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A dynamical pair breaking effect is evidenced at very low excitation energies. For this purpose, a new set
of time-dependent coupled channel equations for pair-breaking in superfluid systems are deduced from
the variational principle. These equations give the probability to destroy or to create a Cooper pair under
the action of some perturbations or when the mean field varies in time. The odd–even effect in fission
is investigated within the model as an example. For this purpose, the time-dependent probability to find
the system in a seniority-one or in a seniority-two state is restricted in the sense that the perturbations
are considered only in the avoided crossing regions.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

In atomic or nuclear molecules, fermions move in a common
field generated by several centers of force. The potential depends
on the so-called generalized coordinates. The most used general-
ized variables are function of the inter-nuclear distances and their
angular dependencies. In such a molecular description, the motion
of the nuclear centers is considered adiabatically slow compared
with the rearrangement of the mean field. The atoms or the nuclei
share their valence electrons and their outer-bound nucleons, re-
spectively. Enhancements and structures in the energy dependence
of the cross section in atomic [1,2] and nuclear [3,4] reactions re-
flect a special signature of the presence of molecular orbitals. The
behavior of the cross section is usually explained in terms of the
Landau–Zener effect.

The Landau–Zener effect [5,6] describes the non-adiabatic tran-
sitions at avoided crossing regions between potential curves [7,8]
or energy levels [9,10]. Two levels with the same good quan-
tum numbers associated to some symmetries cannot intersect and
exhibit avoided level crossing regions. A small perturbation en-
ergy is always available in these regions, being responsible for the
level slippage mechanism. Recently, the time-dependent equations
that describe quantitatively the Landau–Zener promotion mecha-
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nism were generalized for molecular potentials that include pairing
residual interactions [11]. As evidenced below, this generalization
also provides a way to formulate a theory for a new dynamical pair
breaking mechanism. Originally, the pairing formalism, reflected in
the BCS equations, was used to explain superconducting states in
terms of two electrons pairs with opposite momenta and spin near
the Fermi surface [12].

2. Formalism

The dynamical pair breaking effect emerges from a new set
of coupled channel equations deduced for the time-dependent
probability to find the system in a seniority-one state or in a
seniority-two one. The variation of the mean field is considered
slow enough, so that fermions follow eigenstates of the instan-
taneous mean field. In such an approximation, if the interactions
produced in the avoided crossing regions or those due to the Cori-
olis coupling are not taken into consideration, other perturbations
between two different states are not possible. In the following, the
calculations are restricted only for perturbations produced in the
avoided crossing regions. This approximation does not affect the
essential features of the model but leads to a considerable simpli-
fication of the mathematical apparatus.

The starting point is a many-body Hamiltonian with pairing
residual interactions. This Hamiltonian depends on some time-
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dependent collective parameters q(t) = {qi(t)} (i = 1, . . . ,n), such
as the internuclear distances between atoms or nuclei:

H(t) =
∑
k>0

εk
[
q(t)

](
a+

k ak + a+
k̄

ak̄

) − G
∑

k,i>0

a+
k a+

k̄
aiaī . (1)

Here, εk are single-particle energies of the molecular potential, a+
k

and ak denote operators for creating and destroying a particle in
the state k, respectively. The state characterized by a bar signi-
fies the time-reversed partner of a pair. The pairing correlation
arise from the short range interaction between fermions moving
in time-reversed orbits. The essential feature of the pairing correc-
tion can be described in terms of a constant pairing interaction
G acting between a given number of particles. In this Letter, the
sum over pairs generally runs over the index k. Because the pair-
ing equations diverge for an infinite number of levels, a limited
number of levels are used in the calculation, that is N levels above
and below the Fermi energy E F .

Using quasiparticle annihilation

αk(γ ) = uk(γ )ak − vk(γ )a
+
k̄

,

αk̄(γ ) = uk(γ )ak̄ + vk(γ )a
+
k , (2)

and creation operators, it is possible to construct some interactions
able to break a Cooper pair when the system traverses a avoided
crossing region. The parameters vk(γ ) and uk(γ ) are occupation and
vacancy amplitudes, respectively, for a pair occupying the single-
particle level k of the configuration (γ ). In the definition (2), the
parameters uk are considered real by convention. The seniority-
zero configuration is labeled with (γ ) = (0) and the seniority-two
configuration by a pair of indexes denoting the levels blocked by
the unpaired fermions (γ ) = (i j). The three situations plotted in
Fig. 1 can be modeled within products of such creation and anni-
hilation operators acting on Bogoliubov wave functions. In the plot
Fig. 1(a), the Cooper pairs remain on the adiabatic levels εi and ε j
after the passage through the avoided crossing region, in Fig. 1(b)
the pair destruction is illustrated, while in Fig. 1(c) two fermions
generate a pair after the passage through an avoided crossing re-
gion. Formally, to describe these three situations, an interaction in
the avoided crossing can be postulated as follows:

H ′(t) =
n∑

i, j �=i

hi j
[
q(t)

][
αi(0)α j̄(0)

∏
k �=i, j

αk(0)a
+
k akα

+
k(i j)

+ α+
i(0)

α+
j̄(0)

∏
k �=i, j

αk(i j)a
+
k akα

+
k(0)

]
, (3)

where hij is the interaction between the levels. The form of the
perturbation (3) was postulated in Ref. [11] and was successfully
used to generalize the Landau–Zener effect in seniority-one super-
fluid systems. Acting on a suited Bogoliubov wave function, the
product over k transforms the seniority-two configuration in the
seniority-zero one in the case of the first term in the left-hand
side of Eq. (3), and vice versa in the case of the second term. If the
product αi(0)α j̄(0) acts on a seniority-zero function, then it annihi-

lates a pair and creates two unpaired fermions in states i and j̄. If
the product α+

i(0)
α+

j̄(0)
acts on a seniority-two wave function, then

it creates a pair distributed on both orbitals i and j. In order to
obtain the equations of motion, we shall start from the variational
principle taking the following energy functional

L = 〈ϕ|H − ih̄
∂ + H ′ − λN̂|ϕ〉 (4)

∂t
Fig. 1. Ideal avoided crossing regions between two adiabatic levels εi and ε j . Three
possible transitions between configurations in an avoided crossing region in the su-
perfluid model are displayed. (a) The configuration remains unchanged after the
passage through the avoided crossing region. (b) A pair is broken. (c) A pair is cre-
ated.

and by assuming the many-body state formally expanded as a
superposition of time dependent BCS seniority-zero and seniority-
two adiabatic wave functions

∣∣ϕ(t)
〉 =

[
c0(t)

∏
k

(
uk(0)(t) + vk(0)(t)a

+
k a+

k̄

)

+
∑
j,l �= j

c jl(t)a
+
j a+

l̄

×
∏

k �= j,l

(
uk( jl)(t) + vk( jl)(t)a

+
k a+

k̄

)]|0〉, (5)

where c0 and c jl are amplitudes of the two kind of configurations.
Here, λ is the chemical potential, and N̂ is the particle number
operator. To minimize this functional, the expression (4) is derived
with respect the independent variables vk(0) , vk( jl) , c0, c jl , together
with their complex conjugates, and the resulting equations are set
to zero. Eventually, eight coupled-channel equations are obtained:

ih̄ρ̇k(0) = κk(0)Δ
∗
0 − κ∗

k(0)Δ0,

ih̄ρ̇k(γ ) = κk(γ )Δ
∗
γ − κ∗

k(γ )Δγ ,

ih̄κ̇k(0) = (2ρk(0) − 1)Δ0 + 2κk(0)(εk − λ0)

− 2Gρk(0)κk(0),

ih̄κ̇k(γ ) = (2ρk(γ ) − 1)Δγ + 2κk(γ )(εk − λγ )

− 2Gρk(γ )κk(γ ),

ih̄ Ṗ0 =
∑
γ

hγ

(
S∗

0γ − S0γ

)
,

ih̄ Ṗγ = hγ

(
S0γ − S∗

0γ

)
,

ih̄ Ṡ0γ = S0γ (E0 − Nλ0 − Eγ + Nλγ )

+ S0γ

( ∑
k �=γ

Tk(γ ) −
∑

k

Tk(0)

)

+
∑
β

hβ Sβγ + hγ (Pγ − P0),

ih̄ Ṡβγ = Sβγ (Eβ − Nλβ − Eγ + Nλγ )

+ Sβγ

(∑
k �=β

Tk(β) −
∑
k �=γ

Tk(γ )

)

+ hβ S0γ − hγ S∗
0β, (6)

where the partial derivatives with respect the time are denoted by
a dot. If (γ ) denotes the indexes ( j, l) and (β) the indexes (m,n),
the sums are restricted by the conditions j �= l, m �= n, m �= j, and
n �= l. Eγ are exactly the expected values of the Hamiltonian (1)
for the seniority-zero or seniority-two configurations:



318 M. Mirea / Physics Letters B 680 (2009) 316–320
E0 = 2
∑

k

ρk(0)εk − |Δ0|2
G

− G
∑

k

ρ2
k(0),

E jl = 2
∑

k �= j,l

ρk( jl)εk − |Δ jl|2
G

− G
∑

k �= j,l

ρ2
k( jl) + ε j + εl, (7)

and Tk(γ ) are energy terms associated to single-particle states:

Tk(γ ) = 2ρk(γ )(εk − λγ ) − 2Gρ2
k(γ )

+
κk(γ )Δ

∗
γ + κ∗

k(γ )
Δγ

2

( ρ2
k(γ )

|κk(γ )|2 − 1

)
.

