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Abstract---Our approach combines a method of an inexact steepest descent with the method of contractor 
directions to obtain a backtracking linear-time convergence algorithm for solving systems of nonlinear 
equations. Using the fundamental inequality of contractor directions, we prove the convergence and give 
an error estimate for our method. 

The algorithm is well-suited for parallel computation. In fact, for systems with m equations and n 
unknowns, each iteration may be computed in parallel time O(log m + log n), with O(mn) processors. 

1. I N T R O D U C T I O N  

Over the years, a number of iterative and backtracking methods to solve systems of nonlinear 
equations have been proposed (e.g. see Refs [1-3], and the references within). Our method 
incorporates some of the ideas proposed by Altman [4] together with the method of contractor 
directions [5]. It is an iterative method with linear-time convergence, however, the advantage it 
possesses is that the individual iteration steps can be computed approximately. Hence, it also 
encompasses some nonexact methods and, in particular, the nonexact method of steepest descent. 
Moreover, the method of contractor directions allows for an additional level of parallelism in that 
the backtracking computation for individual iterations may be computed simultaneously. 

The method may be applied to systems of equations where m, the number of equations, is not 
equal to n, the number of unknowns, but this case is not investigated here in detail. If the starting 
point x0 is bad, the algorithm can be used to find a better one, and then switch to a faster 
convergence method. In order to simplify the exposition, the steepest descent direction is taken as 
the direction of descent. However, the method in the general case and the line search in particular, 
is different from the Goldstein-Armijo approach, see for example Ref. [3]. 

Consider the system 

2. D E S C R I P T I O N  O F  T H E  M E T H O D  

which can be written as F(x)=  0, with 

where 

P ( x ) = O ,  (1) 

F(x) = Ile<x)ll =, <2) 

P(x) = (fl (x),f2(x) . . . . .  f,.(x)) T, x = (xl, x2 . . . . .  x.) v (3) 

and 

iie(x)[I =f~(x) + . . .  +f~(x). (4) 

P(x) may be defined on a domain containing a ball B(xo, R) = {x I IIx- Xo [I ~< R} for some 
R > 0. Assume that the following condition is satisfied: 

liP'(x) Te(x)ll c IIe(x)ll, (5) 

for some constant c and all x ~ B(x0, R). 
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The following is the iterative method under consideration: 

Xi+ 1 ; = Xi - -  6ihi ,  

where 

h : ] lP(x)]12 r E ( x ) :  I I P ( x ) l l 2  Ptgx]TIDgx  "~ 
2[IP'(x)rP(x)I[ 2 ' '  , ,. 

Here, VF(x) = F'(x) is the gradient of  F and P'(x) is the Jacobian of  P at x, 

. . . . .  j =  1 . . . . .  m, 

d(xl,x2 . . . . .  x,) \0x,,]  k = 1 , . . . , n .  

In order to determine the step-size Ei, we put 

• (~, h, x )  = l r ( x  - Eh) - (1 - O r ( x )  I 
E 

Let 0 < q ' < q < l  be fixed. 

(6) 

(7) 

(8) 

(9) 

Remark 2.2 

If equation (10) is solved exactly, then method (6) becomes the method of  steepest descent with 
a different line search. However, if equation (10) is solved approximately, satisfying conditions (11) 
or (12), then method (6) may no longer be of steepest descent, since the condition 

(F'(x), h ) < 0 

may not hold [1, pp. 113-114]. 
In this way, the following fundamental inequality for contractor directions [5], is satisfied for each 

iteration: 
IF (x i -  eihi) - (1 - ei)F(xi)[ ~< EiqF(xi). (16) 

Remark 2.1 

If h is chosen by formula (7), then we get 

(F'(x),  h )  - F(x) = 0. (10) 

However, one can also choose h such that 

I<F'(x), h ) - F(x)l ~< q ' r (x) ,  (11) 
or equivalently, 

l<2e'(x) ~e(x),  h > - Ile(x)ll21 ~ q,lle(x)ll 2, (12) 

where L',h II ~ c Ite(x)ll ~, that is, equation (10)is  solved approximately. Then condition (5) is not 
needed, because this assumption is replaced by [Ih It c lle(x)ll 2 in condition (12). In general, h 
satisfying condition (11) does not have to be the steepest descent direction. The choice of  h in 
condition (11) can also be used in cases where the number of equations and unknowns is not equal. 
This choice makes the method different from the Goldstein-Armijo method. Also, let us mention 
that the Lipschitz continuity of  VF(x) is not required, see Theorem 6.3.3 [1]. 

