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Abstract Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is
also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase
activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone
marrow-derived mesenchymal stem cells) differentiation capacity. BMSCs were isolated from male Sprague–Dawley rats
and cultured in minimal essential medium alpha (MEM-α) supplemented with 15% Fetal Bovine serum (FBS). The results
showed that marinobufagenin (MBG), a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in
these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein
alpha (C/EBPα) protein expression through activation of an extracellular regulated kinase (ERK) signaling pathway, which leads
to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα
expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2)
expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated
rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling
functions are involved in the regulation of BMSCs differentiation.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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et al., 2007). Two types of stem cells are found in the bone
stromal environment, hematopoietic stem cells (HSCs) and
bone marrow stromal cells (BMSCs, also known as bone
marrow derived mesenchymal stem cells) (Majumdar et al.,
1998; Short et al., 2003). Induction of differentiation can
be accomplished in BMSCs under special physiological or
experimental conditions. Differentiation into specific func-
tional cells, such as osteoblasts, cartilage cells, lipocytes,
hepatocytes, neurons and astrocytes are critical for organ
and tissue development and healing (Pittenger et al., 1999).
Although, in clinical trials, BMSCs have been used to treat
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cardiac, genetic, hematological, metabolic, and neurologic
diseases (Chen et al., 2004; Horwitz et al., 1999, 2002; Koc et
al., 2002; Strauer et al., 2002), direct evidence showing that
BMSCs can be transdifferentiated into functional cells except
for osteoblasts chondroblasts, hematopoiesis-support stroma
and marrow adipocytes is lacking (Bianco et al., 2008, 2013).
Self-renewal and differentiation of BMSCs are controlled by
endogenous signaling pathways and can be regulated by
extrinsic changes of the microenvironment, known as the
stem cell niche (He et al., 2009; Yin and Li, 2006). Certain
chemokines such as stem cell factor and other circulating
factors can interact with the niche environment stimulating
stem cell expansion, motivation, and homing to injury sites
(Hosoda, 2012; Zhao et al., 2007). Since its relative conve-
nience of isolation and well established differentiation
protocols, BMSCs are widely used in studies of stem cell
differentiation.

It has been reported that uremic conditions cause
defects in BMSC self-renewal and differentiation (He et
al., 2009; Noh et al., 2012). Our previous studies showed
that chronic kidney disease induced by partial nephrectomy
(PNx) increases the circulating level of Na/K-ATPase ligands
in rat and mouse models (Kennedy et al., 2006, 2008).
Na/K-ATPase ligands are a group of digitalis-like compounds,
including plant-derived digitalis drugs such as digoxin and
ouabain, and vertebrate-derived aglycones such as bufalin and
marinobufagenin (MBG) (Akera and Brody, 1976; Barry et al.,
1985; Schoner, 2002). These compounds were also found to be
released endogenously, known as cardiotonic steroids (CTS),
in animals and humans with essential hypertension, heart
failure and renal dysfunction (Balzan et al., 2001; Fridman et
al., 2002; Gottlieb et al., 1992; Manunta et al., 1999; Tian et
al., 2010). The production and secretion of CTS are regulated
by multiple physiological stimuli including ACTH and angio-
tensin II (Fedorova et al., 1998; Hamlyn et al., 1991; Laredo et
al., 1997; Schoner, 2002). High levels of circulating CTS are an
important risk factor that contributes to uremia-induced
cardiac remodeling and dysfunction (Bagrov et al., 2009;
Palazzuoli and Ronco, 2011; Simoes and Flynn, 2012).
Mechanistically, a role for Na/K-ATPase ligand-induced sig-
naling has been demonstrated in the regulation of somatic
cell growth and survival (Liu et al., 2012; Tian et al., 2009).
However, the effects of these compounds on BMSCs differen-
tiation are not well studied. Previous reports demonstrated
Na/K-ATPase expression in undifferentiated embryonic stem
cells (ESCs) as well as in ESC-derived cardiomyocytes (Otsu et
al., 2005). CTS such as ouabain promote differentiation of
ESCs into cardiac myocytes through an extracellular regulated
kinase (ERK) signaling pathway (Lee et al., 2011). This study
evaluated whether CTS-induced Na/K-ATPase signaling regu-
lates differentiation in BMSCs.
Materials and methods

