general rule-based methods have

been also suggested. Liu and colleagues [56] reported
on a method (called PW3) for matching three-letter

acronyms (including some chemical acronyms). Nenadic

and associates [49] introduced a simple rule-based meth-

od for discovering and linking acronyms with their EFs

from raw text. Matching patterns were modelled by a

manually defined grammar that defined common

‘‘rules’’ for coining new acronyms (including using ini-

tial letters from affixes used in the corresponding EFs).
Also, extracted acronym/EF pairs were grouped so that

acronyms sharing ‘‘normalized’’ EFs were conflated by
unifying orthographic, structural, and lexical variations.

Yu and colleagues [57] presented a pattern matching ap-

proach (called AbbRE) that was based on a set of gen-

eral rules for mapping an abbreviation to its EF.

AbbRE applies the rules in a sequence, and prefers a

shorter EF for an extracted acronym. They reported
an average precision of 95% and recall of 70%. Schwartz

and Hearst [58] suggested a general algorithm for the

extraction of the shortest corresponding EF for a given

acronym. They used only few common constraints, such

as the first character of an acronym has to be the first

character of the first word in the corresponding EF;

EF should be longer than the corresponding acronym;

EF should not contain the candidate acronym itself. In
the experiments on the MEDSTRACT corpus,13 they

accomplished 99% precision at 84% recall, while on a

larger test corpus the method achieved recall of 82% at

precision of 95%.

One of the main challenges of the acronym acquisi-

tion task is to select an optimal EF: the majority of er-

rors in raw-text based methods are related to the size

of the window used for searching for the potential EF.
Therefore, additional text pre-processing was used in or-

der to improve the recognition of EFs. For example,

Pustejovsky and colleagues [59] based their approach

on results of shallow parsing: the size of the window is

determined by morpho-syntactic properties and only

NPs are considered as candidate EFs. The system, called

ACROMED, achieved precision of 98.3% at 72% recall

on the MEDSTRACT corpus.
Finally, Chang and colleagues [52] presented a super-

vised ML approach to acronym recognition that used a

binary logistic regression classifier. Feature vectors used

for recognition were based on three types of features:

features describing acronym patterns (e.g., percentage

of lower case letters), features describing how the acro-

nym letters are linked to EFs (e.g., percentages of letters

aligned at the beginning of words, on syllable bound-
aries, etc.), and features related to the alignment (e.g.,

number of words from an EF used to match letters in

a given acronym, the average number of matched char-

acters per word, etc.). The method was also evaluated

against the MEDSTRACT corpus: the system achieved

95% precision at 75% recall. This method was used to

automatically scan all Medline abstracts and to compile

an acronym database.14

2.2. Term classification

We have been discussing term recognition as a meth-

od to locate lexical units that are related to domain con-

http://www.mitre.org/public/biocreative/
http://www.mitre.org/public/biocreative/
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cepts. Term recognition does not further specify the

meaning of a term; it is the role of term classification

to pinpoint the specific type of a domain concept (such

as a gene, protein, or mRNA) that is described by the

term. In other words, term classification gives a first clue

on the identity of a term, which is an important step to-
wards final term identification. For example, classifica-

tion may help to select a specific resource useful for

term mapping.15 In technical terms, the classification

task is to disambiguate between the possible (broader)

senses of terms (if more than one), which is known as

term sense disambiguation.

Many term classification systems use functional

words, such as receptor, factor, or radical for assigning
term categories [20,21,23,60]. However, more often than

not, terms do not contain any explicit term category

information. In such situation, statistical disambigua-

tion may be warranted. For example, Nobata and col-

leagues [61] combined the use of functional words with

statistical methods for term classification. In their exper-

iment, they compared a naı̈ve Bayesian method with a

decision-tree approach for classifying terms into differ-
ent molecular classes such as protein, DNA, and

RNA. In the former, conditional probabilities of word

w being assigned to class c have been learnt from catego-

ry-specific as well as background word lists, the former

being compiled from resources such as SwissProt and

GenBank, the latter from a large collection of Medline

abstracts. The words within a term were then used to

determine the class probability. The presence of specific
head nouns (acting as functional words) took prece-

dence when determining the term class. The method

was tested on 100 manually tagged Medline abstracts

(the tag set was derived from the GENIA ontology).

