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Abstract

In this paper we study spectral sets which are unions of finitely many intervals in R. We show that
any spectrum associated with such a spectral set Ω is periodic, with the period an integral multiple of the
measure of Ω . As a consequence we get a structure theorem for such spectral sets and observe that the
generic case is that of the equal interval case.
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1. Introduction

In this paper we study the structure of the spectrum associated to a spectral set Ω ⊂ R, which
is a finite union of intervals. In order to describe our result and its context, we begin with a brief
account of some of the relevant history of the problem.

Let Ω be a Lebesgue measurable subset of Rd with finite positive measure. For λ ∈ Rd , let

eλ(x) := |Ω|−1/2e2πiλ.xχΩ(x), x ∈ Rd .

Ω is said to be a spectral set if there exists a subset Λ ⊂ Rd such that the set of exponential
functions EΛ := {eλ: λ ∈ Λ} is an orthonormal basis for the Hilbert space L2(Ω). The set Λ is
said to be a spectrum for Ω and the pair (Ω,Λ) is called a spectral pair.
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The study of spectral properties of sets has its origin in some questions of functional-analysis.
It began with the work of B. Fuglede [15], who while investigating a question suggested to him
by I. Segal concerning sets Ω which have the ‘extension property’ (namely, the existence of
commuting self-adjoint extensions of the operators −i ∂

∂x1
, . . . ,−i ∂

∂xn
defined on C∞

0 (Ω) to a

dense subspace of L2(Ω)) observed that spectral sets have this property. Further it was shown
that if Ω is assumed to be connected then having the extension property is equivalent to Ω being
a spectral set [15,26,47]. For a detailed and very interesting account of the early history and
motivation behind the origin of these problems we refer the interested reader to [11].

In his study of spectral sets Fuglede observed that the spectral pair problem has interesting
connections to tiling problems.

A measurable set T ⊂ Rd , having positive measure is said to be a prototile if T tiles Rd by
translations. In other words, we say a set T as above is a prototile if there exists a subset T ⊂ Rd

such that {T + t : t ∈ T } forms a partition a.e. of Rd . The set T is said to be a tiling set for T and
the pair (T , T ) is called a tiling pair.

Fuglede proved the following theorem:

Theorem 1.1. (See Fuglede [15].) Let L be a full rank lattice in Rd and L∗ be the dual lattice.
Then (Ω, L) is a tiling pair if and only if (Ω, L∗) is a spectral pair.

He went on to make the following conjecture, which is also known as the spectral set conjec-
ture:

Conjecture 1.2 (Fuglede’s conjecture). A set Ω ⊂ Rd is a spectral set if and only if Ω tiles Rd

by translations.

This led to an intense study of spectral and tiling properties of sets. In recent years, this
conjecture, in its full generality, has been shown to be false in both directions if the dimension
d � 3 [50,34,35,44,14,13]. However, interest in the conjecture is alive and the conjecture has
been shown to be true in many cases under additional assumptions.

For example, the case where Ω is assumed to be convex received a lot of attention recently.
It is known that if a convex body K tiles Rd by translations then it is necessarily a symmetric
polytope and there is a lattice L such that (K, L) is a tiling pair [53,45]. Thus the “tiling implies
spectral” part of the Fuglede conjecture follows easily from Fuglede’s result. In the converse
direction, it has been shown that a convex set which is spectral has to be symmetric [31], and such
sets do not have a point of curvature [20,32,25] (i.e., they are symmetric polytopes). However it
is only in dimension 2 that the “spectral implies tiling” part of the Fuglede conjecture has been
proved [21].

In its full generality Fuglede’s conjecture remains open in dimensions 1 and 2. In one di-
mension the conjecture is known to be related to some interesting number theoretic questions
and conjectures [6,37,40,51]. It is generally believed that the conjecture is true in dimen-
sion 1.

An interesting recent development is the discovery of spectral measures [28,49], these are
probability measures μ which have a spectrum Λ (i.e., the set of exponentials EΛ is an or-
thonormal basis for L2(μ)). Research on these problems has led to the spectral theory for fractal
measures and has received a lot of attention in recent years [10,7,8,12].

Not surprisingly, spectral sets have found application in various fields, most notably in the
study of wavelets. Gabardo and Nashed introduced a generalization of Mallat’s classical mul-
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tiresolution analysis using spectral pairs [16–19,3]. Later in a very influential work Wang [54]
studied wavelets with irregular translation and dilation sets and established a surprising connec-
tion of this question to that of spectral pair and tiling sets. Starting with the work of Dutkay
and Jorgensen [9] the subject of wavelets on spectral measures has gained considerable attention
recently [11,4,1,2].

Attempts to answer the question about sets (measures) which admit such Fourier expansions,
have revealed a plethora of connections between functional analysis, number theory, representa-
tion theory, combinatorics, commutative algebra, dynamical systems, operator theory and Fourier
analysis. In both of these instances there are intriguing duality questions related to tiling prob-
lems about which we talk in more detail in the next section.

1.1. Spectral-tiling duality

Starting with Fuglede’s original work, many results demonstrate that there exists a deep rela-
tionship between spectra and tiling sets. For example, when I is the unit cube in Rd , then (I,Γ )

is a tiling pair if and only if (I,Γ ) is a spectral pair. This was first conjectured by Jorgensen and
Pedersen [29] who proved it for d � 3. Subsequently several authors gave proofs of this result
using different techniques [38,23,30,43]. It is worth mentioning here that tiling by cubes can be
very complicated [39].

In fact there is a dual conjecture due to Jorgensen and Pedersen.

Conjecture 1.3 (The dual spectral set conjecture [29]). A subset Γ of R is a spectrum for some
spectral set Ω if and only if it is a tiling set for some prototile T .