To choose the proper e step-size, we proceed as follows: 

If ~(1, h/, xi) <~ qF(xi), then put Ei: = 1. (13) 

If  Ei = 1 does not satisfy condition (13), take ei from the left or right half interval (0, 1) which we 
keep dividing until e i from the left or right subinterval satisfies 

flqF(xi) <~ ~(Ei, hi, xi) ~< qF(xi), (14) 

where 0 < fl < 1 is fixed independently of  i. However, the larger the step-size 0 < Ei ~< l, the faster 
the convergence of  method (6). Finally, put 

Xi+ I : =  Xi - -  Eihi. (15) 
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Also, consider the sequence 

to = O, ti + i = ti + E~, 0 < E,. ~< 1. (17) 

It follows inductively from condition (16) that 

F(x,) ~< F(x0)exp(-  (1 - q)t,). (18) 

In fact, by induction from condition (16) we get 

F ( x , +  t ) ~< (1 - (1 - q)E~)F(xi) ~< exp(--(1 -- q)E,)F(x,) ~< F(xo)exp(-(1 - q)(ti + ~i)). 

It follows from equations (5) and (7) that 

IIh II ~ (2c)'[Ie(x)ll = (2c)- '  F x / ~ -  (19) 

Lemma 2.1 

The following estimate holds 

~,lrh, II ~ (2c)-'[~(1 -- q ) ] - l ~ e x P ( ½ ( 1  --q)). (20) 
i = 0  

Proof. From equations (18) and (19) we have 

IIh, ll ~ ( 2 c ) - l ~ e x p ( - - ½ (  1 -- q)t,). (21) 
Furthermore, 

eiexp(--½(1- q)t,) = ~ ( t , + , -  t i ) e x p ( - - g l - q ) t i )  
i = 0  i = 0  

= ~ (t~+l -- ti)exp(-½(1 - q)ti+ l)exp(~(1 - q)Ei) 
i = 0  

~< exp(~(1 - q)) e x p ( - ~ l  q)O) dO 
i = 0  dtj 

f: = exp(~(1 - q)) exp(-½(1 - q)O) dO = [~(1 - q)]- '  exp(~l - q)). 

Hence, relation (20) results from condition (21). []  

Lemma 2.2 

Suppose that the mapping P(x) in equation (3) is continuous in B(x0, R) and that P '(x)  is also 
continuous. If {xi} converges to some x and {hi} is bounded, then 

ET' IF(x,- E,h,) - F(xi) + E/<F'(xi), h,>l~0 as E,--*0. (22) 

Proof. We have, by equation (2) 

(F'(x),  h ) = (2P ' (x)rp(x) ,  h ). (23) 

Hence, it follows that F'(x) is uniformly continuous in B(x0, R). But 

fo' e/--1 [F(xi - Eih~) -- F(xi) + (F'(xi),  Eihi)] = e/--I ( F ' ( x i -  OE~hi) -- F'(xi), --Eihi) dO 

;o' ~< [Ih, lJ [IF'(x,- OE,h,)- F'(x,)ll dO 

fo' ~< [Ih,[[ [[IF'(x,-  0E,h,) - F'(x)[[ + IIF'(x) - F'(x,)ll] dO, 

by Taylor's formula, and IF'(x)-r(x,)-.0 and llr(x,-0,,hi)-r(x)ll-,0 uniformly in 
0 ~< 0 ~< 1 as i ~ o o  by estimate (20) and [ x~-x[ --*0 as i--. oo, by assumption. Hence, relation (22) 
follows. []  
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Lemma 2.3 

Under the assumption of  Lemma 2.2, we get for i--,oo, 

• (Ei, hi, x i )~0  if Ei~0. (24) 

Proof. From equations (7) and (23), we get 

<F' (x , ) ,  hi> = F(x , ) .  

Hence, relation (24) results from equations (9) and (22). []  

Theorem 2. I 

Suppose that condition (5) is satisfied and both P(x) and P'(x) are uniformly continuous and 
bounded in B(xo, R), where R is such that 

(25) (2c)-t[~-(1 - q ) ] - l ~ e x p ( - ~ ( 1  -- q)) ~< R 

holds. Then the equation P ( x ) =  0 has a solution x such that 

IIx i -x l l - ,0  as (26) 

where {x~} is determined by equation (6), and xi, x ~ B(x0, R). The error estimate is given by the 
formula 

IIx,- xll ~< ( 2 c ) - ' x / - F ~ e x p ( - ~ ( l  - q)) e x p ( - ~ l  - q)O) dO 
t 

= ( 2 c ) - L ~ e x p ( - ~ l  - q))[~l - q) l - '  exp(-~( l  -- q)ti). (2"/) 

Proof. Relations (6) and (20) imply that the sequence {xi} converges to some x, that is, condition 
i - I  (26) holds. Since to = 0 and ti = Z}=0 9, we consider two cases: 

(a) t i~ oo as i ~ ~ .  Then estimation (18) implies 

Ile(x,)ll-~0 as i--*oo. 