The method based on decision-trees relied on three

kinds of feature sets (POS information, character type

information, and category-specific word lists) and was

cross-validated on the same corpus as above. The naı̈ve
Bayesian method (F-score 65.8%) showed lower perfor-

mance than the decision-tree approach (F-score between

87.7 and 90.1%) for classifying terms (assuming perfect

term recognition—which has been done manually).

They also attempted term classification with automatic

term recognition, scoring significantly lower F-scores

for the classification task.

Unlike the previous method, which relies on internal
evidence for classification, most statistical disambigua-

tion approaches are based on information flanking an

ambiguous term. For example, Hatzivassiloglou and

associates [29] described a statistical approach for dis-

ambiguating between proteins, genes, and mRNAs.
15 In the example presented in Section 1, we classified mdm2, in �p53
protein suppresses mdm2 expression,� as a gene, and consequently we
selected a gene resource (i.e., LocusLink) for the final term
identification.
They experimented with different ML techniques (naı̈ve

Bayesian classification, decision trees, and inductive

learning) for term disambiguation, and evaluated several

types of classification features (such as words that ap-

peared near a term, positional, morphological, distribu-

tional, and shallow syntactic information). They found
that using word positional information lowered accu-

racy (because of data sparseness), while POS informa-

tion helped the overall accuracy, but only modestly

(less than 1%). Overall, their approach showed accuracy

between 69.4 and 85% for a two-way classification task

(gene/protein) and between 65.9 and 78.1% for a

three-way classification task (gene/protein/mRNA).

These results compare favourably to a human expert in-
ter-annotator agreement rate of 77.6% when performing

the same classification task manually.

Torii and Vijay-Shanker [62] similarly used an unsu-

pervised bootstrapping method (based on decision lists)

for learning contextual environments for a given set of

classes (namely proteins, chemical names, and sources).

Further, Torii and colleagues [60] experimented with

term internal (functional words and suffixes) and exter-
nal (words occurring nearby) sources for the classifica-

tion of molecular names as chemicals, proteins, and

other classes. They also used a term similarity measure

(based on lexical resemblance among terms) to measure

the distance to previously classified entities. The similar-

ity measure achieved high precision and recall (93 and

84%), and outperformed methods based on internal

and external features.
Spasic and associates [63] looked at term classifica-

tion for the task of ontology management, where it is

of interest to automatically expand ontologies with new-

ly discovered terms. They used genetic algorithms to re-

fine verb selectional preferences and to assign classes

associated with domain verbs. The class of a novel term

is chosen based on co-occurrence with a domain verb, as

well as a similarity measure to known terms with estab-
lished term–class relationships. In an evaluation study

involving 28 different classes (a subtree of the UMLS

semantic network), the approach achieved a mean clas-

sification precision of 64.2% (recall was 49.9%).

Raychaudhuri and colleagues [64] described annota-

tion of Saccaromyces cerevisiae gene names with Gene

Ontology (GO) codes using a word-based maximum en-

tropy measure. The measure acts as a classifier for jour-
nal abstracts, which enables GO mapping for (all) genes

that appear in those abstracts. Nenadic and associates

[48] further explored how different text-based features

influenced the annotation performance using SVMs.

The features included document identifiers (i.e., gene–

gene co-occurrence within the same document), single

words, and automatically extracted terms. The experi-

ment showed that linguistic pre-processing of single
words (such as lemmatization and stemming) did not

significantly boost the performance. Terms (acting as
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semantic features) improved the performance at low re-

call points, while document identifiers achieved superior

results compared to the other features.