Isolation and culture of rat BMSCs

All animal experiments were conducted in accordance with
the National Institutes of Health, Guide for the Care and Use of
Laboratory Animals under protocols approved by the Institu-
tional Animal Care and Use Committee at the University of
Toledo. Sprague–Dawley (SD) rats (male, 8 weeks old) were
used for BMSCs isolation as previously described (Karaoz
et al., 2009; Pantoja et al., 2008). Briefly, SD rats were
anesthetized with 1 mg/kg Ketamine HCl/Xylazine HCl
solution and sacrificed by cervical dislocation. Under sterile
conditions, both left and right femurs and tibiae from each
rat were excised. Muscle and all remnant connective tissue
were detached from the bones. The ends of the bones were
cut away and centrifuged at 8000 g for 10 min. A 21-gauge
needle was inserted into shaft of the bones to extrude
any remaining marrow by flushing with minimum essential
medium alpha (MEM-α) from Invitrogen (Grand Island, NY,
USA) supplemented with 15% fetal bovine serum (FBS) and 1%
1000 IU/ml penicillin–1000 μg/mL streptomycin (Cellgro, VA,
USA). Marrow plug suspension was dispersed by pipetting, and
then filtered through a 70-μm mesh nylon filter from BD
Biosciences (Falcon, NJ). The cells from one rat were seeded
onto three 10 cm2 plastic tissue culture plates in the same
medium described above and incubated at 37 °C in a
humidified incubator containing 5% CO2 for 2 days. On the
second day, red blood cells and other non-adherent cells were
removed by aspiration ofmedium followed by addition of fresh
medium to allow further growth. The adherent cells grown to
70% confluence over 6–10 days were defined as passage one
(P1) cells. The P1 BMSCs were washed with phosphate-
buffered saline (PBS), trypsinized and split into additional
plates. For each passage the cells were plated similarly and
grown to a confluence of 60–80%. Passage 3 (P3) cells were
used for experiments.

BMSCs isolation from shamandpartial nephrectomized
(PNx) mice

PNx surgery was performed on mice by ligating 2/3 of
left renal artery and removal of right kidney similarly as
previously described (Kennedy et al., 2008). Briefly, an
incision was made in the left flank, through which the left
kidney was extirpated, and the artery(ies) supplying the
upper pole of the kidney were observed under a high power
dissecting microscope and subsequently ligated with 6-0 Silk
Sutures. This resulted in cessation of two thirds of the
blood flow to the kidney. Following ligation, the kidney was
observed for a characteristic color change over approxi-
mately two-thirds of the kidney tissue indicating successful
interruption of blood flow to the discolored portion of the
kidney. Once the color change was observed, the kidney was
reinserted to the body cavity and the incision closed. After
one week, the right kidney, exposed through the right flank,
was decapsulated to avoid removal of the adrenal gland and
subsequently the renal artery, vein and ureter were ligated,
and the kidney was removed. Sham-operated mice were
used as control. These mice were sacrificed 8 weeks after
surgery and BMSCs were isolated from their femurs and
tibiae using the same procedures as for rat BMSCs except
that the first passage cells were used for experiments.

Flow cytometry analysis

Passage 3 (P3) rat BMSCs were subjected to flow cytometric
analysis using a FACSCalibur machine from BD Biosciences
(San Jose, California). Briefly, stem cells at passage 3 were
harvested and suspended in culture medium at a concentration
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of 1 × 106 cells/ml. After a brief centrifugation, cells were
resuspended in PBS and 300 μl of cell suspension was incubated
with FITC-conjugated antibodies for 45 min at room tempera-
ture. Three surface markers including rat antigens CD29
(Ha2/5; FITC Hamster Anti-Rat; BD CAT# 55505), CD45 (OX-33;
FITC Mouse Anti-Rat; BD CAT# 554883), and CD90 (H1S51; FITC
Mouse Anti-Rat; BD CAT# 55489) were used to characterize the
BMSCs. The data were analyzed with Cell Quest software. Using
forward and side scatter profile, debris and dead cells were
removed by gating.

