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Abstract

In this paper, a numerical analysis of impact interfacial fracture for a piezoelectric bimaterial is provided. Starting from
the basic equilibrium equation, a dynamic electro-mechanical FEM formulation is briefly presented. Then, the path-inde-
pendent separated dynamic J integral is extended to piezoelectric bimaterials. Based on the relationship of the path-inde-
pendent dynamic J integral and the stress and electric displacement intensity factors, the component separation method is
used to calculate the stress and electric displacement intensity factors for piezoelectric bimaterials in this finite-element
analysis. The response curves of the dynamic J integral, the stress and electric displacement intensity factors are obtained
for both homogeneous material (PZT-4 and CdSe) and CdSe/PZT-4 bimaterial. The influences of the piezoelectricity and
the electro-mechanical coupling factor on these responses are discussed. The effects of an applied electric field are also
discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are of great importance in aerospace, automotive, medical and electronic technolo-
gies. Interfacial fracture for piezoelectric materials has received much attention in the last few years (McMee-
king, 1999), since interfacial crack is one of the most commonly observed failure modes in piezoelectric
laminates, which are used in many modern structures. Various theoretical results have been obtained to under-
stand the interfacial fracture behavior of piezoelectric materials. Most of the analyses are quasi-static (Kuo
and Barnett, 1991; Suo et al., 1992; Shen and Kuang, 1998). Applications of piezoelectric materials in the areas
of electromechanical devices and electronic packaging illustrate the fact that the transient response of interfa-
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cial crack to impact loading is an important phenomenon and, hence, cannot be neglected (Khutoryansky and
Sosa, 1995). Some studies have been carried out for dynamic fracture in homogeneous piezoelectric materials.
Shindo and Ozawa (1990) and Parton and Kudriavtsev (1988) analyzed the interaction of piezoelectric har-
monic waves with cracks. Dascalu and Maugin (1995) investigated steady-state crack propagation in piezo-
electric materials. Li and Mataga (1996a,b) studied the semi-infinite propagating crack in a piezoelectric
material with electrode boundary condition and vacuum condition on the crack surface. Shen et al. (1999)
analyzed the interfacial crack in piezoelectric bimaterial system under impact loading on the crack surfaces
by means of the integral transforms. Nishioka and Shen (2001) obtained the asymptotic transient structure
of the near-tip field in a piezoelectric bimaterial containing an interfacial crack under electric/mechanical
impact loading, etc.

In these researches the dynamic piezoelectric fracture problem is considered in the quasi-electrostatic
approximation. That is, the inertial effects are taken into account while keeping the static approximation
for the electric fields. This approximation is relevant for the description of the acoustic effects in piezoelectric
materials, for which the electromagnetic coupling is not important (Li and Mataga, 1996a). In this paper, we
also adopt this assumption.

For dynamic fracture mechanics, Nishioka and Atluri (1983) derived the path-independent dynamic J inte-
gral, which has the physical significance of energy release rate. Furthermore, for dynamic interfacial fracture
mechanics, Nishioka and Yasin (1999) developed the separated dynamic J integrals, which are equivalent with
the separated energy release rates from individual material sides. The separated dynamic J integrals should be
very useful to identify the fracture mechanics effects of individual material in an inhomogeneous materials
system.

In early works on extracting mixed-mode stress intensity factors for interfacial cracks, Yau and Wang’s M
integral method (1984) is commonly used. However, it is sometimes difficult to set up the auxiliary solution
field that is necessary in this method. The component separation method was extended to static and dynamic
interfacial crack problems in both general and piezoelectric materials by Nishioka and his colleagues (Nish-
ioka et al., 2003; Shen and Nishioka, 2003). This method has great advantages over the M integral method,
since no auxiliary solution field is needed.

Due to the practical and academic importance of impact interfacial fracture mechanics, this paper deals
with loads that are applied suddenly to bimaterials containing interfacial crack. To attempt some progress
on this task, a numerical analysis of impact interfacial fracture for a piezoelectric bimaterial is provided. Start-
ing from the basic equilibrium equation, a dynamic electro-mechanical FEM formulation is briefly presented.
Then, the path-independent separated dynamic J integral is extended to piezoelectric bimaterials. Based on
these asymptotic fields (Nishioka and Shen, 2001) the relationship between the path-independent dynamic J
integral and the stress and electric displacement intensity factors are obtained. By appealing to this relation-
ship, the component separation method is used to calculate the stress and electric displacement intensity fac-
tors for piezoelectric bimaterials in the finite-element analysis. The response curves of the dynamic J integral
and the stress and electric displacement intensity factors are obtained for homogeneous and bimaterial. Two
piezoelectric materials, PZT-4 and CdSe are considered in this numerical analysis. These two materials repre-
sent two typical piezoelectric materials: PZT-4 for the materials with the stronger electromechanical coupling
effect and CdSe those with the lower one, respectively. The electromechanical coupling factor has strong effect
on the impact response of piezoelectric materials. The influences of the piezoelectricity and the electro-
mechanical coupling factor on these responses are discussed. The effects of an applied electric field are also
discussed.
2. Formulation of electro-mechanical coupled finite element method

Based on the virtual work principle, for the real solution of the electro-mechanical system in the domain V

with the boundary oV, the following variational equation exists
Z
V
½ðrij;i þ fj � q€ujÞduj þ ðDi;i � peÞd/�dV�

Z
Sr
ðrijni � T jÞduj ds�

Z
SD
ðDini � p0Þd/ds ¼ 0 ð1Þ
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where ui, /, rij, Di, fi and pe are the displacement vector, electric potential, stress tensor, electric displacement
vector, body force and body electric charge (i.e. the density of free charge per unite volume), respectively.
Throughout, we take pe = 0. Therefore, there are no Coulomb forces acting on free charge within the material.
The effect of forces acting on bound charges involved in the polarization process is accounted for in the stored
energy of the polarized state (see McMeeking, 1999). Hence, the body force fi is pure ‘material’, the contribu-
tion from Columbic sources (Maxwell stress) is zero. Sr denotes the part of the boundary where traction is
prescribed, SD the part of the boundary where charge is prescribed and q is the density. Tj is the surface force
and p0 is the surface electric charge, ni is the normal of the surface. It is also noted that some of these external
loads could be due to electrostatic Coulomb forces acting on the free charges at interfaces with electrodes or
other surfaces, however, these are small and can be neglected (McMeeking, 1999; Eringen and Maugin, 1990,
etc.).

Applying the generalized Green–Gauss theorem in conjunction with the constitutive equation (see Appen-
dix A) and the linear geometry Eq. (1) can be written as
d
Z

V

1

2
cijklekleij� eijkEkeij�

1

2
jijEiEj

� �
dV

� �
þ
Z

V
q€ujduj dV�

Z
V

fjduj dV�
Z

Sr
T jduj ds�

Z
SD

p0d/ds¼ 0

ð2Þ
where eij is the strain tensor and Ei is the electric field vector, cijkl is elastic constants, jij is the dielectric per-
mittivities and eijk is the piezoelectric constants.