2.3. Term mapping

Term mapping is typically the final step in the term

identification process. Its aim is to map a term occur-

rence to an entry in a referent data source, annotating

the term with a referent ID. Term mapping faces two

main problems: the extensive variability of lexical term

representations, and the problem of term ambiguity with

respect to mapping into a data source. The former is

linked to the fact that biomedical terms often appear
in different surface forms. For example, different ortho-

graphic variations (e.g., NF kappa B, NF kappaB, and

NF-kappa B), inflectional and morphological variants

(e.g., transcription intermediary factor-2 and transcrip-

tional intermediate factor 2), structural variations (e.g.,

clones of human and human clones), and lexical alterna-

tives (e.g., hepatic microsomes and liver microsomes)

are very frequent. Since many of such variants are miss-
ing from domain resources, it is typically difficult to link

term occurrences to referent entries directly (i.e., forms

appearing in documents differ from those stored in dat-

abases; see [2,3,15,57]). On the other hand, we often

encounter term ambiguity with respect to a one-to-many

relationship between a term and entries in referent data

sources. The ambiguity complicates the mapping of a

term, as it is typically not trivial to select an appropriate
entry. For example, the term CAT, even if previously

classified as a protein, has many potential candidate en-

tries in the Swiss-Prot protein database (such as cata-

lase, carnitine o-acetyltransferase, as well as different

CAT entries for different species). Tuason and col-

leagues [3] discuss further issues that are relevant for

term mapping. First, there is high ambiguity of biomed-

ical terms with common English words (see also [2]). It
seems necessary, therefore, to include a disambiguation

step to identify common English words early in the term

identification pipeline. Second, terms should be linked to

the appropriate species before mapping.16

In this Section we will briefly review how research in

term normalization and disambiguation tries to over-

come the major challenges in term mapping. We start

by discussing strategies that deal with the problem of
term variability, and then present approaches to term

disambiguation.

2.3.1. Handling term variability

We use a broad definition of variability that includes

simple variations such as differences in spelling, as well
16 Seewald [65] recently discussed the use of several ML classifiers
(naı̈ve Bayesian, SVM, and others) to learn species domains (king-
doms) from Medline abstracts.
as more complex variation (commonly called synon-

ymy). Recently, there has been work towards a better

understanding of the variability issues with regard to

biomedical names. For example, Cohen and colleagues

[66] have written about variability and normalization

of gene and protein names. They differentiate between
contrastive features, ‘‘which can be used to distinguish

two samples of natural language with different mean-

ing,’’ and non-contrastive variability in the form of spell-

ing variations in synonymous names. They suggested

heuristics that allowed the mapping (i.e., conflation) of

(synonymous) variants of gene and protein names to a

canonical referent. These heuristics included equiva-

lence of vowel sequences, optionality of hyphens and
parenthesized material, and case insensitivity. On the

other hand, they found ‘‘edge effects’’ (for example, a

number at the last position of a protein name) to be

contrastive, i.e., changing the meaning (i.e., identity)

of a term.

Other approaches to conflation of terminological

variants have been also suggested (e.g. [15,67]). For

example, Jacquemin and Tzoukermann [68] discussed
conflation of multi-word terms by combining stem-

ming and terminological look-up. Stemming was used

to reduce words so that conceptually and linguisti-

cally related words were normalized to the same stem

(thus resolving some orthographic and morphological

variations), while a terminological thesaurus might be

used for spotting synonyms and linking lexical

variants.
The MetaMap program [69], which maps noun

phrases identified by the SPECIALIST minimal com-

mitment parser to UMLS Metathesaurus concepts,

demonstrates the use of term variation in the process

of mapping terms into a domain resource. MetaMap

uses a multi-level mapping strategy, which first analy-

ses a target term to ‘‘generate’’ a multitude of variants,

such as acronyms, synonyms, and inflectional variants.
Each of these derivations of the original term is then

mapped against concept names in the Metathesaurus.

