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The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness 
of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw 
scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are 
realized, one has different predictions on the color and electromagnetic anomalies which could be tested 
in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw 
models which are minimally extended from the (non-) supersymmetric Standard Model and thus set up 
different benchmark points on the axion–photon–photon coupling in comparison with the standard KSVZ 
and DFSZ models.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The existence of neutrino mass and dark matter is a clear 
sign of new physics beyond the standard model (SM). Another 
long-standing issue in SM is the strong CP problem [1] which 
is elegantly resolved by the Peccei–Quinn (PQ) mechanism [2]. 
It predicts a hypothetical particle called the axion as a pseudo-
Nambu–Goldstone (NG) boson of an anomalous global symmetry 
U (1)PQ which is spontaneously broken at an intermediate scale 
vPQ ≈ 109–12 GeV [3]. The PQ symmetry is realized typically in the 
context of a heavy quark (KSVZ) model [4] or a two-Higgs-doublet 
(DFSZ) model [5].

The PQ symmetry breaking may be related to the seesaw 
mechanism explaining the smallness of the observed neutrino 
masses [6–9] identifying the PQ symmetry as the lepton num-
ber U (1)L [10,11]. Let us note that the seesaw mechanism realized 
at the intermediate scale vPQ can provide a natural way to ex-
plain the matter–antimatter asymmetry in the universe through 
leptogenesis [12]. An attractive feature of this scenario is that the 
axion is a good candidate of cold dark matter through its coher-
ent production during the QCD phase transition [13]. As the axion 
is well-motivated dark matter candidate, serious efforts are be-
ing made to search for it by various experimental groups such as 
ADMX [14], CAPP [15] and IAXO [17]. The traditional KSVZ or DFSZ 
models have been considered as two major benchmarks in search 
for the axion dark matter.
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In the context of the PQ mechanism combined with the see-
saw mechanism, however, the electromagnetic and color anomaly 
coefficients can take different values, and thus can have different 
predictions in the future axion search experiments. This motivates
us to consider minimal extensions of the SM in which various see-
saw models [6–8] are extended to realize the KSVZ or DFSZ axion, 
and compare their predictions with the conventional KSVZ and 
DFSZ models.

This paper is organized as follows. We will first set up minimal 
extensions of the SM to combine the PQ and seesaw mechanisms 
in non-supersymmetric and supersymmetric theories in Sections 2
and 3, respectively. The corresponding model predictions are pre-
sented in Section 4, and then we conclude in Section 5.

2. Minimally extended standard model for the PQ and seesaw 
mechanism

A PQ seesaw model is characterized by how a global U (1)X
symmetry, playing the role of the PQ symmetry and the lepton 
number, is implemented to act on a specific set of extra fermions 
carrying non-trivial X charges. Such an U (1)X symmetry is sup-
posed to be broken spontaneously by the vacuum expectation 
value of a scalar field σ assuming a scalar potential:

V (σ ) = λσ (|σ |2 − 1

2
v2
σ )2 (1)

with vσ ∼ 109–12 GeV which sets the scales of the axion decay 
constant Fa and the heavy seesaw particles. In the case of the 
type-I and type-II seesaw introducing a singlet fermion (right-
handed neutrino) [6] and a Higgs triplet scalar [7] respectively, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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their combinations with the KSVZ and DFSZ axion models leads 
to the same results to the conventional ones. Thus, we consider 
the type-III seesaw (by heavy lepton triplets) [8] implementing the 
PQ symmetry in the manner of KSVZ or DFSZ.