The continuous displacement and potential are interpolated in terms of j nodal values as
ui ¼
Xn

j¼1

Nju
ðjÞ
i ;/ ¼

Xn

j¼1

Nj/
ðjÞ ð3Þ
where Nj are interpolation functions. Differentiating Eq. (3) yields expressions for the strains and electric field
(negative potential gradient)
e ¼ Buu; E ¼ �B// ð4Þ
If we let N be the total element number of the system, then, the final equation can be obtained as
XN

e¼1

Me
€Qe þ KeQe

� �
¼
XN

e¼1

Fe i:e: M €Qþ KQ ¼ F ð5Þ
where Qe contains the displacement as well as the electric potential degrees of freedom of a finite element, Ke is
the element stiffness matrix, Me is kinematically consistent mass matrix, and Fe is the load vector,
Me ¼
R

V e
qNTNdV 0

0 0

" #
; Ke ¼

KðuÞe Kðu/Þ
e

Kð/uÞ
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ð6Þ
in which N is the matrix containing the shape functions of displacements (3), and
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Fig. 1. An interface crack.
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Kð/Þe ¼
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u cBu dV ; Kðu/Þ
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V e
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ð7Þ
Eight-node isoparametric elements are used in the analysis. The Newmark method is used for the time inte-
gration of Eq. (5). The final form to be solved for FEM can be expressed by
Fig. 2. Definition of integral paths: (a) crack in homogeneous material; (b) interfacial crack in inhomogeneous material.
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Fig. 3. Piezoelectric interfacial crack.
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a0ðMþ KÞQn ¼ Fn þMða0Qn�1 þ a2
_Qn�1 þ a3

€Qn�1Þ ð8Þ

The subscripts n and n � 1 denote the nodal quantities at the current step n and at the previous step n � 1,

respectively. After determining the nodal displacement vector at the current time step, the nodal velocities and
accelerations can be determined by
€Qn ¼ a0ðQn �Qn�1Þ � a2
_Qn�1 � a3

€Qn�1

_Qn ¼ _Qn�1 þ a6
€Qn�1 þ a7

€Qn

ð9Þ
The coefficients a0–a7 are given by
a0 ¼ 1=fbðDtnÞ2g; a1 ¼ d=ðbDtnÞ; a2 ¼ 1=ðbDtnÞ; a3 ¼ 1=ð2bÞ � 1; a4 ¼ d=b� 1;

a5 ¼ ðDtn=2Þfd=b� 2g; a6 ¼ Dtnð1� dÞ; a7 ¼ dDtn ð10Þ
where Dtn is the time increment, and b and d are the Newmark’s parameters, and b = 1/4 and d = 1/2 are cho-
sen to assure the unconditionally stable time integration scheme.

3. Near-tip field, path-independence integral and energy release rate

Fig. 1 shows a planar interfacial crack. Materials 1 and 2 occupy the two half-spaces. The generalized two-
dimensional deformation is considered in which the three components of displacement and the electric poten-
tial depend only on in-plane coordinates.
Mesh pattern and integral paths: (a) mesh pattern (1/2 of the structure, 1410 elements, 4389 nodes); (b) crack tip elements and the
l paths.



8462 S. Hu et al. / International Journal of Solids and Structures 44 (2007) 8457–8492
For the static crack subjected to impact loading, the stress and electric displacement intensity factors can be
expressed in the form as that for static case by Shen and Kuang (1998) as
Table
Comp

Eleme

First
Second
Third
Fourth
Fifth

Exact
K � K1 K2 K3 K4½ �T ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr
p

Kdiag r�ie rie r�j rj
	 


� K�1 r12 r22 r23 D2½ �T ð11Þ
where r stands for the distance from the crack tip, e and j involve the bimaterial constant and crack velocity, K
is the eigenvector matrix associated with the eigenvalue problem in the Stroh formalism (see Appendix A). The
above definition provides a unique characterization of the crack tip (Hwu, 1993; Beom and Atluri, 1996). Due
to the oscillatory singularity in the near-tip field, the individual stress and electric displacement intensity fac-
tors K1, K2, K3 and K4 for interfacial crack can not be uniquely associated with mode I, mode II, mode III and
mode IV fracture as defined in homogeneous piezoelectric materials. However, K1, K2, K3 and K4 still repre-
sent four different modes of fracture action.
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Fig. 5. (a) Case 1; (b) Case 2.

1
arison of FEM-results with exact solution for the electromechanical interfacial crack subjected to combined loading

nt No. r/a K1 (MPa m�1/2) K2 (MPa m�1/2) K4 (10�3 C m�3/2)

FEM present Error (%) FEM present Error (%) FEM present Error (%)

0.0375 5.5802 · 10�2 �2.935 7.9874 · 10�2 2.134 7.9530 · 10�2 0.189
0.075 5.7545 · 10�2 0.096 7.8377 · 10�2 0.220 7.9523 · 10�2 0.180
0.125 5.7739 · 10�2 0.434 7.7993 · 10�2 �0.271 7.9520 · 10�2 0.176
0.175 5.8084 · 10�2 1.034 7.7930 · 10�2 �0.352 7.9521 · 10�2 0.178
0.25 5.8481 · 10�2 1.724 7.7846 · 10�2 �0.459 7.9522 · 10�2 0.179

solution 5.74896 · 10�2 7.82051 · 10�2 7.9380 · 10�2
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The crack opening displacement and electric potential jump at distance r behind the crack tip can be
expressed as
Fig. 6.
integra
d1 d2 d3 d4½ �T¼ 4
ffiffi
r
pffiffiffiffiffiffi
2p
p HK �diag rie coshpe

1þ2ie r�ie coshpe
1�2ie rj cospj

1þ2j r�j cospj
1�2j

	 

�K�1ðIþ �H�1HÞ�1 K1 K2 K3 K4½ �T

ð12Þ
where H is a Hermitian matrix. The influence of material properties and crack velocity on near-tip fields for
interfacial crack depends on the oscillation index e and j, and the Hermitian matrix H, to which the eigenvec-
tor matrix K are related (see Appendix A).