The method compares the ‘‘strength’’ of the mapping

for each term variant, ordering possible mapping can-

didates. MetaMap has been used in several research

projects that depended on mapping to the UMLS

Metathesaurus, such as hierarchical indexing, data

mining in clinical reports, and automated indexing of
documents.17

Referent data sources often do not contain the com-

plete set of synonyms of a given concept, complicating

the mapping process. There has been work towards

automatically finding term synonyms in documents.

This work (as well as work on acronyms recognition,
17 MetaMap is available online as MetaMap Transfer (MMTx), at
http://mmtx.nlm.nih.gov/.

http://www.mitre.org/public/biocreative/
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reviewed in Section 2.1.5) is useful for extending the

scope of biomedical dictionaries, which boosts the

chance of successfully mapping synonyms. As an exam-

ple of such work, Yu and Agichtein [70] experimented

with four different approaches (namely unsupervised,

partially supervised, and supervised ML approaches,
as well as a rule-based system) for the extraction of gene

and protein synonyms that occurred within the same

sentence. The unsupervised ML approach was based

on comparison of mutual information of synonym can-

didates with respect to other words in their neighbour-

ing contexts, while the partially supervised, bootstrap

method used a set of seed synonym occurrences to learn

‘‘contexts’’ that indicated occurrence of synonyms (e.g.,
fragments such as <GENE> also known as <GENE>).

The supervised SVM-based method used the same seed

occurrences to learn a classifier that classified each tex-

tual context surrounding a pair of gene/protein names

as ‘‘positive’’ or ‘‘negative’’ with respect to synonymy.

Finally, the rule-based system (called GPE) was based

on a set of manually defined lexical extraction patterns

that indicated typical contexts used to express synon-
ymy. While GPE had high precision with low recall,

all ML-approaches traded off precision for higher recall

(for example, the precision of 7% at the recall point of

72%). Still, by combining ML-approaches with GPE,

the performance significantly improved over all individ-

ual approaches.

2.3.2. Handling term ambiguity

The second major problem with term mapping is re-

lated to the problem of term ambiguity with respect to

referent data sources. Broad classification (reviewed in

Section 2.2) can resolve much of term ambiguity, but

is useless in situations where a term has different mean-

ings within a specific term class. For example, broad

classification may help to disambiguate between CAT

as a protein, animal, or medical device, but it is ineffec-
tive in situations where CAT can be mapped to several

different protein entries in a protein data source. In

such situations, specific classification on the level of dic-

tionaries is useful. For example, the work by Liu and

associates [71] aimed to disambiguate terms associated

with several entries in the UMLS Metathesaurus. Given

a term, the method first identifies a set of corresponding

UMLS concept identifiers (CUIs), representing the dif-
ferent term senses. Using the UMLS information on

relationships between concepts, the method then identi-

fies other UMLS concepts (called the relative CUI set)

that have relationships with the original sets of con-

cepts. Using unambiguous concept names of the rela-

tive CUI set, the method builds a classifier for each

sense of the term. In an evaluation study, the authors

experimented with 35 abbreviations with multiple
senses in UMLS. The overall precision was 96.8% at

50.6% recall.
Other approaches have also been suggested for map-

ping ambiguous acronym occurrences18 to their referent

entries. Pustejovsky and colleagues [59] used a simple

word-based vector space model for disambiguation of

acronyms with multiple meanings (the POLYFIND sys-

tem). After collecting a set of abstracts for each mean-
ing, a new abstract (with an occurrence of the

ambiguous acronym) is compared to each of the corre-

sponding ‘‘meaning’’ sets by using the standard tf*idf

weighting and the cosine similarity. A set with the high-

est similarity is used to assign the interpretation to all

occurrences in the new abstract. This approach resulted

in 97.6% accuracy. Pakhomov [72] used a maximum-en-

tropy classifier on the sentence level by using only the
[�2,+2] context window approach to find a correct