Approaching the spectral set conjecture by studying the associated spectra or tiling sets has
been very fruitful, specially when these have some additional structure like periodicity.

A set Γ ⊂ Rd is said to be periodic if there exists a full-rank lattice L of Rd such that Γ =
L + {γ1, . . . , γm}, and if, in addition, all coset differences γi − γj are commensurate with the
lattice L, then Γ is said to be rational periodic.

Pedersen [48] gave a classification of spectral sets which have a periodic spectrum expressed
in terms of complex Hadamard matrices. On the other hand, Lagarias and Wang [41] gave a char-
acterization of prototiles which tile Rd by a rational periodic tiling set in terms of factorization
of abelian groups. Further, they introduced the concept of universal spectrum [41].

A tiling set T is said to have a universal spectrum ΛT , if every set Ω that tiles Rd by T is a
spectral set with spectrum ΛT .

Lagarias and Wang [41] proved that a large class of tiling sets T have a universal spectrum
and then conjectured that all rational periodic tiling sets have a universal spectrum which is also
rational periodic. This is known as the Universal Spectrum conjecture. Given a rational periodic
tiling set T they gave necessary and sufficient conditions for a rational periodic spectrum ΛT to
be a universal spectrum for T .

These developments were instrumental in disproving the “tiling implies spectral” part of Fu-
glede’s conjecture. Later Farkas, Matolcsi and Móra [13] proved that the “tiling implies spectral”
part of Fuglede’s conjecture is equivalent to the Universal Spectrum conjecture in any dimension.
Unlike in higher dimensions where the tiling sets can be very irregular (e.g. consider the case of
tiling by a cube [39]) the tiling sets in one dimension are quite rigid in that they exhibit a lot of
structure. This gives further credence to the belief that Fuglede conjecture may be true in this
case.
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1.2. Structure of one-dimensional tiling sets and spectrum

Many results are known concerning the structure of tiling sets associated with one-
dimensional prototiles. The fundamental work in this setting is due to Lagarias and Wang [40],
who gave a complete characterization of the structure of a tiling set T associated with a com-
pactly supported prototile T whose boundary has measure zero. They proved that in this case T
is always rational periodic and the period is an integral multiple of the measure of T . Equipped
with this knowledge they manage to give a characterization of T itself. Further they show that
for every tiling pair (T , T ) there exists a tiling pair (T1, T ) where T1 is a cluster i.e., a union
of equal intervals, and the problem of finding all possible tiling pairs (T , T ) is then related to
finding all possible factorizations of finite cyclic groups. Thus, in essence, the entire complex-
ity is contained in the equal interval case itself. Later Kolountzakis and Lagarias extended the
periodicity result to all compactly supported prototiles [33].

Given that the tiling sets in one dimension are such highly regular object one would expect the
spectra to possess a similar property in this case. Indeed, to date all known spectra associated with
one-dimensional spectral sets are rational periodic. But rather surprisingly, comparatively little
progress has been made in classifying the structure of spectra associated with one-dimensional
spectral sets.

The main result in this direction which the authors could find in the literature is by Jor-
gensen and Pedersen in [27], where the following assertion is proved: that a spectral set Ω ⊂ R
which is a finite union of equal intervals has finitely many distinct spectra, which are all pe-
riodic. Further, under an additional hypothesis that such a set Ω is contained in a “small”
interval, Laba has proved that the associated spectra for such spectral sets Ω are rational pe-
riodic [37].

For the case when Ω is a finite union of intervals (intervals can have unequal length), even
less is known. Only the 2-interval case has been completely resolved by Laba [36], where she
proved that Fuglede’s conjecture holds true. In [5] the 3-interval case was investigated, where it
was shown that for such sets “tiling implies spectral” holds; whereas the “spectral implies tiling”
part of the conjecture was proved for this case under some additional hypothesis.

The general case of spectral sets Ω which are unions of finitely many intervals (not necessarily
equal) was studied in [5]. It was shown there that a spectrum Λ associated with a spectral set Ω ,
which is a union of n-intervals has a highly “arithmetical structure”, namely, if the spectrum
Λ contains an arithmetic progression of length 2n, then the complete arithmetic progression is
contained in it.

1.3. Results

Our objective in this paper is to study the structure of a spectrum Λ associated with a spectral
set Ω ⊂ R, when Ω is a union of n-intervals. We prove that all associated spectra for such
spectral sets are periodic.

The essential idea behind our proof is to show that similar to the case of a tiling set a finite
section of a spectrum essentially determines the complete spectrum. Theorem 2.2 and Theo-
rem 2.8 are manifestations of this phenomenon and will be central to our proof. The other key
ingredient of the proof is a density result of Landau for sets of sampling and interpolation (see
Theorem 2.10). In Section 2, we state this theorem, explore the geometry of the zero set of the
Fourier transform of a spectral set and prove Theorem 2.2 and Theorem 2.8.

In Section 3 we prove our main theorem
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Theorem 1.4. Let Ω be a union of n intervals, Ω = ⋃n
j=1 Ij , such that |Ω| = 1. If (Ω,Λ) is a

spectral pair, then Λ is a d-periodic set with d ∈ N. Thus Λ has the form Λ = ⋃d
j=1{λj + dZ}.

The structure of spectral sets which have a periodic spectrum has been studied in [48] and [41].
As a consequence of Theorem 1.4 we get a structure theorem for such spectral sets and observe
that the equal interval case is the generic case.

Theorem 1.5. Let (Ω,Λ) be a spectral pair such that Ω is a bounded region in R and
Λ is d-periodic. Then there exists a disjoint partition of [0,1/d) into finite number of
sets E1,E2, . . . ,Ek such that Ω = ⋃k

j=1(Ej + Aj); Aj ⊆ Z/d . Further, each set Ωj :=
[0,1/d) + Aj is a spectral set with Λ as a spectrum.