The generalized dynamic J 0 integral for a linear piezoelectric material can be written as
J 0k ¼ lim
Ce!0

Z
Ce

½ðWþ T Þnk � nirijuj;k � niDi/;k�ds

¼ lim
Ce!0

Z
CþCc

½ðWþ T Þnk � nirijuj;k � niDi/;k�dsþ
Z

V�V e

½q€uiui;k � q _ui _ui;k�dV
� � ð13Þ
where the electric enthalpy density W ¼ 1
2
rijui;j þ 1

2
Di/;i and the kinetic energy density T ¼ 1

2
q _ui _ui ¼ 1

2
qc2ui;1ui;1.

ni is the unit outward normal vector. Ce is denotes the near field integral path, while C and Cc are the far field
path and the crack face integral path, respectively. C connects any two points on opposite sides of the crack
surface and enclosing the crack tip and ds is an element of arc length along C. The integral paths are defined in
Fig. 2(a). Physically, the near-tip region Ve can be considered as the process zone in which micro-process asso-
ciated with fracture occur. Eq. (13) is extension of the dynamic elastic version due to Nishioka and Atluri
Mesh pattern and integral paths: (a) mesh pattern (1/2 of the structure, 680 elements, 2899 nodes); (b) crack tip elements and the
l paths.
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(1983), it is well known that the generalized dynamic J 0k integrals are independent of any path C. The crack-
axis components of the dynamic J integral J 00k can be evaluated by the coordinate transformation:
J 00k ¼ aklJ 0l ð14Þ
where akl is the coordinate transformation tensor. For a two-dimensional case as shown in Fig. 2(a), the tan-
gential component of dynamic J integrals can be expressed by
J 001 ¼ J 01 cos h0 þ J 02 sin h0 ð15Þ
The tangential component of the dynamic J integral J 001 has the physical meaning of energy release rate due to
crack extension, i.e., J 001 ¼ G, where G is the energy release rate.

Considering an inhomogeneous piezoelectric system with a dynamically propagating interfacial crack as
shown in Fig. 2(b), we extended the separated dynamic J integrals for dynamic elastic to piezoelectric material
in Nishioka et al. (2003) as
Fig. 7. Dynamic J integral response in PZT-4 plate: (a) for Case 1; (b) for Case 2.
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J 0ðmÞk ¼ lim
CðmÞe !0

Z
CðmÞe

½ðWþ T Þnk � nirijuj;k � niDi/;k�ds

¼ lim
CðmÞe !0

Z
CðmÞþCðmÞc þCðmÞ

I

½ðWþ T Þnk � nirijuj;k � niDi/;k�ds

(
þ
Z

V ðmÞ�V ðmÞe

½q€uiui;k � q _ui _ui;k�dV

) ð16Þ
where m = 1,2, CðmÞI are the integral paths along the interface in sides of the material 1 and 2, respectively. The
integral paths are defined in Fig. 2(b). The path independence of the separated dynamic J integrals can be ver-
ified in a similar manner in Nishioka and Atluri (1983). The crack-axis components of the separated dynamic J
integral can also be evaluated by the coordinate transformation:
J 00ðmÞk ¼ aklJ
0ðmÞ
l ð17Þ
Responses of the general dynamic SIFs in PZT-4 for Case 1: (a) the stress intensity factor K2; (b) the electric displacement intensity
K4.
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The separated dynamic J integrals also have the physical significance of the separated energy release rates
G(m) which are the energy flow rates from material m into the propagating interfacial crack tip per unit crack
extension. Thus, we have the following relations
Fig. 9.
factor
J 00ðmÞ1 ¼ GðmÞ ¼ J 0ðmÞ1 cos h0 þ J 0ðmÞ2 sin h0 ð18Þ
Furthermore, the dynamic J integral and the energy release rate can be obtained by the sum of the sepa-
rated dynamic J integrals and the separated energy release rate, respectively, as
J 01 ¼ J 00ð1Þ1 þ J 00ð2Þ1 ¼ G ¼ Gð1Þ þ Gð2Þ ð19Þ
For a straight crack as shown in Fig. 1, J 00k ¼ J 0k and J 00ðmÞk ¼ J 0ðmÞk . Similar to Yeh et al. (1993), the general-
ized dynamic J 0 integrals can be written in the complex form for a piezoelectric solid as
Responses of the general dynamic SIFs in PZT-4 for Case 2: (a) the stress intensity factor K2; (b) the electric displacement intensity
K4.
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J 01 ¼ lim
e!0

Re
X4

k¼1

Z
Ce

½f 0kðzkÞ�2 dzk

( )
¼ 1

2
lim
e!0

Z
Ce

f 0
TðzÞf 0ðzÞ � �f 0TðzÞ�f 0ðzÞ

n o
dz ð20Þ
where fk(zk) are the analytic functions generating the singular part of the interfacial stress and electric displace-
ment (see Appendix A). Thus, the generalized dynamic J 01 integral can be related to the dynamic stress and
electric displacement intensity factors as
J 01 ¼ G ¼ 1

4
KTUK ð21Þ
where
Fig. 10. The influence of piezoelectricity on the response of dynamic J integral in PZT-4 plate.

Fig. 11. The influence of piezoelectricity on the response of K2 in PZT-4 plate.
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U ¼ 2ðH�1 þ �H�1Þ�1 ð22Þ
In many numerical analyses, the far-field integrals are usually used to evaluate the values of the dynamic J
integral. In this case it is convenient to consider the following expression of the following expression of the
dynamic J integral:
J 0k ¼
Z

CþCc

½ðWþ T Þnk � nirijuj;k � niDi/;k�dsþ
Z

V C

½q€uiui;k � T ;k�dV ð23Þ
It is noted that a negative energy release rate can be induced with a large electric field applied in conjunction
with a moderate mechanical load. Many fracture criteria have been proposed for piezoelectric materials (Park
and Sun, 1995; Gao et al., 1997; McMeeking, 1999; Shen and Nishioka, 2000). However, a conventional
Fig. 12. Variation of the maximum values of dynamic J integral against Rv for PZT-4 plate.

Fig. 13. Variation of the maximum values of K2 against Rv for PZT-4 plate.
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fracture criterion characterized by the total energy release rate in conjunction with the mode mixity can still
work, where the mode mixity is defined to be the ratios K1/K2, K3/K2 and K4/K2 at the crack tip. Hence, the
fracture condition can be assumed as
Fig. 14
PZT-4
J 1

K1

K2

;
K3

K2

;
K4

K2

� �
¼ G

K1

K2

;
K3

K2

;
K4

K2

� �
¼ Gc
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K2

;
K4

K2

� �
ð24Þ
4. Component separation method

In FEA, although the intensity factors can be obtained directly from the near-tip displacements by means of
Eq. (12), the results are not very accurate in many cases. However, the ratios K1/K2, K3/K2 and K4/K2 can be
calculated accurately in terms of the ratios of crack surface displacement and electric potential, d1/d2, d3/d2

and d4/d2, by using Eq. (12). Thus, the individual intensity factors K1, K2, K3 and K4 can be obtained from
these ratios K1/K2, K3/K2 and K4/K2 in conjugation with Eq. (21), where the dynamic J integral can be calcu-
lated accurately from Eq. (23). This method is called the component separation method of dynamic J integral,
which is very convenient in FEM. The details of this method can be found in Nishioka et al. (2003).
5. Verification examples

In order to test the accuracy of the suggested finite element techniques, the methods are applied to a static
interfacial crack, because an analytical solution can be employed to evaluate the simulated results. We
consider a class of piezoelectric materials of practical significance with the transverse symmetry around the
poling-axis x2. The crack plane perpendicular to the poling-axis, and the anti-plane u3 decouples from u1,
u2 and /. We only consider the in-plane deformation and ignored u3.