interpretation of a given acronym. Since he used a set

of clinical notes for experiments, he also experimented

with features based on the headings (titles) of the sec-

tions in which ambiguous acronyms appeared. He re-

ported that there were no significant differences

between the two approaches: precision was in average

almost 90%. These results suggest that approaches to
acronym sense disambiguation—even without any

sophisticated information—are promising, but it is obvi-

ous that the training resources are needed.
3. Conclusions and challenges

Term identification is crucial for the automated pro-
cessing of the biomedical literature [2,3,73]. The impor-

tance of the topic has triggered fascinating research on

the problems of recognizing, classifying, and mapping

term occurrences in biomedical texts. From the first

descriptions of the term recognition problem (see for

example [21]) to the latest published research, there

has been a steady improvement of the understanding

of the underlying issues and challenges.
Term recognition systems have been developed for

many classes of biomedical entities, in particular for

gene and protein names. They are based either on inter-

nal characteristics of specific classes or on external clues

that can support the recognition of word sequences that

represent specific domain concepts. Different types of

features are used, such as orthographic (capital letters,

digits, and Greek letters) and morphological clues (spe-
cific affixes and POS tags), or syntactic information

from shallow parsing. Also, different statistical measures

are suggested for ‘‘promoting’’ term candidates into

terms. Discovering acronyms and uncovering their

‘‘meaning’’ is also an essential part of term recognition,

since acronyms are very frequent in the biomedical do-
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main. Precision of ATR methods is typically in the 70–

90% range, while recall, in the best cases, is around 70%.

Still, it is not possible to thoroughly compare different

systems as they have different targets, and common test

collections are still rare [2]. Some attempts have been

made only recently to organize joint evaluation schemes
(e.g., the BIOCREATIVE initiative19).

Although tremendous work has been done on ATR,

some challenges still need additional research. For

example, more accurate recognition of term boundaries

is needed, as the majority of existing systems address

only maximally long-term candidates (which may in-

clude some insignificant modifiers, thus complicating

subsequent term mapping). Further, recognition of
internal term structure and nested (embedded) sub-

terms is essential, in particular since nested terms are

common in the biomedical domain.20 For example,

when recognizing the term leukaemic T cell line Kit225,

it would be useful to have all its nested terms (cell line,

T cell line, Kit225, and leukaemic T cell line) recognized

and highlighted in text. Such information may prove

valuable in the subsequent term identification process.
Further challenges include handling of both term varia-

tion that affect term constituents (e.g., orthographic and

morphological variants) and term structure (e.g., recog-

nition of terms that are ‘‘encoded’’ in term coordina-

tions, like terms estrogen receptor and progesterone

receptor in the coordination estrogen and progesterone

receptors [9]). Finally, recognition of other classes of

terms (not only proteins, genes, and chemical com-
pounds) is vital for successful mining of the biomedical

literature.

The recognition of lexical units that correspond to

domain concepts is not the ultimate goal of term identi-

fication: assigning terms to broader biomedical classes

and/or to referent databases is an additional challenge.

However, the variation and inconsistencies in surface

expressions of terms as well as their ambiguity create a
major problem for term classification and mapping.

Term classification is typically based on either functional

words that are embedded in concept names, or on con-

textual characteristics of term occurrences. On the other

hand, term mapping to referent databases typically needs

lexical and morphological ‘‘normalization’’ for match-

ing to existing databases entries, as well as disambigua-

tion for ambiguous terms.
19 BIOCREATIVE (Critical Assessment of Information Extraction
systems in Biology) was organized for the first time as a challenge cup
in 2003, in which one of the sub-tasks was related to protein/gene name
recognition and identification (in the same, shared set of documents).
The evaluation showed that the best methods achieved F-scores of
80%, with both the best precision and recall values of around 80%. For
details see http://www.mitre.org/public/biocreative/.