Since P(x) is continuous and x i ~ x  as i - - ,~ ,  it follows that 

P ( x i ) ~ P ( x ) = O  as i~oo .  

(b) Suppose that lim,_.~ ti< oo. Then Ei-~0 as i ~ .  But it results from conditions (24) and 
(14) that F(x~)~0 as i o ~ ,  or equivalently, 

lIP(xi)l[~0 as i ~ o o .  

Hence, P ( x ) =  0 as in case (a). This completes the proof. []  

Remark 2.3 

In addition to hypotheses of  Theorem 2.1, suppose that the Jacobian P'(x) in equation (7) is 
Lipschitz continuous in B(x0, R) with Lipschitz constant cl. Then Ei satisfies condition (18) if 

Q < q(2c)2c 71 (28) 
holds. 

Proof. Using the same Taylor formula as in Lemma 2.2, we get 

IF(xi - eihi) - (1 - ei)F(x,) I ~< c, c~ [Ih,. [I 2 ~< ,,qF(x,). 

by condition (21), if relation (28) holds. 
Based on relation (28) and the line search algorithm described above, relation (14) will be satisfied 

after a finite number of  trials. 
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3. PARALLEL COMPUTATION 

Although it is theoretically possible to perform a Newton-type iteration in parallel time 
O((log n)2), there is no known practical algorithm that achieves this bound.t However, it would 
not be constructive to compare the parallel computation times per iteration for quadratic versus 
linear convergence methods. 

Below, we show that an iteration step in our algorithm can be performed in parallel time 
O(log m + log n) on a PRAM with O(mn) processors. Moreover, the optimal step-size E,. can be 
determined by evaluating the • function with a bounded number of different E values simulta- 
neously [see equation (28)], thereby eliminating the sequential nature of condition (14). 

Let us examine an iteration step of our method: 

IIe(x')ll= P,(x )XP(x ) (29) 
x , + , : = x , -  ,211P,(x,) p(x,)ll = , , .  

It is clear that major computational work, for both the sequential and parallel case, is the 
evaluation of the Jacobian P'(x). 

of, 0A of, 
Ox, Ox2 "'" Ox. 

P'(x)= 
Ox2 

Oxi Ox2 

"'" 0x. 
• . . 

0fro 
• . . O X  n 

(30) 

Let a~ and 56, denote the computation times for evaluating 

(31) fj(x) and \ e x d ,  

respectively. Let us assume that the computation times for evaluating the functions and their partial 
derivatives are independent of i, the number of iterations. There are many families of problems 
for which tr and 50 increase with n, the dimension of the problem, however, for the sake of Jk 
exposition, let us also assume that these computation times are also independent of n. Let 

O'max = max (a~) and 6max= max (66k). (32) 
j = l  . . . . .  m j = l  . . . . .  m 

k = l  . . . . .  n 

It follows that we can compute P(x) and P'(x) in parallel time O(tTma x + 6max). The computation 
of the product P'(x)Tp(x) will take O(log m) steps, whereas the computation of the norms 

IIe'(x)Te(x)l l  and IIe(x)ll = (33) 

will take additional O(logn) time• 
The evaluation of the function ~, in the determination of an optimal step-size Ei, also takes 

O(trm,x + tSmax + log m + log n) steps, which becomes the computation time for each iteration. Iftbe 
number of available processors is p < ran, then the computation time for each iteration becomes 

O(0rrnax.~_ ~rnax + m__n_np + logm + logn).  (34) 

4. CONCLUDING REMARKS 

The algorithm has been implemented on both sequential and parallel machines (Vax 750 and 
Sequent BALANCE 21000 multiprocessor). Initial computational results indicate that the method 

tThis is a consequence of the fact that the matrix inversion problem belongs to the class N C  2, see  Ref. [6] for explanation. 

C A M W A  1 9 / 6 ~ B  
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is a good  candidate  to be used as a s tar tup procedure  for  higher order  methods  [7]. As expected 
f rom the methods  under  considerat ion for nonlinear  functionals, the performance of  this me thod  
degrades in the close vicinity o f  the solution, indicating a transfer to a faster convergence method.  
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