In vitro adipogenic differentiation

Adipogenic differentiation was performed as previously
described (Wang et al., 2011). Briefly, BMSCs or 3T3-L1 cells
(10,000 cells/cm2) were seeded onto 6-well plates. After 24 h
of incubation in MEM-α, these cells were pretreated with
MBG or solvent control (0.1% DMSO) for 3 days. To induce
adipogenic differentiation, 1 μM rosiglitazone was added to
the above pretreated cells for an additional 72 h. Cells
without addition of rosiglitazone were used to test if MBG
alone could induce adipogenesis. Cells were then washed
three times with PBS and fixed in 10% formalin for 10 min and
subsequently stained with Oil-Red-O staining solution from
Sigma-Aldich (0.3% Oil-Red-O in isopropanol, diluted 5.5 to 4.5
in water and filtered with a 0.22-μm filter). After staining,
cells were washed three times with water. The stained
colonies were counted manually using light microscopy to
estimate the effect of treatment on adipogenesis. Alterna-
tively, the Oil Red O stain was dissolved with isopropanol. The
absorbance at 500 nm was measured and quantified using a
standard curve generated with different concentrations of
Oil-Red-O.

In vitro osteogenic differentiation

Rat BMSCs from passage 3 (10,000 cells/cm2) were seeded
onto 6-well plates. After 24 h incubation in MEM-α, these cells
were treated with MBG or solvent control (0.1% DMSO) for
3 days. To induce osteogenic differentiation, 200 μM ascorbic
acid and 10 mM β-glycerophosphate were then added to the
medium and the cells were cultured for additional 14 days.
Osteogenic medium was refreshed once a week. At the end
of the second week, osteogenic differentiation was assessed
by staining with alizarin red (Sigma-Aldich). Briefly, excess
medium on cells was shaken off and the cells were rinsed with
PBS 3 times, fixed for 10 min at room temperature using 10%
formalin (w/v), and then washed twice with PBS and allowed
to dry completely. Cells were then stained with alizarin red
solution comprising 2% alizarin red S (pH value of the Alizarin
Red S solution was adjusted to 4.1–4.3 with sodium hydroxide)
for 10 min and washed with distilled water and left to dry.
Absorbance was measured by dissolving the stain in glacial
acetic acid and measured at 405 nm.

Measurement of plasma MBG concentrations

Plasma MBG was measured using a competitive ELISA method
described previously (Kennedy et al., 2008). Briefly, 100 μl
of mouse plasma extraction was suspended in TBST solution
(150 mM NaCl, 50 mM Tris, 0.05% Tween-20, pH 7.6) and was
incubated with anti-MBG antibody (50 μl/well) in an
MBG-BSA coated plate for 1 h. A secondary HRP-conjugated
anti-mouse antibody was added after washing and incubated
for additional 1 h. Plates were washed again and the HRP
substrate 3,3′,5,5′-Tetramethylbenzidine (TMB) was used
for color development and OD450 was measured after
addition of 1 N H2SO4 to stop the reaction. MBG concentra-
tion was quantified against a standard curve.

Immunostaining of fatty acid binding protein 4
(FABP-4) and osteocalcin

Undifferentiated and differentiated BMSCs were fixed with
formalin, blocked with 1% BSA and incubated overnight at
4 °C with anti-FABP-4 antibody (goat IgG, R&D, cat# AF1443)
for adipogenesis or anti-Osteocalcin antibody (mouse IgG,
R&D, cat# MAB1419) for osteogenesis. Fluorescent secondary
antibodies were applied afterwards and a Leica confocal
microscope was used to visualize the fluorescence. Differ-
ential interference contrast (DIC) images were also taken to
show the BMSCs under transmitted light.