The following notations are used in Eqs. (6):

Δ0 = G
∑

k

κk(0),

Δ jl = G
∑

k �= j,l

κk( jl),

κk(γ ) = uk(γ )vk(γ ),

ρk(γ ) = |vk(γ )|2,
Pγ = |cγ |2,
Sγ β = cγ c∗

β, (8)

where ρk(γ ) are single-particle densities and κk(γ ) are pairing mo-
ment components. Pγ denote the probabilities to find the system
in the configurations γ . Sγ β are moment components between
two configurations γ and β and have the property |Sγ β |2 = Pγ Pβ .
Δγ is the gap parameter. The values of ρk(γ ) and Pγ are re-
als. The particle number conservation conditions 2

∑
k ρk(0) = 2N ,

2
∑

k �=γ ρk(γ ) = 2N − 2 and P0 + ∑
γ Pγ = 1 are fulfilled by

Eqs. (6).

3. Application to fission processes

A direct application of the system (6) is related to the pair
breaking and the odd–even structure in fission fragment yields. In
fission, it is considered that the paired configuration is preserved
until an interaction breaks some pairs in combination with the ex-
istence of a sufficient high excitation energy. The odd–even struc-
ture in fission is explained usually within statistical arguments, as
for example in Refs. [13,14]. Alternatively, the probability to break
a pair can be determined dynamically by taking into account only
the interaction available in the avoided crossing regions within the
present model.

To solve the pair breaking equations (6), the variations of
single-particle energies εk together with perturbations hij must be
supplied. The simplest way to obtain these evolutions is to con-
sider a time-dependent mean field in which the nucleons move
independently. In most usual treatments of nuclear fission, the
whole nuclear system is characterized by some collective variables,
which determine approximately the behavior of many other intrin-
sic variables. The generalized coordinates vary in time leading to a
split of the nuclear system. The basic ingredient in such an analy-
sis is a nuclear shape parametrization. In the following treatment,
a nuclear shape parametrization is given by two ellipsoids of dif-
ferent sizes smoothly joined by a third surface obtained [11] by
the rotation of a circle around the axis of symmetry. Five degrees
of freedom characterize this parametrization: the elongation given
by the inter-nuclear distance R between the centers of the ellip-
soids, the two deformations of the nascent fragments, the mass
Fig. 2. (a) Proton level scheme as function of the inter-nuclear distance R between
the nascent fragments along the minimal action path for the 234U fission. Only
N = 60 single-particle energies above and below the Fermi level are plotted. The
Fermi level E F is displayed with a thick full curve. The selected Ω = 1/2 levels
(ε1, . . . , ε17) are plotted with thick dot-dashed lines. Avoided level crossing regions
are marked with circles. The maximum number of major shells used in calculations
is 12. (b) The fission barrier as function of the internuclear distance R . Nuclear
shapes corresponding to several special configurations are inserted in the plot. The
values of the internuclear distances are also marked. At R ≈ 4 fm, the ground-state
configuration of the parent is found.

asymmetry and the necking parameter. Due to the axial symme-
try, the good quantum numbers are the projections of the intrinsic
spin Ω .

As specified in Ref. [15], first of all, a calculation of the fis-
sion trajectory in our five-dimensional configuration space, begin-
ning with the ground-state of the system up to the exit point
of the barrier must be performed. This can be done by mini-
mizing the action integral. For this purpose, two ingredients are
required: the deformation energy V and the tensor of the effec-
tive mass. The deformation energy was obtained in the frame of
the microscopic–macroscopic method [16] by summing the liquid
drop energy with the shell and the pairing corrections. The macro-
scopic energy is obtained in the framework of the Yukawa plus
exponential model [17] extended for binary systems with differ-
ent charge densities [18]. The Strutinsky microscopic corrections
were computed on the basis of the Woods–Saxon superasymmetric
two center shell model. The effective mass is computed within the
cranking approximation [19]. After minimization, the dependences
between the generalized coordinates qi (i = 1, . . . ,5) in the region
comprised between the parent ground state configuration and the
exit point of the external fission barrier supply the least action
trajectory. The ground-state corresponds to the lowest deforma-
tion energy in the first well. The least action trajectory is obtained
within a numerical method. Details about the numerical procedure
of minimization and about the model can be found in Refs. [10,11]
and references therein. The resulting 234U fission barrier is plot-
ted on Fig. 2(b) as function of the distance between the centers of
the nascent fragments R . Some nuclear shapes obtained along the
minimal action trajectory are inserted in the plot. A realistic proton
level scheme along the least action trajectory is obtained within
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Fig. 3. (a) The average excitation energy E∗ as function of the elongation R . The
inter-nuclear velocities Ṙ are 104, 105 and 106 m/s for the dashed, full and dot-
dashed lines, respectively. (b) The probability Podd of a seniority-two state with
respect to the elongation R . The same line types and inter-nuclear velocities as in
panel (a) are used. (c) The probabilities to obtain a seniority-zero state P0 and a
seniority-two state Podd as function of the excitation energy E∗ of the fragments at
the elongation R = 20 fm.