Our results are based on the study of the geometry of the spectrum, more specifically the study
of zero sets of exponential polynomials and Landau’s density theorem about sets of sampling and
interpolation which we describe in the following section.

2. The geometry of the spectrum

Let (Ω,Λ) be a spectral pair. Since spectral properties of sets are invariant under affine trans-
formations, we will henceforth assume that Ω has measure 1 and that 0 ∈ Λ ⊂ Λ − Λ.

In this paper we will always assume that Ω is bounded. Then χ̂Ω , the Fourier transform of
the characteristic function of Ω , is an entire function.

Let Z(χ̂Ω) be the zero set of χ̂Ω union {0} i.e.,

Z(χ̂Ω) := {
ξ ∈ R: χ̂Ω(ξ) = 0

} ∪ {0}.

If λ,λ′ ∈ Λ, then by orthogonality of eλ and eλ′ we have λ − λ′ ∈ Z(χ̂Ω). Hence 0 ∈ Λ ⊂
Λ − Λ ⊂ Z(χ̂Ω). Thus the geometry of the zero set of χ̂Ω plays a crucial role in determining the
structure of Λ.

Observe that, as χ̂Ω(0) = 1, there exists a neighborhood around 0, which does not intersect
Z(χ̂Ω) except at 0. Hence, Λ is uniformly discrete. Let Λs be the set of spectral gaps for a
spectrum Λ i.e.,

Λs := {λn+1 − λn | λn ∈ Λ}.

Clearly Λs ⊆ Λ−Λ ⊆ Z(χ̂Ω) and Λs is bounded below. On the other hand, as a consequence
of Landau’s density results (see Theorem 2.10 below), we see easily that Λs is also bounded
above. So, by the analyticity of χ̂Ω we can conclude that Λs is finite. Thus the spectrum can be
seen as a bi-infinite word made up of a finite alphabet, in terms of the spectral gaps. When Ω is
a union of finite number of intervals, a much more precise estimate is known for spectral gaps
[42,22,24].

From now on we will assume that Ω is a union of a finite number of intervals. Let Ω =⋃n
i=1[ai, ai + ri),

∑n
i=1 ri = 1. Then,

χ̂Ω(ξ) =
∑n

i=1[e2πi(ai+ri )ξ − e2πi(ai )ξ ]
,

2πiξ



D. Bose, S. Madan / Journal of Functional Analysis 260 (2011) 308–325 313
and Z(χ̂Ω) is precisely the zero set of the exponential polynomial given by

PΩ(ξ) :=
n∑

i=1

(
e2πi(ai+ri )ξ − e2πi(ai )ξ

)
,

which is the numerator in the expression of χ̂Ω . Thus we are naturally led to the study of expo-
nential polynomials and their zeros.

There is a beautiful result by Turan [52,46] which gives size estimates of exponential poly-
nomials along arithmetic progressions. This result has the interesting consequence that if an
arithmetic progression a, a + d, . . . , a + (2n − 1)d of length 2n occurs in Z(χ̂Ω) then the com-
plete arithmetic progression a + dZ ⊂ Z(χ̂Ω). This suggests that the zero sets of exponential
polynomials are highly structured and we are naturally led to ask the question whether Λ inherits
this kind of structure?

In the next section we will prove an analog of Turan’s lemma for the spectrum.

2.1. Arithmetic progressions in Λ

As we have mentioned before, it was shown in [5] that the existence of an arithmetic pro-
gression of length 2n in Λ implies that the complete arithmetic progression is in Λ. Here, we
improve on that result and using Newton’s Identities about symmetric polynomials, give a proof
that the occurrence of an arithmetic progression of length n + 1 in the spectrum ensures that the
complete arithmetic progression is in the spectrum. Let

P(z) :=
n∏

i=1

(z − αn) = zn + S1z
n−1 + S2z

n−2 + · · · + Sn.

Let Wk be the sum of kth power of the roots of P(z), namely

Wk := αk
1 + αk

2 + · · · + αk
n; k = 1, . . . , n.

Then the coefficients Si and Wi are related by Newton’s Identities:

Wk + S1Wk−1 + S2Wk−2 + · · · + Sk−1W1 + kS1 = 0; k = 1, . . . , n. (1)

Thus W1,W2, . . . ,Wn uniquely determine the polynomial P(z).

Proposition 2.1. If Z(χ̂Ω) contains an arithmetic progression of length n+1 with its first term 0,
say 0, d, . . . , nd ∈ Z(χ̂Ω) then

(a) the whole arithmetic progression dZ ⊂ Z(χ̂Ω),
(b) d ∈ Z, and
(c) Ω d-tiles R.
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Proof. Note that if t ∈ Z(χ̂Ω), then

n∑
j=1

[
e2πit (aj +rj ) − e2πitaj

] = 0.

The hypothesis says that χ̂Ω(ld) = 0; l = 1, . . . , n, hence

n∑
j=1

[
e2πild(aj +rj ) − e2πildaj

] = 0, l = 1, . . . , n.

We write ζ2j = e2πidaj ; ζ2j−1 = e2πid(aj +rj ); j = 1, . . . , n. Then the above system of equations
can be rewritten as

ζ1 + ζ3 + · · · + ζ2n−1 = ζ2 + ζ4 + · · · + ζ2n = W1,

ζ 2
1 + ζ 2

3 + · · · + ζ 2
2n−1 = ζ 2

2 + ζ 2
4 + · · · + ζ 2

2n = W2,

...

ζ n
1 + ζ n

3 + · · · + ζ n
2n−1 = ζ n

2 + ζ n
4 + · · · + ζ n

2n = Wn. (2)

Let

P1(z) :=
n∏

j=1

(z − ζ2j−1) and P2(z) :=
n∏

j=1

(z − ζ2j ).