Western blot

Treated cells were washed with PBS and lysed with RIPA lysis
buffer (Santa Cruz, sc-24948) at 4 °C. Cell lysates were
rotated for 10 min at 4 °C and cleared by centrifugation
(10,000 ×g for 10 min at 4 °C). Protein lysates were resolved
by SDS-PAGE and transferred to PVDF membranes (Thermo
Scientific, Chicago, IL, USA). The membranes were then
used to probe for C/EBPα, PPARγ, RunX2, and actin. These
antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA).

Statistical analysis

Data were reported as means ± SD. Data were analyzed
using 2-sided t-test. A probability value of p b 0.05 was
considered to denote statistical significance.

Results

Characterization of the BMSCs isolated from SD rats

BMSCs were characterized by their ability to adhere to plastic
and proliferate (Friedenstein et al., 1970). We used P3 rat
BMSCs for our experiments, this passage is reported to be
nearly homogeneous (Harting et al., 2008). To confirm the
phenotypic characterization of the isolated BMSCs, we also
used flow cytometry to detect the membrane antigens CD29,
CD90, and CD45. As shown in Fig. 1A, about 90% of the cell
population expressed CD29 (90.1%) and CD90 (83.6%), two
commonly used rat BMSCs surface markers. Meanwhile, less
than 1% of the cell population expressed CD45, indicating
that these cells are not of hematopoietic origin. These cells
can also differentiate into adipocytes or osteoblasts when
induced by rosiglitazone or by vitamin C/β-glycerophosphate,
respectively (Fig. 1B). As shown in Fig. 1C, the capacity
of differentiation into adipocytes and osteocytes were also
significantly increased as indicated by increased expression of
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FABP-4 (an adipogenesis marker) or Osteocalcin (an osteogen-
esis marker). These data are consistent with other reports on
rat BMSCs (Boxall and Jones, 2012; Harting et al., 2008).
MBG potentiates rosiglitazone-induced adipogenesis
in BMSCs

Since cardiotonic steroids (CTS) have been reported to
regulate ESC differentiation through Na/K-ATPase-related
signaling pathways (Lee et al., 2011), we reasoned that CTS
may also affect the differentiation of adult stem cells
such as, BMSCs. The above mentioned P3 BMSCs were used
to test whether MBG, a specific ligand of Na/K-ATPase,
regulates BMSCs differentiation. Cells were pretreated with
MBG or solvent control (0.1% DMSO) for 3 days and then 1 μM
rosiglitazone was added and the cells cultured for an
additional 72 h. Cells without addition of rosiglitazone were
used to evaluate whether MBG alone induces adipogenesis.
The results demonstrate that MBG alone does not increase
adipogenesis, but instead it enhances adipogenesis induced by
rosiglitazone in these cells. As shown in Fig. 2A, the Oil-Red-O
staining was higher after 72 h rosiglitazone induction in
the cells pre-treated with MBG at concentrations of 10 nM,
100 nM, and 1 μM compared to rosiglitazone alone. The same
result was obtained by counting the Oil-Red-O stained colonies
(Fig. 2B). To test if MBG changes cell growth, BMSCs were
seeded in 6-well plates at 50,000 cells/well and cultured for
24 h. The cells were then treated with 1 μM MBG or its solvent
control (01% DMSO) for additional 72 h. Treated cells were
trypsinized and counted with Trypan Blue exclusion. As shown
in Fig. 2C, the MBG treatment did not affect the cell growth



1µM Rosi 10nM MBG/1µM Rosi 1µM MBG/1µM Rosi 

0

50

100

150

200

MBG     -               10 nM            1 μM
Rosi (1μM)     +                  +                  +

*

C
o

lo
n

y 
N

u
m

b
er

s
(A

d
ip

o
cy

te
)