• KSVZ+type-III (KSVZ-III): In a KSVZ model combined with 
type-III seesaw (lepton triplets with zero hypercharge), we add 
as usual an extra heavy quark field � which transforms as 
(3, 1, 0) under SU(3)c × SU(2)L × U (1)Y , and three (Majorana) 
lepton triplets which transform as (1, 3, 0). The right-handed 
and left-handed lepton triplets are denoted by

� =
(

NR/
√

2 E+
R

E−
R −NR/

√
2

)
,

�c =
(

(NR)c/
√

2 (E−
R )c

(E+
R )c −(NR)c/

√
2

)
(2)

where heavy neutrino NR , heavy charged leptons E±
R , �c ≡

iτ2�̃
c iτ2 with the charge conjugation �̃c = C�̄T and the Pauli 

matrix τ2. The non-trivial X-charges are assigned as follows

σ �L �R � LL lR

X + 1 + 1
2 − 1

2 ∓ 1
2 ∓ 1

2 ∓ 1
2

(3)

compatible with the Yukawa Lagrangian for the KSVZ-III 
model,

−LKSVZ-III±
Yuk = −LSM

Yuk + � Lh�σ�R + LY D�̃�

+
{

1
2 Tr[�ch�σ�]
1
2 Tr[�ch�σ ∗�] + h.c. (4)

where � = (φ+, φ0)T and L = (νL, 
L) stand for the Higgs 
doublet and the lepton doublet in the SM, respectively, and 
�̃ = iτ2�

∗ . Depending on the X-charge signs of the triplet 
fermion one couples σ or σ ∗ to the triplet as denoted by III+
or III− , respectively. Note that we took the normalization of 
Xσ = 1 in Eq. (3) under which the QCD anomaly is the num-
ber of the heavy quarks: c3 = N� .
After the U (1)X breaking by an appropriate scalar potential 
(1), the complex scalar field σ can be written as

σ = 1√
2

ei Aσ /vσ (vσ + ρ) (5)

where a ≡ Aσ is nothing but the KSVZ axion, and the real 
scalar ρ is supposed to get mass ∼ vσ which sets the axion 
and seesaw scales.

• DFSZ+type-III (DFSZ-III): In a DFSZ axion model, the PQ sym-
metry is implemented by extending the Higgs sector with two 
Higgs doublets, �i = (φ+

i , φ0
i )T with i = 1, 2, and a Higgs sin-

glet σ , and allowing the scalar potential term

V (�1,�2,σ ) � λ�σ �
†
1�2σ

2 + h.c. (6)

which sets the PQ (X) charge relation of the two Higgs bosons: 
2 = X�1 − X�2 again under the normalization of Xσ = 1.
Then the Yukawa Lagrangian for DFSZ-III reads

−LDFSZs-III±
Yuk = Q L Yu�̃2 uR + Q L Yd�1 dR + L Y
�s 
R

+ L Y D� �̃2 +
{

1
2 Tr[�ch�σ�]
1
2 Tr[�ch�σ ∗�] + h.c., (7)

where one can choose s = 1 or 2 depending on which we 
categorize two different DFSZ models. As we again have two 
choices for the triplet mass operator with σ or σ ∗ , there are 
four different DFSZ-III models.
Eqs. (6), (7) give six X-charge relations to be satisfied by the 
eight fields (other than σ ). As will be discussed shortly, the 
orthogonality of the axion and the longitudinal degree of the 
Z boson gives another condition. Then, one finds that there 
is freedom to choose one of the three quark charges. Taking 
X Q L ≡ 0, we get the following X-charge assignment:

σ �1 �2 Q L uR dR � LL lR

X 1 +Xd −Xu 0 −Xu −Xd ∓ 1
2 ∓ 1

2 + Xu ∓ 1
2 + Xu − X�s

(8)

where we have X�1 = Xd and X�2 = −Xu leading to the QCD 
anomaly c3 = (Xu + Xd)Ng = 6 with the number of the gener-
ation Ng = 3.
After the breaking of SU(2)L × U (1)Y × U (1)X by the vacuum 
expectation values, v1, v2 and vσ , of �1, �2 and σ , the axion 
and the longitudinal degree of the Z boson denoted by a and 
G0, are given by [18]:

a ∝ Xd v1 A1 − Xu v2 A2 + Xσ vσ Aσ ,

G0 ∝ v1 A1 + v2 A2, (9)

where A1, A2 and Aσ are the phase fields of �1, �2 and σ . 
Then the orthogonality of a and G0 is guaranteed by

Xd = 2x

(x + 1/x)
and Xu = 2/x

(x + 1/x)
(10)

with the normalization Xσ = 1 and x ≡ v2/v1.