Then by (1) and (2) we get P1(z) = P2(z).
Thus we get a partition of ζi ’s into n distinct pairs (ζi, ζj ) such that ζi = ζj ; i ∈ 1,3, . . . ,

2n − 1 and j ∈ 2,4, . . . ,2n. We can relabel the ζ2j ’s, j = 1, . . . , n so that ζ2j−1 = ζ2j . But then
ζ k

2j−1 = ζ k
2j , ∀k ∈ Z and we get

χ̂Ω(kd) = 1

2πikd

n∑
j=1

(
ζ k

2j−1 − ζ k
2j

) = 0; ∀k ∈ Z \ {0}. (3)

Thus dZ ⊂ Z(χ̂Ω). Now consider,

F(x) =
∑
k∈Z

χΩ(x + k/d), x ∈ [0,1/d). (4)

Thus F is 1
d

periodic and integer valued and

F̂ (ld) = d
∑
k∈Z

1
d∫

0

χΩ(x + k/d)e−2πildx dx = dχ̂Ω(ld) = dδl,0. (5)

Thus F(t) = d a.e. so d ∈ Z and Ω d-tiles the real line. �
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Using Proposition 2.1, we now prove the corresponding result for the spectrum.

Theorem 2.2. Let (Ω,Λ) be a spectral pair. If for some a, d ∈ R, an arithmetic progression of
length n+1, say a, a+d, . . . , a+nd ∈ Λ, then the complete arithmetic progression a+dZ ⊆ Λ.

Further d ∈ Z and Ω d-tiles R.

Proof. Since a, a + d, . . . , a + nd ∈ Λ, shifting Λ by a we get that Λ1 = Λ − a is a spectrum
for Ω and

0, d, . . . , nd ∈ Λ1 ⊂ Λ1 − Λ1 ⊂ Z(χ̂Ω).

Thus surely dZ ⊂ Z(χ̂Ω) by Proposition 2.1.
Now, let λ ∈ Λ1. Then by orthogonality,

−λ,d − λ,2d − λ, . . . , nd − λ ∈ Z(χ̂Ω).

Put

ξ2j = e−2πiλaj , ξ2j−1 = e−2πiλ(aj +rj ); j = 1, . . . , n,

ζ2j = e2πidaj , ζ2j−1 = e2πid(aj +rj ); j = 1, . . . , n.

Since χ̂Ω(kd − λ) = 0, for k = 0, . . . , n we have

ξ1ζ
k
1 − ξ2ζ

k
2 + · · · + ξ2n−1ζ

k
2n−1 − ξ2nζ

k
2n = 0 for k = 0, . . . , n. (6)

But the ζi ’s can be partitioned into n disjoint pairs (ζi, ζj ) such that ζi = ζj where i ∈
1,3, . . . ,2n − 1 and j ∈ 2,4, . . . ,2n. Without loss of generality, we relabel the ζ2j ’s and si-
multaneously, the corresponding ξ2j ’s so that ζ2j−1 = ζ2j , j = 1, . . . , n. Thus from (6) we get⎛⎜⎜⎜⎝

1 1 · · · 1

ζ1 ζ3 · · · ζ2n−1
...

...
. . .

...

ζ n−1
1 ζ n−1

3 · · · ζ n−1
2n−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ξ1 − ξ2

ξ3 − ξ4
...

ξ2n−1 − ξ2n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0
...

0

⎞⎟⎟⎟⎠ . (7)

Now, if [ξ1 − ξ2, ξ3 − ξ4, . . . , ξ2n−1 − ξ2n]t is the trivial solution, i.e., ξ2j−1 − ξ2j = 0, ∀j =
1, . . . , n then ∀k ∈ Z, we have

χ̂Ω(kd − λ) = 1

2πi(kd − λ)

[
ξ1ζ

k
1 − ξ2ζ

k
2 + · · · + ξ2n−1ζ

k
2n−1 − ξ2nζ

k
2n

]
= 1

2πi(kd − λ)

[
ζ k

1 (ξ1 − ξ2) + · · · + ζ k
2n−1(ξ2n−1 − ξ2n)

] = 0.

Thus dZ − λ ∈ Z(χ̂Ω). If, however, [ξ1 − ξ2, ξ3 − ξ4, . . . , ξ2n−1 − ξ2n]t is not the trivial solu-
tion, then ζ2l−1 = ζ2k−1 for some l, k ∈ 1, . . . , n; l 
= k.

Removing all the redundant variables and writing the remaining variables as ηl
2j+1, j, l =

0,1, . . . , k − 1, we get a non-singular Vandermonde matrix satisfying
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⎛⎜⎜⎜⎝
1 1 · · · 1

η1 η3 · · · η2k−1
...

...
. . .

...

ηk−1
1 ηk−1

3 · · · ηk−1
2k−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∑
1∑
3

...∑
2k−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0
...

0

⎞⎟⎟⎟⎠ (8)

where ∑
k
=

∑
j : ζ2j−1=ηk

ξ2j−1 − ξ2j .

Then each of the
∑

i = 0; i = 1, . . . , k. But, then once again ∀p ∈ Z,

χ̂Ω(pd − λ) = 1

2πi(pd − λ)

[
η

p

1

∑
1
+ η

p

3

∑
3
+ · · · + η

p

2k−1

∑
2k−1

]
= 0.