the superasymmetric Woods–Saxon two-center shell model [11].
This model gives the single particle level diagrams by diagonal-
izing a Woods–Saxon potential, corrected within spin–orbit and
Coulomb terms, in the analytic eigenvalue basis of the two center
semi-symmetric harmonic model [20,21]. Other recipes to obtain
the level scheme are related to the molecular orbital method [22].
The proton level scheme is displayed in Fig. 2(a).

The Landau–Zener effect is produced only in the workspace
spanned by levels characterized by the same good quantum num-
bers. As mentioned, due to the axial symmetry, the good quantum
numbers are the projections of the intrinsic spin Ω . Therefore,
among the N states in the region near the Fermi surface, the
17 levels with spin projection Ω = 1/2 are selected. These lev-
els are plotted with thick dot-dashed lines in Fig. 2(a). Because
a pair creation or annihilation is considered to be possible only
between adjacent levels, 16 seniority-two configurations are con-
structed. The initial values of quantities (8) are obtained by solving
the BCS equations for the ground states of all γ configurations.
The average excitation energy of the seniority-zero state is com-
puted as in Refs. [23,24] with the relation E∗ = (E0 − E0

0) + E∗
n ,

where E0
0 is the value of the lowest energy state of any deforma-

tion calculated within the BCS approach and E0 is obtained with
Eqs. (7). Here, E∗

n is the dissipation obtained within the same for-
malism for the even neutron subsystem. The probability to obtain
a seniority-two state is simply Podd = 1 − P0. The values of E∗ and
Podd are plotted in Figs. 3 (a) and (b) as function of the elongation
for some inter-nuclear velocities Ṙ . In connection with the shape
of the barrier displayed in Fig. 2, it can be deduced that the larger
part of the odd–even yield is formed during the penetration of the
second barrier and the excitation energy increases merely in the
same region. Different constant values of the inter-nuclear velocity
Ṙ ranging from 104 to 106 m/s were tested. These values can be
translated in a time to penetrate the barrier ranging in the inter-
val [1.4 × 10−18,1.4 × 10−20] s. In Fig. 3(c), the dependences of P0
and Podd versus E∗ are displayed in the selected velocity domain.
The results exhibit a clear decrease of Podd as function of E∗ . It
is interesting to note that at zero excitation energy, the probabil-
ity to find the system in a seniority-two state is practically one. In
cold fission, at very low excitation energies of the fragments, the
odd–even yields are always larger than the even–even ones [25–
27]. The even–even fragmentation dominates at larger excitation
energies of the fragments, above 4–6 MeV. It is a very strange
phenomenon because in cold processes the system doesn’t pos-
sess enough energy to break a pair and because the penetrability
is hindered for odd-systems due to the specialization energies as-
sociated to the two unpaired nucleons. Up to now, the statistical
explanation of this phenomenon involved some modifications of
the level densities for odd–even and even–even partitions [14] by
according them within the deformations of the fragments as func-
tion of the excitation energies and the shell effects. However, if one
assumes that the odd–even effect in the fission fragments distribu-
tion is strongly correlated to the seniority-two state probability,
this phenomenon can be alternatively explained by solving the
coupled-channel system of time-dependent pair breaking equa-
tions as evidenced above. In this work, only the Ω = 1/2 subspace
of the proton level diagram is treated, but the same formalism can
be applied to other subspaces.

In conclusion, a new set of time-dependent coupled chan-
nel equations derived from the variational principle is proposed
to determine dynamically the mixing between seniority-zero and
seniority-two configurations. The essential idea is that the config-
uration mixing is managed under the action of some inherent low
lying time dependent excitations produced in the avoided crossing
regions. These equations were used to explain the odd–even effect
in cold fission processes. Only the radial coupling was used in the
analysis, but it is possible to extend the equations to take into ac-
count even the Coriolis coupling, as in Ref. [28]. The main trends
concerning the dependence of the odd–even effect in fragments
yields versus the fragments excitation energy were reproduced.
The formalism can be adjusted for other types of processes. In this
respect, the value of the interaction hγ γ ′ can also be the magni-
tude of other kind of interactions between different configurations
and the collective variables could be the amplitude of an external
applied field as encountered in the field of condensed matter. The
essential idea is the inclusion in the energy functional of a time
dependent low perturbation by the mean of quasiparticle opera-
tors.
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