A bimaterial system composed of CdSe and PZT-4 with a center crack of length 2a subjected to uniform
remote tensile r122 ¼ 1 MPa and electric displacement D12 ¼ 0:001 C=m2 is considered. The specimen dimen-
sions, 40 · 40 mm with a 2a = 4 mm center crack, and the loading conditions are shown in Fig. 3. The lateral
dimensions of the system are much larger than the crack length. The exact analytical solution of stress and
. Variation of the crack opening displacement d2 at distance r = a/3 behind the crack tip, against Rv for t/t0 = 0.8826 and 2.648 in
plate.
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electric displacement intensity factors for the infinite plane (a/d� 1) was given in Shen and Kuang (1998) and
Nishioka and Shen (2001).

The finite element mesh, representing the right half of the structure, is shown in Fig. 4 enclosing the crack
tip details and the paths to be used for calculating the J integrals. Eight-node isoparametric elements were used
in the analysis. For crack tip elements, as in conventional FEM for crack problem, 3 nodes in every crack-tip
eight-node isoparametric element are overlapped on the crack tip.

The material parameters for PZT-4 are given below (Shen and Kuang, 1998):

Elastic constants (GPa):
c11 = 139.0, c12 = 74.3, c22 = 113.0, c33 = 25.6;
Piezoelectric constants (C/m2):
e21 = -6.98, e22 = 13.84, e15 = 13.44;
Dielectric constants (10�9 F/m):
j11 = 6.00, j22 = 5.47;
Mass density (kg/m3):
q = 7600;
Fig. 15. Responses of separated dynamic J integrals at Rv = 0.4 in PZT-4 plate: (a) J 001 ; (b) J 002 .
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and those for CdSe are (Eringen and Maugin, 1990):

Elastic constants (GPa):
c11 = 73.80, c12 = 39.86, c22 = 82.33, c33 = 12.95;
Piezoelectric constants (C/m2):
e21 = 0.162, e22 = 0.353, e15 = �0.158;
Dielectric constants (10�9 F/m):
j11 = 0.1145, j22 = 0.1018;
Mass density (kg/m3):
q = 5684;

where N and C denote, respectively Newton’s and Coulombs. Stronger piezoelectric coupling effect can be
expected as je22/(j22c22)0.5j = 0.5567 for PZT-4, while lower piezoelectric coupling effect can be expected as
je22/(j22c22)0.5j = 0.1221 for CdSe (lower piezoelectric coupling is present for je22/(j22c22)0.5j � 1).
Fig. 16. Dynamic J integral response in CdSe plate: (a) for Case 1; (b) for Case 2.
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In this analysis, first, the generalized J integrals are evaluated by Eq. (13) for five circular integral paths (see
Fig. 4). Then, these values are converted to the stress and electric displacement intensity factors using the
component separation method. Comparisons of the simulated stress and electric displacement intensity factors
with analytical result (Shen and Kuang, 1998) are presented in Table 1. Crack opening displacements and elec-
tric potential jump are taken from the first five elements behind the crack tip. It is noted that the errors for K1,
K2 and K4 are very small if the crack opening displacements and electric potential jump are not taken from the
first element. It is shown that relative errors for K2 and K4 are below 0.5%, while relative errors for K1 are less
than 2%. It is reasonable to state that the accuracy of the dominant Ki is extremely good. The comparisons
shown in Table 1 indicate that the finite element solution is quite accurate. Other examples can also be found
in Nishioka and Shen (2001).

6. Impact response of a crack in homogeneous material

In this section, two homogeneous plates, PZT-4 and CdSe plates, with a central crack are considered (see
Fig. 5), respectively. These two materials represent two typical piezoelectric materials: PZT-4 for the stronger
Fig. 17. Responses of the general dynamic SIFs in CdSe for Case 1: (a) the stress intensity factor K2; (b) the electric displacement intensity
factor K4.
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electromechanical coupling effect and CdSe the lower, respectively. We will find that the electromechanical
coupling factor affects the impact response of piezoelectric materials strongly.

The plates are subjected to impact mechanical and electric loading of step function type at time t = 0. The
electric loading can be electric displacement (Case 1) or electric potential (Case 2), as shown in Fig. 5. For
Case 2, the electric field is applied by controlling the potential on thin electrodes bonded to the upper
(�V) and lower (+V) surfaces of the specimen where V is the magnitude of the applied potential. The dimen-
sions of the plates are 2W = 104 mm, 2L = 40 mm and the crack length 2a = 24 mm. The finite element mesh
is shown in Fig. 6 enclosing the crack tip details and the paths to be used for calculating the J integral. In fact,
it is enough to analyze a quarter of the model due to the symmetry in both horizontal and vertical direction.
However, to make a comparison with the bimaterial model, the right half part of the plate is analyzed only
using its vertical symmetry. Eight-node isoparameter elements are used. In this section, the time step is taken
to be 0.08 · 10�6 s.

The elastic stress wave velocities of this class of piezoelectric materials, which has transverse symmetry
around the poling-axis x2 can be calculated as(Sun and Zhang, 1984)
Fig. 18. Responses of the general dynamic SIFs in CdSe for Case 2: (a) the stress intensity factor K2; (b) the electric displacement intensity
factor K4.
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Csx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc33 þ e2

13=j11Þ=q
q

; Cdx ¼
ffiffiffiffiffiffiffiffiffiffiffi
c11=q

p
Csy ¼

ffiffiffiffiffiffiffiffiffiffiffi
c33=q

p
; Cdy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc22 þ e2

22=j22Þ=q
q ð25Þ
where Csx and Cdx denote the shear and dilatational wave velocities propagating along the axis x1, Csy and Cdy

denote the shear and dilatational wave velocities propagating along the axis x2. Eq. (25) states that the piezo-
electric effect makes the material stiffer, and induces larger wave velocities.

6.1. Impact response of a crack in PZT-4 plate

The impact responses of the dynamic J integral for PZT-4 are summarized in Fig. 7, which show the
dynamic J integral for Case 1 and Case 2. Results are plotted for five values of electric displacement and elec-
tric field, but at the same mechanical load r0 = 1.0 kPa, where two dimensionless parameters are defined as
Fig. 19. The influence of piezoelectricity on the response of dynamic J integral in CdSe plate.

Fig. 20. The influence of piezoelectricity on the response of K2 in CdSe plate.
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Rd ¼
D0 � e22

r0 � j22

ð26Þ
and
Rv ¼
E0 � e22

r0

ð27Þ
which denote the applied electric displacement and electric field, respectively. The applied electric field is com-
puted as V/L (see Fig. 5(a)). The time-axis is normalized by t0 = L/Cdy, the dynamic J integral is normalized
by J N ¼ r2

0pa=c22. t = 0 is the time when the impact loading are applied to both upper and lower side of the
plate.
Fig. 21. Variation of the maximum values of dynamic J integral against Rv for CdSe plate.