Thus dZ − λ ⊆ Z(χ̂Ω). We already have dZ ⊆ Z(χ̂Ω) and now we have seen if λ ∈ Λ1 then
dZ − λ ∈ Z(χ̂Ω). Thus dZ ⊆ Λ1, hence a + dZ ⊂ Λ. That d ∈ Z and Ω d-tiles R follow from
Proposition 2.1. �
Remark 2.3. Theorem 2.2 is the best possible result in this direction, as existence of an arith-
metic progression of shorter length in a spectrum does not ensure the complete arithmetic
progression is in the spectrum. For example, consider Ω = [0,1/3] ∪ [1,4/3] ∪ [2,7/3] then
Λ = {0,1/3,2/3} + 3Z is a spectrum for Ω which contains the 3 term arithmetic progression
0,1/3,2/3 but clearly the complete arithmetic progression Z/3 � Λ.

2.2. Embedding Λ in a vector space

In this section we will investigate the spectrum in a geometric manner. The setting is again
that of a set Ω , which is a union of finitely many intervals, namely, Ω = ⋃n

1[aj , aj + rj ]. We
assume that Ω is spectral with a spectrum Λ. We will embed Λ in a vector space and incorporate
the orthogonality of the corresponding set EΛ = {eλ: λ ∈ Λ}, via a conjugate linear form.

Consider the 2n-dimensional vector space Cn × Cn. We write its elements as v = (v1, v2)

with v1, v2 ∈ Cn. For v,w ∈ Cn × Cn define

v � w := 〈v1,w1〉 − 〈v2,w2〉,

where 〈·,·〉 denotes the usual inner product on Cn. Note that this conjugate linear form is degen-
erate, i.e., there exists v ∈ Cn ×Cn, v 
= 0 such that v�v = 0. We call such a vector a null-vector.
For example, every element of Tn × Tn is a null-vector.

A subset S ⊆ Cn ×Cn is called a set of mutually null-vectors if ∀v,w ∈ S we have v � w = 0.
It is clear from the definition that elements of a set of mutually null-vectors are themselves null-
vectors.

Lemma 2.4. Let S = {v1,v2, . . . ,vm} be a set of mutually null-vectors in Cn × Cn. Let V be the
linear subspace spanned by S. Then, V is a set of mutually null-vectors and dim(V ) � n.
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Proof. Let v,w ∈ V . Since the subspace V is spanned by S, we have v = ∑m
i=1 aivi and w =∑m

j=1 bj vj . Now, as the set S is a set of mutually null-vectors (vi � vj ) = 0; ∀i, j = 1, . . . ,m

and so, we have v � w = ∑m
i,j=1 aibj (vi � vj ) = 0. Hence, V is a set of mutually null-vectors.

Let wj := (ej ,0), j = 1, . . . , n where ej ’s are the standard basis vectors of Cn. Consider the
subspace W of Cn ×Cn spanned by the vectors wj , j = 1, . . . , n. Since, these vectors are linearly
independent in Cn × Cn, dim(W) = n. Further, note that for w ∈ W , w 
= 0 we have w � w > 0.
Thus W ∩ V = {0} and hence dim(V ) � n. �

Suppose Ω = ⋃n
j=1[aj , aj + rj ) is a union of n disjoint intervals with a1 = 0 < a1 + r1 <

a2 < a2 + r2 < · · · < an < an + rn and
∑n

1 rj = 1.
We define a map ϕΩ from R to Tn × Tn ⊆ Cn × Cn by

x → ϕΩ(x) = (
ϕ1(x),ϕ2(x)

)
,

where

ϕ1(x) = (
e2πi(a1+r1)x, e2πi(a2+r2)x, . . . , e2πi(an+rn)x

)
and

ϕ2(x) = (
1, e2πia2x, . . . , e2πianx

)
.

The following lemma, which is immediate from the definitions, makes clear the connection
between a spectral pair (Ω,Λ) and the image of Λ under the map ϕΩ .

Lemma 2.5. Let Ω be a union of n intervals, as above, and suppose Γ ⊆ R. Then the set of
exponentials EΓ = {eγ : γ ∈ Γ } is an orthogonal set in L2(Ω) if and only if ϕΩ(Γ ) := {ϕΩ(γ ):
γ ∈ Γ } is a set of mutually null-vectors.

Thus, if (Ω,Λ) is a spectral pair, ϕΩ(Λ) is a set of mutually null-vectors. What about the
converse? We will now try to find some criterion to decide whether a given pair (Ω,Λ) is a
spectral pair.

First, observe that from Lemma 2.4, we already know that if (Ω,Λ) is a spectral pair then the
vector space VΩ(Λ) := span{ϕΩ(λ): λ ∈ Λ} has dimension at most n. We will now show that
Λ has a “local finiteness property”, in the sense that there exists a finite subset B of Λ, #B � n,
such that Λ gets uniquely determined by B.

Lemma 2.6. Let (Ω,Λ) be a spectral pair and B = {y1, . . . , ym} ⊆ Λ be such that ϕΩ(B) :=
{ϕΩ(y1), . . . , ϕΩ(ym)} forms a basis of VΩ(Λ). Then x ∈ Λ iff ϕΩ(x) � ϕΩ(yi) = 0, ∀i =
1, . . . ,m.

Proof. Let x ∈ Λ. Since B ⊆ Λ, by orthogonality we have 〈ex, eyi
〉 = 0, ∀yi ∈ B and the result

follows from Lemma 2.5.
For the converse, let dim(VΩ(Λ)) = m and B = {y1, . . . , ym} ⊆ Λ be such that ϕΩ(B) is a

basis for VΩ(Λ). Suppose there exists some x /∈ Λ such that ϕΩ(x) � ϕΩ(yj ) = 0,∀yj ∈ B.
Since ϕΩ(B) is a basis for VΩ(Λ), we have for any λ ∈ Λ, ϕΩ(λ) = ∑m

ajϕΩ(yj ). Now by
j=1
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linearity we get ϕΩ(x)�ϕΩ(λ) = ∑m
j=1 aj (ϕΩ(x)�ϕΩ(yj )) = 0. Hence by Lemma 2.5 we get

〈ex, eλ〉 = 0, ∀λ ∈ Λ. But EΛ = {eλ: λ ∈ Λ} is total in L2(Ω), and ex 
≡ 0, a contradiction. Thus
x must be in Λ. �

The following lemma, gives a rather nice criterion for a spectrum Λ to be periodic.