C
o

n
tr

o
l

M
B

G
 1µ

M

R
o

si
1µ

M

R
o

si1µ
M

M
B

G
 10n

M

R
o

si
1µ

M
M

B
G

 1
00

n
M R

o
si1µ

M
M

B
G

 1µ
M

0.0

0.1

0.2

0.3

0.4

*

O
il-

R
ed

-O
(O

D
50

0)

A

B

Rosi 1µM     - - +    +    +       + 
MBG (M)     - +        - 10-8       10-7   10-6

Con MBG 1 μM)
0

100000

200000

300000

400000

C
el

l N
u

m
b

er
/w

el
lC
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rate under this condition. These results indicate that MBG
can prime the BMSCs and enhance rosiglitazone-induced
adipogenesis.
MBG activates ERK and increases CCAAT/enhancer
binding protein (C/EBP) expression in rat BMSCs

To understand the mechanism by which MBG potentiates
rosiglitazone-induced adipogenesis, we examined MBG-
induced signaling events in BMSCs. As shown in Fig. 3A,
MBG treatment alone for 15 min activated ERK1/2. MBG
also increased C/EBPα expression after 72 h treatment. No
significant change in PPARγ was observed after 72 h treat-
ment of MBG. In addition to MBG, another Na/K-ATPase
ligand, ouabain, also increased C/EBPα expression in these
cells (Fig. 3C). We also examined ERK activation, C/EBPα,
C/EBPβ, C/EBPδ and PPARγ expression with the combination
treatment of MBG and rosiglitazone. The results in Fig. 3D
illustrated that 72 h pretreatment with MBG plus an additional
72 h of rosiglitazone treatment increases C/EBPα, C/EBPβ
and C/EBPδ expression in BMSCs. The combined treatment
also has a mild increase in PPARγ expression in these cells.
MBG potentiates rosiglitazone-induced adipogenesis
in 3T3-L1 cells by increasing C/EBPα expression

To test if the effect of MBG on C/EBPα expression and
adipogenesis is BMSC-specific, we employed 3T3-L1 cells
as another adipogenesis model. When 3T3-L1 cells were
pretreated with MBG for 72 h, potentiation of rosiglitazone-
induced adipocyte formation was observed (Fig. 4A). MBG in
combination with rosiglitazone also increases C/EBPα expres-
sion in 3T3-L1 cells (Fig. 4B). These results suggest that the
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potentiating effects of MBG-induced Na/K-ATPase signaling
may play a role in more cell types than just BMSCs.
Blocking ERK activation inhibits the effect of MBG
on C/EBPα expression and on rosiglitazone-induced
adipogenesis

It has been reported that ERK activation can regulate C/EBP
expression, which is essential for adipogenesis (Belmonte et
al., 2001). As such, we examined whether MBG-induced ERK
activation is required for MBG-related regulation of C/EBPα
expression and subsequent adipogenesis in rat BMSCs. The
U0126 compound, a specific mitogen activated protein kinase
(MAPK) kinase inhibitor, was used to block ERK phosphoryla-
tion before MBG treatment. We found that pretreatment of
BMSCs with U0126 (20 μM) blocked MBG-induced C/EBPα
expression (Fig. 5A). In accordance with the C/EBPα expres-
sion data, U0126 also blocks MBG-potentiated adipogenesis in
the presence of rosiglitazone (Fig. 5B). Sincewe have reported
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that cardiotonic steroids (CTS) also activate Src and mTOR
signaling pathways (Haas et al., 2002; Liu et al., 2012; Tian et
al., 2006, 2009), which are upstream of ERK signaling, we then
tested if inhibition of Src or mTOR affect C/EBPα expression.
As shown in Figs. 5C and D, both PP2 (Src inhibitor) and
rapamycin (mTOR inhibitor) pretreatment partially blocked
the MBG-induced C/EBPα expression. These results suggest
that MBG pretreatment primed the BMSCs through an
ERK-related signaling pathway and made them ready for
rosiglitazone-induced adipogenesis.