3. Minimal supersymmetric PQ seesaw model

To implement the PQ symmetry in supersymmetric models, let 
us introduce two chiral superfields σ̂ and ˆ̄σ having the opposite 
X charges, say, Xσ = −Xσ̄ ≡ +1, and its spontaneous breaking is 
assumed to occur by the typical superpotential:

WPQ = λS Ŝ(σ̂ ˆ̄σ − 1

2
vσ v σ̄ ) (11)

where 〈σ 〉 = vσ /
√

2 and 〈σ̄ 〉 = v σ̄ /
√

2 is implied in the notation. 
Here Ŝ is a gauge singlet superfield and carry PQ charge zero.

The supersymmetric version of the KSVZ model introduces the 
heavy quark superpotential

WKSVZ = WMSSM + �̂h��̂c ˆ̄σ (12)

which defines the PQ charge relation: X� + X�c = −Xσ̄ ≡ +1 lead-
ing to the QCD anomaly: c3 = N�+�c as in the nonsupersymmetric 
case. Here WMSSM is the usual Minimal Supersymmetric Standard 
Model (MSSM) superpotential given by

WMSSM = Q̂ Yu ûc Ĥu + Q̂ Yd d̂c Ĥd + L̂Y
 
̂c Ĥd + μĤu Ĥd (13)

which is separated from the PQ mechanism.
The supersymmetric DFSZ model provides a natural framework 

to resolve the μ problem as well [19] by extending the Higgs sec-
tor

WDFSZ = Q̂ Yu ûc Ĥu + Q̂ Yd d̂c Ĥd

+ L̂Y
 
̂c Ĥd + λμ
σ̂ 2

M P
Ĥu Ĥd (14)

where M P is the reduced Planck mass and the right size of the μ
term, μ = λμv2

σ /2M P , arises after the PQ symmetry breaking. The 
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usual PQ charges assignment consistent with the above superpo-
tential is

σ̂ Ĥu Ĥd Q̂ ûc d̂c L̂ l̂c

X + 1 −Xu −Xd 0 +Xu +Xd +XL −XL + Xd

(15)

where we have put X Q ≡ 0 as before and Xu + Xd = 2 follows 
from the charge normalization of Xσ = +1. At this stage, there is 
arbitrariness in choosing the value of XL , but it will be fixed in 
seesaw extended PQ models which has no physical consequences. 
Note that the QCD anomaly of the supersymmetric DFSZ model is 
again given by c3 = (Xu + Xd)Ng = 6.

Now let us consider the seesaw extensions of the supersymmet-
ric PQ models. As in the non-supersymmetric case, Type-I seesaw 
introducing right-handed (singlet) neutrinos does not change the 
results of the standard KSVZ and DFSZ models. Thus, we discuss 
the Type-II and -III extensions in order.

• KSVZ+Type-II (sKSVZ-II): Type-II seesaw introduces a Dirac 
pair of SU(2)L triplet superfields with the hypercharge Y =
±1: �̂ = (�̂++, �̂+, �̂0) and �̂c = (�̂c0, �̂−, �̂−−). Its combi-
nation with the KSVZ model can be realized by the superpo-
tential:

W sKSVZ-II± = WKSVZ + L̂Yν L̂�̂ + λd Ĥd Ĥd�̂

+
{

λσ
ˆ̄σ�̂�̂c

λσ̄ σ̂ �̂�̂c (16)

which set the PQ charges of the leptonic fields:

L̂ l̂c �̂ �̂c

X 0 0 0 ±1
(17)

• DFSZ+Type-II (sDFSZ-II): Similarly to the previous case, the 
superpotential for the DFSZ model combined with Type-II see-
saw takes the form:

W sDFSZ-II± = WDFSZ + L̂Yν L̂�̂ + λd Ĥd Ĥd�̂

+
{

λσ
ˆ̄σ�̂�̂c

λσ̄ σ̂ �̂�̂c (18)

which is invariant under the PQ symmetry with the charge 
assignment of (15) extended to the leptonic sector as follows:

L̂ l̂c �̂ �̂c

X −Xd +2Xd +2Xd ± 1 − 2Xd
(19)

• KSVZ+Type-III (sKSVZ-III): In supersymmetric Type-III seesaw 
one introduces three triplet superfields (with Y = 0) denoted 
by

�̂ =
(

N̂c/
√

2 Ê
Êc −N̂c/

√
2

)
(20)

Then the whole superpotential of the KSVZ model realized in 
Type-III seesaw is

W sKSVZ-III± = WKSVZ + L̂Y D�̂ Ĥu +
{

1
2 λσ

ˆ̄σTr[�̂�̂]
1
2 λσ̄ σ̂Tr[�̂�̂] (21)

which defines the PQ charges of the leptonic fields as in the 
non-supersymmetric case:

L̂ l̂c �̂

X ∓ 1
2 ± 1

2 ± 1
2

(22)
• DFSZ+Type-III (sDFSZ-III): Type-III seesaw introduces three 
triplet superfields (with Y = 0):

�̂ =
(

N̂c/
√

2 Ê
Êc −N̂c/

√
2

)
(23)

The superpotential is

W sDFSZ-III± = WDFSZ + L̂Y D�̂ Ĥu +
{

1
2 λσ

ˆ̄σTr[�̂�̂]
1
2 λσ̄ σ̂Tr[�̂�̂] (24)

which set the PQ charges of the leptonic fields:

L̂ l̂c �̂

X ∓ 1
2 + Xu ± 1

2 − Xu + Xd ± 1
2

(25)

4. Model implications to the axion detection

To discuss the implications of the PQ seesaw models presented 
in the previous sections, let us first summarize some basic prop-
erties of the axion relevant for our discussion [3]. After the PQ 
symmetry breaking by a generic number of scalar fields φ having 
the PQ charge Xφ and 〈φ〉 = vφ/

√
2, the following combination of 

the phase fields Aφ defines the axion direction:

a =
∑
φ

Xφ vφ Aφ/vPQ with vPQ =
√∑

φ

X2
φ v2

φ. (26)

Integrating out all the relevant PQ-charged fermions, the axion gets 
the effective axion–gluon–gluon and axion–photon–photon cou-
plings through its color and electromagnetic anomalies, respec-
tively:

−L � a

Fa

g2
3

32π2
Ga

μν G̃μν
a + c̃aγ γ

a

Fa

e2

32π2
Fμν F̃ μν (27)

where the axion decay constant Fa is defined by Fa ≡ vPQ/c3, 
and c̃aγ γ is the ‘modified’ electromagnetic anomaly normalized 
by the color anomaly c3 of the PQ symmetry. Below the QCD 
scale �QCD ∼ 200 MeV, the axion–gluon–gluon anomaly coupling 
induces the axion potential

V (a) = m2
a F 2

a

(
1 − cos

a

Fa

)
(28)

where the axion mass is calculated to be

ma �
√

z

1 + z

mπ fπ
Fa

≈ 6 μeV

(
1012 GeV

Fa

)
(29)

with z ≡ mu/md ≈ 0.5, mπ = 135 MeV and fπ = 92 MeV.
Under the PQ charge normalization of Xσ = +1 (and Xσ̄ = −1) 

in the non-supersymmetric (supersymmetric) axion models dis-
cussed in the previous section, the color anomaly c3 counts the 
number of distinct vacua developed in the axion potential (28)
which sets the axionic domain wall number NDW = |c3|. Then the 
axion–photon–photon coupling constant is given by

c̃aγ γ = caγ γ − cχ S B (30)

with caγ γ ≡ 2Tr[X Q 2
em]