Lemma 2.7. Let dim(VΩ(Λ)) = m � n and B = {y1, . . . , ym} ⊆ Λ be such that ϕΩ(B) is a basis
for VΩ(Λ). If for some d ∈ R, we have B + d = {y1 + d, . . . , ym + d} ⊆ Λ then Λ is d-periodic,
i.e., Λ = {λ1, . . . , λd} + dZ.

Proof. By Lemma 2.6 x ∈ Λ iff ϕΩ(x)�ϕΩ(yj ) = 0, j = 1, . . . ,m. Let λ ∈ Λ, since B +d ⊆ Λ

we get ϕΩ(λ) � ϕΩ(yj + d) = 0, j = 1, . . . ,m ⇔ ϕΩ(λ − d) � ϕΩ(yj ) = 0, j = 1, . . . ,m ⇔
λ − d ∈ Λ and hence Λ is d-periodic. By Theorem 2.2 we get d ∈ N and since Λ has density 1
by Theorem 2.10, we conclude that Λ = {λ1, . . . , λd} + dZ. �

Recall, that if Γ is periodic, has density 1 and ϕΩ(Γ ) is a set of mutually null-vectors, then
by [48,41] (Ω,Γ ) is a spectral pair.

Let (Ω,Γ ) be such that ϕΩ(Γ ) is a set of mutually null-vectors. The natural queston is:
Can we extend Γ to a spectrum of Ω? The following theorem gives a criterion for periodic
orthogonal extension of a set Γ and will be central to our proof of periodicity of a spectrum in
the next section.

Theorem 2.8. Let Γ ⊂ R be such that the set of exponentials EΓ is orthogonal in L2(Ω). Let
dim(VΩ(Γ )) = r and B0 = {μ1, . . . ,μr} be such that ϕΩ(B0) forms a basis of VΩ(Γ ). Further
suppose a translate of B0 is contained in Γ , i.e., B1 = B0 + d ⊆ Γ . Then Γ can be extended
periodically to obtain a d-periodic subset Γd ⊆ R such that the set of exponentials EΓd

are
orthogonal in L2(Ω).

Proof. Let Γd := Γ + dZ. As in Lemma 2.7, we will prove that ϕΩ(Γd) is a mutually null set.
We will first show by induction that

ϕΩ(μk) � ϕΩ(μj + ld) = 0 for all l ∈ Z, and j, k = 1, . . . , r.

Observe that both ϕΩ(B0) and ϕΩ(B1) span the same vector space VΩ(Γ ). Let us assume that
the orthogonality relations hold for all s = 1, . . . , l − 1 i.e.,

ϕΩ(μk) � ϕΩ(μj + sd) = 0 for all j, k = 1, . . . , r.

We have to show

ϕΩ(μk) � ϕΩ(μj + ld) = 0 for all j, k = 1, . . . , r.

But by the induction hypothesis, we have

ϕΩ(μk + d) � ϕΩ(μj + ld) = ϕΩ(μk) � ϕΩ

(
μj + (l − 1)d

) = 0, ∀j, k = 1, . . . , r.
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But, we know that ϕΩ(B0) ⊆ span{ϕΩ(B1)}. Hence,

ϕΩ(μk) � ϕΩ(μj + ld) = 0, ∀j, k = 1, . . . , r.

Now if γ, γ ′ ∈ Γd , then γ = γp + ld , γ ′ = γ ′
p + l′d for some γp, γ ′

p ∈ Γ and l, l′ ∈ Z. Since
ϕΩ(γp),ϕΩ(γ ′

p) ∈ VΩ(Γ ) = Span{ϕΩ(B0)}, we have

ϕΩ(γp) =
r∑

k=1

αkϕΩ(μk) and ϕΩ

(
γ ′
p

) =
r∑

j=1

α′
j ϕΩ(μj ).

Now,

ϕΩ(γ ) � ϕΩ

(
γ ′) = ϕΩ(γp + ld) � ϕΩ

(
γ ′
p + l′d

) = ϕΩ

(
γp + (

l − l′
)
d
) � ϕΩ

(
γ ′
p

)
= ϕΩ

(
γp + (

l − l′
)
d
) �

(
r∑
1

α′
j ϕΩ(μj )

)

=
r∑

j=1

α′
jϕΩ(γp) � ϕΩ

(
μj + (

l′ − l
)
d
)

=
r∑

j=1

r∑
k=1

α′
jαkϕΩ(μk) � ϕΩ

(
μj + (

l′ − l
)
d
) = 0. �

Remark 2.9. Under the assumption of Lemma 2.7 the Λd obtained in Theorem 2.8 is Λ itself.

2.3. Density of the spectrum

Let Γ ⊂ R be a uniformly discrete set. Then we define n+(R), n−(R) respectively, as the
largest and smallest number of elements of Γ contained in any interval of length R, i.e.,

n+(R) = max
x∈R

#
{
Γ ∩ [x − R,x + R]},

n−(R) = min
x∈R

#
{
Γ ∩ [x − R,x + R]}.

A uniformly discrete set Γ is called a set of sampling for L2(Ω), if there exists a con-
stant K such that ‖f ‖2

2 � K
∑

λ∈Λ |f̂ (λ)|2, ∀f ∈ L2(Ω), and Γ is called a set of interpolation
for L2(Ω), if for every square summable sequence {aγ }γ∈Γ , there exists an f ∈ L2(Ω) with
f̂ (γ ) = aγ , γ ∈ Γ .