Fig. 22. Variation of the maximum values of K2 against Rv for CdSe plate.



8476 S. Hu et al. / International Journal of Solids and Structures 44 (2007) 8457–8492
The corresponding stress and electric displacement intensity factors K2 and K4 are shown in Figs. 8 and 9
for Case 1 and 2, respectively. K2 and K4 are made dimensionless by divided by KN = r0(pa)1/2 and
K0 = r0(pa)1/2j22/e22, respectively. In contrast to the static problems, for dynamic problems the mechanical
loading alone can produce electric displacement in the crack plane ahead of the crack tip and vice versa.

In Figs. 7(a) and 8(a), Dm is the time at which the front of the dilatational wave propagating along the x2-
axis reaches the crack tip. DmDc, DmSc and DmRc are the times when dilatational, shear and Rayleigh waves
that radiate from the opposite crack tip, reach the crack tip in view. DmDfDm is the time at which the dilata-
tional wave, reflected from the crack surface then re-reflected from the loading boarder, reach the crack tip. It
is noted that we cannot capture the surface wave with the FEM, here we just show the moment in the figures
when the waves arrive by theoritical calculation.

It can be seen that the impact response of dynamic J integral varying more wildly if the plate is subjected to
electric loading. Before Dm, dynamic J integral varies very smoothly, and the positive electric field (or electric
displacement) induces a negative K2 while the negative one induces a positive K2. After Dm, the incline of the
response curve increases as the applied electric field increases. The response curve of K2 comes to its maximum
at the same time for the positive electric field (or electric displacement), while the negative electric loading
seems to delay it. The oscillate amplitudes of the dynamic J integral, K2 and K4 increase as the applied electric
field (or electric displacement) increases. Hence, the negative electric field (or electric displacement) impresses
the oscillation while the positive one enforces it for piezoelectric material with strong electromechanical cou-
pling factor. It is very interesting to find that the values of K2 at t/t0 = 1.3 are fixed when the electric displace-
ment varies for Case 1 (see Fig. 8(a)). The same feature can be found in Fig. 9(a) for Case 2, where t/t0 = 1.58.
Before t/t0 = 1.58 (or 1.3), K2 decreases as the applied electric field increases while in some intervals after
t/t0 = 1.58 K2 increases.

Figs. 10 and 11 depict the impact responses of the dynamic J integral and K2, respectively, at the same
mechanical load for PZT-4 plate with and without regards to piezoelectricity. The effect of piezoelectricity
on the wave propagation is represented by the electromechanical coupling factor. For PZT-4, the electrome-
chanical coupling factor, as aforementioned, is 0.5567 and is very high. Hence, the piezoelectricity affects the
impact responses dramatically, and apparently the response curves seem to be totally different, as indicated in
Figs. 10 and 11. Also marked in Figs. 10 and 11 are specific instants of time for the response curves without
regards to piezoelectricity, which are much greater than those with regards to piezoelectricity (seen in Figs.
7(a) and 8(a)). It can be seen that the piezoelectricity induces larger wave velocities and decreases the
Fig. 23. Variation of the crack opening displacement d2 at distance r = a/3 behind the crack tip, against Rv for t/t0 = 0.8826 and 2.648 in
CdSe plate.
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maximum values of response curves of dynamic J integral, but increases the maximum values of K2 slightly.
Without regards to piezoelectricity, PZT-4 is just an orthotropic material, and the impact response of J or K2

goes to its maximum after time DmRc. This is different to that observed by Lin and Ballmann (1993) in iso-
tropic material subject to an impact loading, where it comes to its maximum at time DmRc.

Figs. 12 and 13 plot the effect of the applied electric field on the maximum values of dynamic J integral and
the corresponding stress intensity factor K2, respectively. It can be seen that a positive electric field (or electric
displacement) increases the maximum values of the dynamic J integral and K2, while a negative one reduces
them. These conclusions are in contrast to those for the static case for PZT-4: an applied electric field reduces
the energy release rate whether the field is positive or negative, and the stress and electric displacement inten-
sity factors are uncoupled (Park and Sun, 1995).

In Fig. 14, the relationships between the crack opening displacement d2, which is computed at distance
r = a/3 behind the crack tip, and the applied electric field Rv are plotted for t/t0 = 0.8826 and 2.648. It can
be found that the crack opening displacement decreases with the increase of an applied electric field at t/
t0 = 0.8826, which means that the positive electric field makes the crack close together before the dilatational
wave reaches the crack line. For a macro-crack, this value is so small that it cannot make the crack surfaces
contact together. This is also the reason why the negative K2 before Dm is permitted in this paper. At
Fig. 24. Path independence of separated dynamic J integrals at Rv = 0.2 in CdSe/PZT-4 bimaterial plate: (a) J 001 ; (b) J 002 .
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t/t0 = 2.648, the crack opening displacement increases with the increase of the applied electric field, which
means that the positive electric field makes the crack open after the dilatational wave reaches the crack line.

The separated dynamic J integrals can also be applied to a homogeneous model. Imagining that there is an
interface at the center of the plate along the crack, then simulate the model (see Fig. 5) as if it is a bimaterial
plate though the material properties of both upper and lower part of the plate are identical. The impact
response of the separated dynamic J integrals for Rv = 0.4 is shown in Fig. 15. It is seen that the separated
dynamic J are identical with each other in the whole period of simulation, and their sum is equal to the
dynamic J integral for such a crack in homogeneous plate.

6.2. Impact response of a crack in CdSe plate

Due to the lower electromechanical coupling factor, the impact dynamic responses of CdSe are very differ-
ent from those of PZT-4, and somewhat similar to those for static problems. The impact responses of the
Fig. 25. Dynamic J integral response in CdSe/PZT-4 bimaterial plate for Case 1: (a) J 001 ; (b) J 002 .
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dynamic J integral for CdSe are presented in Fig. 16. Results are also plotted for five values of electric dis-
placement and electric field, but at the same mechanical load r0 = 1.0 kPa. In this section, the normalization
is same as that in Section 6.1, but it should be borne in mind that the material parameters and wave velocities
of CdSe are used in this section.

The corresponding stress and electric displacement intensity factors K2 and K4 are plotted in Figs. 17 and 18
for Case 1 and 2, respectively. Although the mechanical loading alone can also produce electric displacement in
the crack plane ahead of the crack tip and vice versa, comparing to PZT-4, the amplitudes of the variation of K4

are much smaller. In fact K4 almost keeps a constant, that is due to the weak electromechanical coupling factor.
From Fig. 16, it can be seen that an applied electric field (or electric displacement) reduces dynamic J inte-

gral (energy release rate) whether the field (or electric displacement) is positive or negative. At the same mag-
nitude, a positive electric field has somewhat bigger effect than a negative one. This conclusion, in contrast to
that for PZT-4, is same as that for the static problem (see Park and Sun, 1995; McMeeking, 1999). Similar to
PZT-4, before Dm, dynamic J integral varies very smoothly, and an applied positive electric field (or electric
Fig. 26. Dynamic J integral response in CdSe/PZT-4 bimaterial plate for Case 2: (a) J 001 ; (b) J 002 .