20 A recent study by Ogren and colleagues [74] reported that, for
example, two-thirds of GO-ontology terms contained another GO-
term as a proper substring.
Although the term identification process can be con-

ceptually and methodologically presented through the

three steps (recognition, classification, and mapping),

in many cases practical solutions merge some of these

tasks, blurring the boundaries between them. For exam-

ple, term recognition and classification are often per-
formed in a single step, where the same features are

used to single out term candidates and to categorize

them. Also, some researchers have pointed to the dual

role of dictionary-based term recognition approaches,

which effectively map recognized (unambiguous) terms

to the respective dictionary entries [10,15]. Nevertheless,

some authors stress the advantages of tackling each step

individually, pointing at the different information
sources needed to accomplish each sub-task [38,60].21

It is an open issue whether a clear separation into single

steps would improve term identification. Obviously, if

separated, it is easier to modularize the term identifica-

tion task, so that different solutions can be used for each

specific problem. For example, if a general, class-inde-

pendent term recognition method is used, then—in or-

der to successfully categorize entities of a new term
class of interest—researchers would have to concentrate

only on the design of a classification method. Further,

separation would allow for the selection of more rele-

vant and more discriminative features for each of the

subtasks.

Also, it seems clear that accurate classification (done

prior to term mapping) can be helpful for more accurate

linking of ambiguous terms to referent sources. For
example, the author of MetaMap discusses the inclusion

of statistical disambiguation to resolve situations where

terms map to several different concepts in the UMLS

[69]. This is a question of practicality: it seems difficult

to build a classifier for each ambiguous term in a refer-

ent database. The solution might be a step-wise ap-

proach, where a broad classification of terms (for

example according to UMLS semantic types) maps most
of the term occurrences, and where the remaining terms

are mapped by individual term classifiers.

Further issues—especially in term mapping—still

wait to be addressed. For example, many recognized

terms do not appear in referent resources, although

highly (conceptually) related entries can be located.

Krauthammer and associates [10] have speculated that

mapping of such terms can be done to parent concepts
of terms. For example, given a database entry interleu-

kin-2, it may be possible to map a term such as interleu-

kin-3, which is not in the database and is contrastive to

interleukin-2, to a parent concept of both terms, such as

interleukin. This would necessitate the inclusion (or gen-

eration) of parent terms in the database, as is the case in
21 For example, Lee and colleagues [38] reported that POS
information was useful for the term recognition task, while it was
not effective for classification.

http://www.mitre.org/public/biocreative/
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most ontologies. Blaschke and Valencia [73] point to a

related problem of terms that refer to families or group

of proteins. Without a corresponding entry in a refer-

ence database, such family terms cannot be mapped.

As an example, consider the (family) name MAP kinase,

which can map to both Erk1 and Erk2 (in humans). The
mapping can be further complicated by the fact that it is

unclear whether an author refers to the family or either

of the entities. Furthermore, in some cases, even a nar-

row context may not be always sufficient to disambigu-

ate a term (e.g., when a protein name is shared among

different species), and wider context (e.g., a whole arti-

cle) may need to be analysed before terms can be

mapped.
Apart from the identification of each and every term

occurrence in text, a further challenge is to select the

most representative or the most important terms (and

entities) that are ‘‘discussed’’ in a given document. This

challenge concerns the problems of sophisticated docu-

ment indexing for improving the quality of information

retrieval, which is crucial for database curation22 and

other time-consuming annotation tasks. For this, meth-
ods that measure the representativeness of the recog-

nized (and identified) names (e.g. [75,46]) are preferred.

Since biomedical literature is expanding so dynami-

cally, the demand from the user community is directed

towards practical and useful systems that are able to

identify and link relevant ‘‘entities’’ in literature to dat-

abases. Relying exclusively on existing controlled vocab-

ularies to identify terminology in text suffers from both
low recall and low precision, as such resources are insuf-

ficient for automatic terminology mining. Having in

mind the pace of the development in the domain and

the rate of coinage of new terms, it is unlikely to expect

that any terminology standardization will occur in the

near future. Therefore, automatic term identification

tools will be for long valuable assets for literature min-

ing and knowledge integration in the biomedical
domain.
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