Clearly if (Ω,Λ) is a spectral pair, then Λ is both a set of sampling and a set of interpolation
for L2(Ω). The following result of Landau, regarding sets of sampling and interpolation gives
an estimate on the numbers n+(R) and n−(R) for a spectrum Λ, when Ω is a union of a finite
number of intervals.

Theorem 2.10. (See Landau [42].) Let Ω be a union of a finite number of intervals with total
measure 1, and Λ a uniformly discrete set. Then:
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(1) If Λ is a set of sampling for L2(Ω),

n−(R) � R − A log+ R − B.

(2) If Λ is a set of interpolation for L2(Ω),

n+(R) � R − A log+ R − B

where A and B are constants independent of R.

It follows from Theorem 2.10 that Λ has asymptotic density 1, that is

ρ(Λ) := lim
R→∞

#(Λ ∩ [−R + x,R + x])
2R

= 1, uniformly in x ∈ R.

3. Proof of periodicity of the spectrum

Once again in this section Ω ⊂ R is a union of finitely many intervals, Ω = ⋃n
1[aj , aj + rj ],∑n

j=1 rj = 1. We assume that Ω is spectral with a spectrum Λ. We will continue to use the
notations introduced in Section 2.

We begin with some definitions.
Let Λ = {λj }j∈Z where λj < λj+1 and λ0 = 0. Recall that the consecutive distance set of Λ,

namely

Λs = {λj+1 − λj : j ∈ Z}
is finite. So we can view Λ as an infinite word with a finite alphabet Λs = {d1, d2, . . . , dl}. For a
finite word W = [dj1, dj2, . . . , djn], dji

∈ Λs we write length(W) = ∑n
i=1 dji

.
Suppose dim(VΩ(Λ)) = m � n and let {μ1,μ2, . . . ,μm} be such that {ϕΩ(μj ), j = 1,2,

. . . ,m} is a basis for VΩ(Λ).
Choose L0 such that {μ1,μ2, . . . ,μm} ⊆ [0,L0] and then for any L � L0, partition R as

R =
⋃
k∈Z

[
kL, (k + 1)L

)
.

Let

ΛL
k = Λ ∩ [

kL, (k + 1)L
)
.

Now, for each k ∈ Z, ΛL
k , corresponds to a finite word of length at most L, and there are only

finitely many, say NL, words of length at most L. Let

V L
k = Span

{
ϕΩ(λ): λ ∈ ΛL

k

}
.

Let us first consider the special case that for some large enough L we have

dim
(
V L

) = m for every k ∈ Z. (9)
k
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In this case, each ΛL
k has a set of m elements Bk := {μk

1,μ
k
2, . . . ,μ

k
m} such that ϕΩ(Bk) :=

{ϕΩ(μk
1), . . . , ϕΩ(μk

m)} forms a basis of VΩ(Λ). Also by the remarks above, at least two of the
words ΛL

k1
and ΛL

k2
must be the same. Hence for some d ∈ R, ΛL

k2
= ΛL

k1
+ d . In particular,

there exists k0, such that ΛL
k0

contains a set of elements {μk0
1 , . . . ,μ

k0
m } which form a basis of

VΩ(Λ) and also {μk0
1 , . . . ,μ

k0
m } + d ⊆ Λ. Thus the hypothesis of Lemma 2.7 holds, and so Λ is

d-periodic.
Observe that in the above argument, we do not require as much as (9). It would be enough if

{k: dim(V L
k ) = m} is an infinite set, or for that matter, has at least NL + 1 elements. But once

we conclude that Λ is periodic, it will follow that for some, possibly larger L′ (if d is the period
L′ = 3d will do) that dim(V L′

k ) = m, ∀k ∈ Z.
For the general case, let 1 � s � m, and L > 0 and write

EL
s = {

k: dim
(
V L

k

)
� s

}
.

We have just seen that if for some L > 0, EL
m = Z, then Λ is periodic. Suppose this is not the

case. Then we need the following lemma:

Lemma 3.1. Let m′ � m be the largest integer such that there exists an L′ > 0 so that EL′
m′ = Z.

Then m′ itself will occur infinitely often in the set {dim(V L′
k )}k∈Z.

Proof. First note that for s = 1, we can choose L′ > max{dj }, and then EL′
1 = Z so clearly

m′ � 1. If dim(V L′
k ) = m′ only for finitely many k’s then we can take L̃ large enough so that

dim(V L̃
k ) = m′ for precisely one interval of the partition {[kL̃, (k + 1)L̃]}. Let L

′′ = 2L̃, then

observe that EL
′′

m′+1 = Z, and this contradicts maximality of m′. (Without loss of generality we
may choose L′ ∈ N.) �

We will now prove Theorem 1.4.

Proof of Theorem 1.4. Step 1. We will first prove that the spectrum Λ can be modified to a
set Λd which is d-periodic and is such that (Ω,Λd) is a spectral pair. For this we use Landau’s
density result to extract a “patch” from Λ which has some periodic structure and has a large
enough density. Then we use Theorem 2.8 to show that a suitable periodization of this patch is a
spectrum.

With L′ as above, let

εL′ = 1

2L′(NL′ + 1)
.

Then choose L∗ > 1
2εL′ = L′(NL′ + 1) such that n−(L∗)/L∗ > 1 − εL′ .

In the case under consideration, we know that EL∗
m′ = Z and also that the cardinality of the

set {p: dim(V L∗
p ) = m′} is infinite. We choose and fix one such p such that dim(V L∗

p ) = m′.
By the choice of L∗, the interval [pL∗, (p + 1)L∗) contains at least (NL′ + 1) disjoint intervals
of length L′. Now for j = 1, . . . ,NL + 1 each of the ΛL′

j ⊂ [pL∗, (p + 1)L∗) has a word Wj

of length at most L′ associated with it. Further, observe that by the choice of L′, each of these
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ΛL′
j contains at least m′ elements whose image under ϕΩ is a linearly independent set, and that,

by the choice of p, there can be at most m′ such elements. Notice this implies V L∗
p = V L′

j ,
j = 1, . . . ,NL + 1.