Fig. 27. Responses of the general dynamic stress intensity factors in CdSe/PZT-4 plate for Case 1: (a) K2; (b) K1; (c) K4.
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Fig. 28. Responses of the general dynamic stress intensity factors in CdSe/PZT-4 plate for Case 2: (a) K2; (b) K1; (c) K4.
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displacement) induces a negative K2 while the negative one induces a positive K2. The response curve of K2

comes to its maximum at the same time, which does not depend on Rv or Rd. Figs. 17(a) and 18(a) show that
the electric loading affects K2 very slightly. For piezoelectric material with weak electromechanical coupling
factor, it cannot reach the conclusions that the negative electric field (or electric displacement) impresses
the oscillation while the positive one enforces it. It is also noted that the value of the stress intensity factor
K2 keeps constant at t/t0 = 1.32 as an electric displacement varies for Case 1 (see Fig. 17(a)), and so does it
at t/t0 = 1.38 as an applied electric field changes for Case 2 (see Fig. 18(a)).

Figs. 19 and 20 show the impact responses of the dynamic J integral and K2, respectively, at the same
mechanical load for CdSe plate with and without regards to piezoelectricity. For CdSe, the electromechanical
coupling factor is small, as aforementioned. Specific instants of time are also marked in Figs. 19 and 20 for
those without regards to piezoelectricity, which are little greater than those with regards to piezoelectricity
(see in Figs. 16(a) and 17(a)). It can be seen that the piezoelectricity has little effect on the impact response
curves of dynamic J integrals and K2, that even can be omitted. Similar to PZT-4, the impact responses of
J and K2 go to their maximum after time DmRc.
Fig. 29. The influence of piezoelectricity on the response of dynamic J integrals in CdSe/PZT-4 plate: (a) J 001 ; (b) J 002 .
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The effects of the applied electric field on the maximum values of response curves of dynamic J integral and
the corresponding stress intensity factor K2 are plotted in Figs. 21 and 22, respectively. It can be seen that an
applied electric field (or electric displacement) reduces the maximum values of response curves of dynamic J
integral (energy release rate) whether the field (or electric displacement) is positive or negative. At the same
magnitude, a positive electric field has somewhat bigger effect than a negative one. These conclusions are con-
sistent to those for the static problems (Park and Sun, 1995). For Case 1, an applied electric displacement has
no effect on the maximum values of impact response curves of dynamic K2; for Case 2, a positive electric field
decreases the maximum values of impact response curves of dynamic K2 while a negative one increases it.
However, the variation is very limited, as shown in Fig. 22.

The relations between the crack opening displacement d2, which is also computed at distance r = a/3
behind the crack tip, and the applied electric field Rv are plotted in Fig. 23 for t/t0 = 0.8826 and 2.648. Sim-
ilar to PZT-4, it can be found that the crack opening displacement decreases with the increase of an applied
electric field before Dm (at t/t0 = 0.8826). After Dm (at t/t0 = 2.648), the crack opening displacement
increases with the increase of an applied electric field. However, different from PZT-4, the increment of
Fig. 30. The influence of piezoelectricity on the response of K2 in CdSe/PZT-4 plate: (a) K2; (b) K4.
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the crack opening displacement is very small, the effect of the applied electric field on the crack opening
displacement is very slight.

The impact response of the separated dynamic J integral for the condition of Rv = 0.2 is also calculated.
Similar to PZT-4, the separated dynamic J are identical with each other in the whole period of simulation,
and their sum is equal to the dynamic J integral. The results are omitted here.
7. Impact response of an interfacial crack

A bimaterial system composed of CdSe and PZT-4 with a center crack is considered in this section (see
Fig. 5). CdSe, the more compliant part of the bimaterial system, is named material 1 and placed at upper side,
while PZT-4, the stiffer one, is named material 2 and placed at lower side of the interface. The plate is sub-
jected to impact mechanical/electric loading of step function type at time t = 0. Similar to Section 5, the elec-
tric loading is electric displacement (Case 1) or electric potential (Case 2), as shown in Fig. 5. The dimensions
of the plate are identical with those in homogeneous model.

In this section, two dimensionless parameters are defined as
Fig. 31. Responses of separated dynamic J integrals in CdSe/PZT-4 plate without regards to piezoelectricity: (a) J 001 ; (b) J 002 .
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Rd ¼
D0 � eð1Þ22

r0 � jð1Þ22

ð28Þ
and
Rv ¼
E0 � eð1Þ22

r0

ð29Þ
which denote the impact applied electric displacement and electric field, respectively. The superscript (m) de-
notes the material m. In these simulations, the impact step mechanical load r0 keeps to be 1.0 kPa, for electric
loading, Rv and Rd are taken to be �0.4, �0.2, 0, 0.2 and 0.4. The time-axis is normalized by t0 ¼ L=Cð1Þdy , the
dynamic J integral is normalized by J N ¼ r2

0pa=cð1Þ22 . t = 0 is the time when the impact loading are applied to
both upper and lower side of the plate.

The separated dynamic J integrals are evaluated by Eq. (23) for five circular integral paths (see Fig. 6).
Fig. 24 indicates excellent path independence of the separated dynamic J integrals, for Case 2 at Rv = 0.2.

The impact responses of the dynamic J integrals are shown in Figs. 25 and 26, which show the dynamic J
integrals for Case 1 and Case 2, respectively. The corresponding stress and electric displacement intensity
Fig. 32. Responses of separated dynamic J integrals at Rv = 0.2 in CdSe/PZT-4 plate: (a) J 001 ; (b) J 002 .
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factors K2, K1 and K4 are shown in Figs. 27 and 28 for Case 1 and 2, respectively. K2, K1 and K4 are made
dimensionless by divided by KN = r0(pa)1/2 and K0 ¼ r0ðpaÞ1=2jð1Þ22 =eð1Þ22 , respectively. The amplitudes of the
variation of K4 are so small that K4 almost keeps a constant.