c3
and cχ S B ≡ 2

3

4 + 1.05z

1 + 1.05z
≈ 1.98

where caγ γ counts the electromagnetic anomaly normalized by the 
color anomaly, and cχ S B is the modified effect by the chiral sym-
metry breaking including the strange quark contribution.
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Fig. 1. The axion–photon–photon coupling |gaγ γ | as a function of axion mass ma

in various PQ seesaw models. The future sensitivities of the ADMX and CAPP ex-
periments are shown in the cyan and red thick-dashed lines, respectively. (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Each PQ seesaw model presented in the previous section gives
a different prediction on the coefficient caγ γ and thus on the fu-
ture sensitivity of the axion search at ADMX or CAPP. Following 
Eq. (31), the electromagnetic anomaly of each model is given by

caγ γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±2Ng = ±6 KSVZ-III±
8
3 ± 1 = 11

3 , 5
3 DFSZ1-III±

1
3 ± 1 = 5

3 ,− 2
3 DFSZ2-III±

±10 sKSVZ-II±
8
3 − 2

3 ± 10
3 = 16

3 ,− 4
3 sDFSZ-II±

±2Ng = ±6 sKSVZ-III±
8
3 − 2

3 ± 1 = 3,1 sDFSZ-III±

(31)

where NDW = 1 and 6 are used for the KSVZ and DFSZ models, 
respectively.

In Fig. 1, we plot the axion–photon–photon coupling gaγ γ ≡
c̃aγ γ αem/2π Fa as a function of axion mass ma , and compare them 
with the conventional KSVZ (caγ γ = 0) and DFSZ (caγ γ = 8/3, or 
1/3) predictions. The experiments such as ADMX [14], CAPP [15], 
CAST [16], IAXO [17], are projected to probe some regions of the 
parameter space of the axion coupling to photons and its mass. In 
Fig. 1 the cyan- (red-) thick dashed boundary indicates the future 
sensitivity of the axion dark matter search by ADMX (CAPP) [21]. 
The current ADMX results [20] exclude only a limited region of 
KSVZ type models and DFSZ2-III− , sDFSZ-II± models over the mass 
range of ma = 3.3–3.69 μeV. Solar axion search experiments like 
CAST and IAXO are also sensitive to the PQ axions. CAST probes the 
axion mass range of ma ≈ 0.1–1 eV for gaγ γ � 9 × 10−11 GeV−1, 
while IAXO would have sensitivity to much larger axion masses 
compared to CAST if gaγ γ � 9 × 10−12 GeV−1. Most recently, 
CAST has improved the limit on the axion–photon–photon cou-
pling to gaγ γ < 1.47 × 10−10 GeV−1 at 95% C.L. [16]. This may 
exclude the models above the KSVZ line over the mass range ma �
0.06–0.4 eV, which can be seen by considering the mass values at 
gaγ γ = 1.47 × 10−10 GeV−1 in the various models like sKSVZ-II−
(ma � 0.06 eV), sKSVZ-II+ , sKSVZ-III− , KSVZ-III− (ma � 0.1 eV), 
sKSVZ-III+ , KSVZ-III+ (ma � 0.2 eV), sDFSZ-II± (ma � 0.24 eV), 
DFSZ2-III− (ma � 0.3 eV), and KSVZ (ma � 0.4 eV).

5. Conclusion

We have considered minimal extensions of the SM combin-
ing the KSVZ or DFSZ axion with various seesaw models in the 
framework of the (non-) supersymmetric theories, which provides 
a popular solution to the strong CP problem as well as the small-
ness of neutrino masses. We have showed that depending on how 
to embed U (1)PQ in a seesaw model, the electromagnetic and color 
anomaly coefficients take different values, and thus each model 
has a different prediction on the axion–photon–photon coupling 
which could be tested in the future axion search experiments. This 
sets up various benchmark points for the minimal PQ seesaw mod-
els in comparison with the standard KSVZ and DFSZ models which 
are summarized in Eq. (31) and Fig. 1.
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