MBG pretreatment attenuates osteogenesis by
reducing RunX2 expression

It is known that BMSCs can differentiate into either
adipocytes or osteoblast and that these two events may
be regulated in a reciprocal process (Banfi et al., 2000;
Beresford et al., 1992; Li et al., 2003; Satomura et al.,
2000). To test if MBG pretreatment also affects rat BMSCs
osteogenesis, we induced BMSCs osteogenesis in the osteo-
genic medium described in the Materials and methods
section with or without pretreatment of MBG. As shown in
Fig. 6, pretreatment of MBG attenuates osteogenesis in
these cells. We further tested the expression of RunX2, an
essential transcription factor for osteogenesis (Franceschi
and Xiao, 2003; Karsenty et al., 1999), in the BMSCs treated
with MBG. The results demonstrated that RunX2 expression
decreased after 72 h of MBG treatment, which is consistent
with the notion that MBG attenuates osteogenesis in these
cells.
Partial nephrectomy (PNx) on mouse
BMSCs adipogenesis

Previous reports show that PNx increases circulating levels
of MBG (Elkareh et al., 2007; Kennedy et al., 2006, 2008).
To test if PNx regulates BMSCs differentiation through
increased MBG, we isolated BMSCs from PNx-operated and
sham-operated mice. Adipogenesis was induced in the first
generation of BMSCs obtained from mice by rosiglitazone. As
shown in Fig. 7A, PNx surgery increased plasma MBG levels
as we have reported before. Meanwhile, BMSCs isolated
from sham-operated mice behave just like BMSCs isolated
from rats. MBG at 10 nM, 100 nM, and 1 μM potentiates
rosiglitazone-induced adipocyte formation. However, BMSCs
isolated from PNx mice exhibit a higher capacity for
adipogenesis induced by rosiglitazone compared to the
sham controls without MBG treatment. Interestingly, pre-
treatment of BMSCs isolated from PNx mice with MBG does
not further increase adipogenesis (Fig. 7B). These results
suggest that BMSCs from PNx mice may already be primed in
vivo due to increased MBG levels and thus are less responsive
to in vitro MBG treatment.
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Discussion

The current study demonstrated the involvement of Na/
K-ATPase and its ligands in stem cell differentiation, which
has not been well studied in the field. Na/K-ATPase is an
important membrane ion transporter existing in all mammalian
cells. The function of Na/K-ATPase lies in two aspects, namely
the ion transporting function and signal transducing function
(Aizman and Aperia, 2003; Tian et al., 2006; Xie and Cai, 2003).
The physiologic and pathologic role of Na/K-ATPase has been
well studied in somatic cells such as kidney and heart cells,
showing that activation of Na/K-ATPase signaling can induce
cardiac hypertrophy, fibrosis, and regulate cell apoptosis
under different conditions (Kennedy et al., 2006, 2008; Li et
al., 2006; Liu et al., 2012; Tian et al., 2009). Only recently
has the research on the effect of Na/K-ATPase in stem
cell differentiation been initiated. It was reported that
ouabain, another specific ligand of Na/K-ATPase, facilitates
cardiac differentiation of embryonic stem cells via activation
of an ERK-regulated signaling pathway (Lee et al., 2011);
it also affects BMSCs differentiation by regulating the
membrane potential (Sundelacruz et al., 2008). In addition
to Na/K-ATPase, other ion transporting proteins such as,
Ca2+-activated K+ channels (BKKCa) (Zhang et al., 2014),
voltage sensitive K+ channels (You et al., 2013) and H+-pump
(Adams et al., 2007) have been reported to regulate stem cell
development and differentiation. These findings together with
our current data suggest that ion transporters, traditionally
considered as essential components for maintaining the
homeostasis of ion concentration and electrical charge, may
actually also participate in regulating cell signaling process
including stem cell differentiation. However, whether the
regulation is through the ion flow or signaling pathway or both
remains elusive and merits further studies.