In Figs. 25(a) and 27(a), Dð1Þm and Dð2Þm is the time when the lower and higher dilatational waves propagating
along the x2-axis impinge to the crack tip line, respectively (here, the lower wave velocity is of material 1, and
the higher one is of material 2). Dð1Þm Dð1Þc , Dð1Þm Sð1Þc and Dð1Þm Rð1Þc are the times when the lower dilatational, shear
and Rayleigh waves that radiate from the opposite crack tip, reaches the crack tip of interest. Dð1Þm Dð1Þf Dð1Þm is the
time at which the lower dilatational wave, reflected from the crack surface then re-reflected from the loading
boarder, reaches the crack tip. It can be seen that the impact response of dynamic J integral varying more
wildly if the plate is subjected to applied electric field. From Figs. 25 and 27, it can be seen that an applied
electric field (or electric displacement) reduces dynamic J 001 integral (energy release rate) and increases dynamic
J 002 integral whether the field (or electric displacement) is positive or negative. At the same magnitude, a posi-
tive electric field has somewhat bigger effect than a negative one. The oscillate amplitudes of the dynamic J 002
integral and K1 increase as the applied electric field (or electric displacement) increases. Hence, the negative
electric field (or electric displacement) impresses the anti-plane oscillation while the positive one enforces it
for CdSe/PZT-4 bimaterial. Before the lower dilatational stress wave reaches the crack tip line ðDð1Þm Þ, the
dynamic J integral varies very smoothly, and the positive electric field (or electric displacement) induces a neg-
ative K2 while the negative one induces a positive K2. After Dð1Þm , at the same magnitude, a positive electric field
(or electric displacement) induces a bigger incline of the response curve of dynamic J 001 integral than a negative
one. The response curves of J 001 and K2 come to their maximum later for a positive electric field (or electric
displacement). It is also noted that K2 at t/t0 = 1.31 keeps a constant value as the electric displacement changes
for Case 1 (see Fig. 27(a)). The same feature can be found in Fig. 28(a) for Case 2, where t/t0 = 1.32. Before
t/t0 = 1.32 (or 1.31), the stress intensity factor KI decreases as the applied electric field increases while in some
intervals after t/t0 = 1.32 KI increases.

Figs. 29 and 30 show the impact responses of the dynamic J integral and K2, K1 respectively, at the same
mechanical load for CdSe/PZT-4 bimaterial plate with and without regards to piezoelectricity. Specific
instants of time are also marked in Figs. 29 and 30 for these without regards to piezoelectricity. It can be seen
that the piezoelectricity reduces dynamic J integrals, while it increases the stress intensity factor K2 and K1. The
piezoelectricity makes the response curves of J 001 and K2 to come to their maximum earlier.

Without regards to piezoelectricity, the response curves of the separated dynamic J integrals are shown in
Fig. 31. It is seen that the separated dynamic J integral or equivalently the separated energy release rate of the
Fig. 33. Variation of the maximum values of dynamic J integrals against Rv for CdSe/PZT-4 plate.
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compliant material side J 00ð1Þ1 is larger than that of the stiff material side J 00ð2Þ1 . This observation is same as that
for the isotropic bimaterial (Nishioka and Yasin, 1999). With regards to piezoelectricity, the impact response
of the separated dynamic J integral for the condition of Rv = 0.2 is also shown in Fig. 32. It is seen that the
oscillate amplitudes of the dynamic J integral of the compliant material side J 00ð1Þ1 is much larger than that of
the stiff material side J 00ð2Þ1 .

The effect of the applied electric field on the maximum values of dynamic J integral and the corresponding
K2 and K1, are plotted in Figs. 33 and 34, respectively. It can be seen that an applied electric field (or electric
displacement) reduces the maximum values of J 001 and increases the maximum values of J 002 whether the field is
positive or negative. At the same magnitude, a positive electric field has somewhat bigger effect than a negative
one. K1 increases monotonously with the increase of an applied electric field. A negative applied electric field
increases the maximum values of K2, while a positive electric field has somewhat weaker effect than a negative
one although it postpones the time when K2 goes to its maximum.
Fig. 35. Variation of the crack opening displacement d2 at distance r = a/3 behind the crack tip, against Rv for t/t0 = 0.8826 in CdSe/PZT-
4 plate.

Fig. 34. Variation of the maximum values of K2 and K1 against Rv for CdSe/PZT-4 plate.



Fig. 36. Variation of the crack opening displacement d2 at distance r = a/3 behind the crack tip, against Rv for t/t0 = 2.648 in CdSe/PZT-4
plate.
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Figs. 35 and 36 show displacements of the upper and lower faces of the crack, as well as the crack opening
displacement d2, which are computed at distance r = a/3 behind the crack tip, against the applied electric field
Rv for t/t0 = 0.8826 and 2.648, respectively. The crack opening displacement, the displacements of the upper
and lower surfaces of the interfacial crack decreases with the increase of an applied electric field at
t/t0 = 0.8826. This means that the positive electric field makes the interfacial crack close together before the
lower dilatational wave reaches the crack line. At t/t0 = 2.648, the crack opening displacement, the displace-
ments of the upper and lower surfaces of the interfacial crack increases with the increase of the applied electric
field, which means that the positive electric field makes the crack open after the lower dilatational wave
reaches the crack line. The effect of the applied electric field on the deformations of the lower electromechan-
ical coupling material (CdSe) is very slight, and the displacement of the upper surface of the interfacial crack is
almost independent of Rv. From these 2 figures, it can be seen that the deformations of the compliant material
(CdSe) are larger than those of the stiff material (PZT-4).
8. Conclusions

In this paper, simulations of a stationary crack in both homogeneous and bimaterial subject to an electro-
mechanical impact loading are carried out. The path-independence of separated dynamic J integrals is con-
firmed from the numerical simulations. In this dynamic finite element analysis, the component separation
method of the dynamic J integrals is used to calculate the mixed-mode stress and electric displacement inten-
sity factors. The response curves of the dynamic J integrals and the stress and electric displacement intensity
factors are obtained for both homogeneous material and bimaterial. In homogeneous material, in contrast to
the static problems, the impact mechanical loading alone can produce electric displacement in the crack plane
ahead of the crack tip and vice versa. The piezoelectricity makes the material harder, and induces larger wave
velocities. The influence of piezoelectricity on the wave propagation is represented by the electromechanical
coupling factor. The influence of the piezoelectricity on the impact responses is strong for piezoelectric mate-
rials with high electromechanical coupling factor, while it is weak for those with low electromechanical cou-
pling factor. For bimaterial, the oscillate amplitudes of the dynamic J integral of the compliant material side
J 00ð1Þ1 is much larger than that of the stiff material side J 00ð2Þ1 , so is the deformation. The effects of an applied
electric field on the impact responses depend on the electromechanical coupling factor.

The results also indicate that the piezoelectric material with high electromechanical coupling factor, such as
PZT-4, is a good choice to control the deformation (or the vibration) and be used as actuator, because an
applied electric field affects the deformation and stress fields strongly. In contrast, the piezoelectric material
with low electromechanical coupling factor, such as CdSe, can be used as sensor in non-destructive techniques
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and other applications, because an applied electric field produces an electric wave for detection with little effect
on the deformation and stress fields and the elastic wave propagation.
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Appendix A

Consider a Cartesian coordinate (x1, x2, x3) with origin at the middle of the interfacial crack between two
bonded dissimilar, anisotropic piezoelectric solids. The x3-axis is in the out of paper direction. The x1-axis is
directed along the line of the crack and x2-axis along the direction of the perpendicular bisector of the crack.
The generalized two-dimensional deformation is considered in which the three components of displacement
and the electric potential depend only on in-plane coordinates. Suppose that the crack is moving with constant
velocity v in the x1 direction. After sufficient time, a steady state will be attained.