There have been reports showing the linkage between
kidney dysfunction and lipid metabolization (Cignarelli and
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Lamacchia, 2007; Hall et al., 2003; Kramer, 2006;
Maric-Bilkan, 2013; Wickman and Kramer, 2013). Indeed,
we found that BMSCs isolated from PNxmice have higher rates
of adipogenesis after induction with rosiglitazone, a synthe-
sized PPARγ ligand, compared to cells from sham-operated
control mice. On the other hand, metabolic bone disease and
defective bone formation are common in chronic kidney
disease (CKD) (Couttenye et al., 1999; Martin and Gonzalez,
2007). Many studies have shown that CKD-associated abnor-
malities of calcium, phosphorus, parathyroid hormone, and
vitamin Dmay contribute to bonemetabolic disorders. (Moe et
al., 2006). Our data showed that MBG, a Na/K-ATPase ligand,
can reduce osteogenesis of BMSCs. Since MBG release is
increased in CKD animal models, it is conceivable that changes
in circulating levels of MBG and other hormones may affect
bone formation in CKD.

Rosiglitazone is a potent agonist for PPARγ and has been
clinically used as a drug to treat type-2 diabetics (Baldwin
and Duffin, 2004; Fidan et al., 2011; Hamm et al., 1999).
Adipogenesis is greater with rosiglitazone treatment than
dexamethasone treatment, a conventional method used to
stimulate adipogenesis (Wang et al., 2011). Adipogenesis is
coordinated by activation of PPARγ and increased expression of
C/EBPα and other transcriptional factors (Christy et al., 1989;
MacDougald et al., 1995; Nanbu-Wakao et al., 2000; Wu et al.,
1999). Our results show that MBG alone increases C/EBPα
expression but has no effect on PPARγ, which may explain the
fact that MBG does not induce adipogenesis by itself. However,
the combination treatment of MBG and rosiglitazone increased
both C/EBPα and PPARγ compared to rosiglitazone alone,
indicating cross-regulation between these transcriptional
factors. On the other hand, Beresford, et al (Beresford et al.,
1992) demonstrated an inverse relationship between the
differentiation of adipocytic and osteogenic cells in BMSCs.
Our results also indicate that MBG reduces osteogenesis while
potentiates the adipogenesis. These findings are consistent
with the possibility that the regulation of adipogenesis and
osteogenesis can occur at the level of a common precursor.

The regulation of C/EBPα by MBG treatment is apparently
mediated through the activation of ERK signaling pathways.
Though the role of ERK activation on adipogenesis has been
contradictory (Bost et al., 2005), a positive role for ERK in
adipogenic differentiation has been found in 3T3-L1 cells
(Prusty et al., 2002) and in other cellular models (Aubert et al.,
1999; Belmonte et al., 2001). In addition, ERK activity is
necessary for the expression of crucial adipogenic regulators
such as C/EBP and PPAR (Bost et al., 2005). We showed that
MBG activates the ERK pathway, and inhibition of ERK
activation using U0126 results in strong inhibition of adipocyte
formation (Bost et al., 2002).
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Figure 7 Partial Nephrectomy (PNx) increases circulating MBG
concentration and promotes rosiglitazone-induced adipogenesis
in mice BMSCs. A: Plasma MBG concentration was measured using
competitive ELISA method. Plasma were collected from 13 sham
mice and 9 PNx mice. B: First generation of BMSCs isolated from
sham or PNx mice were treated with rosiglitazone alone or in
combination with MBG pretreatment. The total colonies stained
with Oil-Red-O were counted and presented as mean ± SD, n = 3
for each group. * indicates p b 0.05 vs sham control.
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In summary, our study revealed an important role for
Na/K-ATPase ligand activated signaling in the regulation of
stem cell differentiation and broadened the knowledge
of Na/K-ATPase signaling function in BMSCs. Since chronic
kidney disease conditions often result in pathological
development of excess adiposity and/or decreased bone
density in individuals (Cignarelli and Lamacchia, 2007; Hall
et al., 2003; Kramer, 2006; Maric-Bilkan, 2013; Wickman
and Kramer, 2013), these studies may provide a potential
therapeutic target to regulate BMSC differentiation and
subsequent adipogenesis and osteogenesis.
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