The constitutive equation for either one of the two anisotropic piezoelectric materials can be written as
rij ¼ Cijrsur;s þ esjiu;s

Di ¼ �eisu;s þ eirsur;s ðA:1Þ
where Cijrs, esji and eis are the elasticity constants, piezoelectricity constants and permittivity constants, respec-
tively. ui is mechanical displacement, rij mechanical stress tensor, u and Di are potential and the induction of
the electrical field. In this paper, for convenience, the subscripts I, II are used to designate the upper and lower
materials, which will be dropped unless it is necessary to distinguish the upper and lower half-spaces. The re-
peated indices imply summation. The displacements and stresses will be of the form
ui ¼ uiðx1 � vt; x2Þ rij ¼ rijðx1 � vt; x2Þ
The dynamic governing equations for piezoelectric materials are
ðcijrsur þ esjiuÞ;si ¼ q
o2uj

ot2

ð�eisuþ eirsurÞ;si ¼ 0

ðA:2Þ
where q is density. It is notable that the body force other than inertia and the free charge are not considered in
the present work.

Denoting
U ¼ u1 u2 u3 u½ �T t ¼ r21 r22 r23 D2½ �T s ¼ r11 r12 r13 D1½ �T
(A.2) can be rewritten as
Q1U;11ðx1; x2; tÞ þ ðRþ RTÞU;12ðx1; x2; tÞ þWU;22ðx1; x2; tÞ ¼ q
o

2Uðx1; x2; tÞ
ot2

ðA:3Þ
where
Q1 ¼
Q0 e11

eT
11 �e11

� �
; R ¼

R0 e21

eT
12 �e12

� �
; W ¼

W0 e22

eT
22 �e22

� �
with
ðQ0Þik ¼ ci1k1; ðR0Þik ¼ ci1k2; ðW0Þik ¼ ci2k2 ði; k ¼ 1; 2; 3Þ
eik ¼ ei1k ei2k ei3k½ �T; ði; k ¼ 1; 2Þ
For convenience, we introduce L ¼ diag½ 1 1 1 0 �. From the constitutive relations, we have
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t ¼ RTU;1 þWU;2 s ¼ Q1U;1 þ RU;2 ðA:4Þ

By introducing the moving coordinate (g1, g2) = (x1 � vt, x2), (A.3) became
QU;11 þ ðRþ RTÞU;12 þWU;22 ¼ 0 ðA:5Þ
where
QðvÞ ¼ Q1 � qv2L
In general, the extended displacements and stresses can be represented
u ¼ AfðzÞ þ �A�f ðzÞ ðA:6Þ
t ¼ Bf 0ðzÞ þ �B�f 0ðzÞ ðA:7Þ
where A ¼ ½ a1 a2 a3 a4 �;B ¼ ½ b1 b2 b3 b4 �. In the above, za = g1 + pag2, aa, pa are determined by the
following eigen equations (Shen and Kuang, 1998)
JðpÞa ¼ ½Qþ ðRþ RTÞpþWp2�a ¼ 0 ðA:8Þ

To determine the eigenvalue pa, from (8) we have
kðQ1 � qv2IÞ þ ðRþ RTÞpþWp2k ¼ 0 ðA:9Þ

Eq. (A.9) has eight roots which cannot be real. The eight roots form four conjugate pairs and we shall choose
Im(pa) > 0 for a = 1,2,3,4. The matrix A and B have the following correlation
ba ¼ ðRT þ paWÞaa ¼ �
1

pa

ðQþ paRÞaa ðA:10Þ
The matrix Y = iAB�1, is a Hermitian matrix, and for interfacial crack, we define
H ¼ YI þ �YII
which is also Hermitian.
e, j and K are the eigenvalues and eigenvectors of
ð �H� e2peHÞK ¼ 0 ðA:11Þ

Let H = V + iF, where V is real and symmetric and F is real and antisymmetric, and E = FV�1, the results

can therefore be expressed as
e ¼ 1

p
tanh�1x1; j ¼ 1

p
tan�1 x2

x1 ¼ ½ðb2 � cÞ1=2 � b�1=2; x2 ¼ ½ðb2 � cÞ1=2 þ b�1=2

b ¼ 1

4
tr½E2�; c ¼ kEk

ðA:12Þ
e, j are the oscillatory indices. We also introduce the following expression (Nishioka and Shen, 2001)
Kdiag½la�K�1 ¼ G1l1 þ �G1l2 þG3l3 þG4l4 ðA:13Þ

where la are arbitrary functions of z, and
G1 ¼
1

2ðx2
1 þ x2

2Þ
½x2

2I� E2� þ ix�1
1 ½x2

2I� E2�E
� �

G3 ¼
1

2ðx2
1 þ x2

2Þ
½x2

1Iþ E2� � x�1
2 ½x2

1Iþ E2�E
� �

G4 ¼
1

2ðx2
1 þ x2

2Þ
½x2

1Iþ E2� þ x�1
2 ½x2

1Iþ E2�E
� �

ðA:14Þ
This expression is very useful in computation, because it avoids solving the eigen Eq. (A.11).
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For interfacial crack,
f 0IðzÞ ¼
1ffiffiffiffiffiffiffi
2pz
p B�1

I Kdiag zie z�ie zk z�k
	 


K�1 Iþ �H�1H
	 
�1

K

�f 0IIðzÞ ¼
1ffiffiffiffiffiffiffi
2pz
p B�1

II Kdiag zie z�ie zk z�k
	 


K�1 Iþ �H�1H
	 
�1

K

ðA:15Þ
in the upper half-space, and
�f 0IðzÞ ¼
1ffiffiffiffiffiffiffi
2pz
p B�1

I
�H�1HKdiag zie z�ie zk z�k

	 

K�1 Iþ �H�1H

	 
�1
K

f 0IIðzÞ ¼
1ffiffiffiffiffiffiffi
2pz
p B�1

II
�H�1HKdiag zie z�ie zk z�k

	 

K�1 Iþ �H�1H

	 
�1
K

ðA:16Þ
in the lower half-space. Noting that the eigenvectors satisfy the orthogonality relation (Suo et al., 1992) and
ðB�1ÞTB�1 ¼ iY� i�Y

We can derive that
f 0TI ðzÞf
0
IðzÞ � �f 0TIIðzÞ�f

0
IIðzÞ ¼ �

i

4pz
KTUK ðA:17Þ
Thus, Eq. (21) is obtained.
It is noted that all the formulas in this appendix suit for both static and dynamic interfacial cracks.
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