Hence by the pigeon hole principle, there exists k1 and k2 such that the words ΛL′
k1

and ΛL′
k2

are the same, and therefore ΛL′
k2

= ΛL′
k1

+ d for some d ∈ R, where d � (NL′ + 1)L′ = 1
2εL′ .

To complete the proof, we will need the following lemma:

Lemma 3.2. Let Λd be the d-periodization of ΛL∗
p , i.e. Λd = {ΛL∗

p + dZ}. Then Λd is orthogo-
nal.

Proof. Let B0 = {μ1, . . . ,μm′ } ⊆ ΛL′
k1

⊆ ΛL∗
p be such that ϕΩ(B0) := {ϕΩ(μ1), . . . , ϕΩ(μm′)}

is a basis of V L∗
p and also of V L′

k1
. Now since ΛL′

k1
+ d = ΛL′

k2
, B1 = B0 + d ⊆ ΛL′

k2
, this subset

again gives a basis for V L∗
p . By Theorem 2.8 we see that the set of exponentials EΛd

are mutually

orthogonal in L2(Ω). �
Now since Λd is orthogonal it is a set of interpolation and by Landau’s density theorem we

get ρ(Λd) � 1. But by our choice of L∗ we get ρ(Λd) > n−(L∗)/L∗ > 1 − εL′ . On the other
hand, since Λd is d-periodic, if ρ(Λd) < 1, we have ρ(Λd) � 1 − 1

d
< 1 − 2εL′ as 1

d
� 2εL′ .

This is a contradiction.
It follows that Λd is a periodic set whose density is 1 and EΛd

is orthogonal in L2(Ω). Thus
we get Λd is a spectrum for Ω [48,41]. Since Λd has density of 1 and is d-periodic it can be
written in the form Λd = ⋃d

j=1(μj + dZ).
Step 2. We now prove that Λ itself is periodic. Once again we will be using Landau’s density

theorem and Theorem 2.8 along with Theorem 2.2 which will be crucial.
Choose L∗ as above, so that {p: dim(V L∗

p ) = m′} is infinite.
Then let L∗∗ be such that

n−(
L∗∗)/L∗∗ > 1 − 1

2(n + 1)L∗ and L∗∗ � (n + 1)L∗.

(Recall that n is the number of intervals in Ω .) Here by � we mean that many blocks of intervals,
each of length (n + 1)L∗ are contained in any interval of the L∗∗-grid.

Then we can find a p such that dim(V L∗∗
p ) = m′ (since there are infinitely many such). Now

extend ΛL∗∗
p d-periodically to a spectrum Λ∗

d of Ω , where d < L∗. Write Λ∗
d = ⋃d

j=1(μj +dZ),
with μ1,μ2, . . . ,μd ∈ [pL∗∗, (p + 1)L∗∗).

We end the proof by showing that in fact Λ∗
d = Λ. For this it will be enough to show that

for each μj , there are (n + 1) consecutive terms from the arithmetic progression μj + dZ
in Λ. Suppose this is not the case, then for each a ∈ Z such that [μj + ad,μj + (a + n)d] ⊂
[pL∗∗, (p + 1)L∗∗] we have at least one element from the n + 1 length AP μj + ad,μj +
(a + 1)d, . . . ,μj + (a + n)d is missing from ΛL∗∗

p . But that will affect the density, so that

n−(L∗∗)/L∗∗ � 1 − 1
(n+1)d

� 1 − 1
(n+1)L∗ , which is a contradiction. Now By Theorem 2.2 we

get that Λ is indeed periodic. �
The structure of spectral sets Ω which have a periodic spectrum is well known (see [48,

41]). Here for the sake of completeness we give a structure theorem for Ω using a result of
Kolountzakis.
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Theorem. (See Kolountzakis [30].) Let Ω be a bounded open set, Λ a discrete set in Rd , and
δΛ = ∑

λ∈Λ δλ. Then |χ̂Ω |2 + Λ is a tiling if and only if Λ has uniformly bounded density and

(Ω − Ω) ∩ supp(δ̂Λ) = {0}.

We will now prove Theorem 1.5.

Proof of Theorem 1.5. Recall that (Ω,Λ) is a spectral pair if and only if |χ̂Ω |2 + Λ is a tiling.
Further if Λ is d-periodic, then Ω d-tiles R, i.e.

∑
n χΩ(x + n/d) = d.

In particular,

dχ[0, 1
d
)
(x) = χ[0, 1

d
)

∑
k∈Z

χΩ(x + k/d).

So for each x ∈ [0, k
d
), the set Ax = {k ∈ Z: x + k/d ∈ Ω} has cardinality d . Define an

equivalence relation ≈ on [0,1/d) by x ≈ y if and only if Ax = Ay .
Since Ω is bounded, the above equivalence relation gives a partition of [0,1/d) into finitely

many equivalence classes E1,E2, . . . ,Ek . For each Ej we write Aj for the common set defined
above.

Then Ω = ⋃k
j=1(Ej + Aj) and [0,1/d) = ⋃k

j=1 Ej and we may assume |Ej | > 0, ∀j =
1,2, . . . , k. Now let Ωj := [0,1/d) + Aj . Our claim is (Ωj ,Λ) is a spectral pair. We will need
the above mentioned theorem due to Kolountzakis [30].

Now as �(Aj ) = d we have |Ωj | = 1. If Λ = Γ + dZ with Γ = {λ1, λ2, . . . , λd}, then
supp(δ̂Λ) = {k/d: δ̂Λ(k/d) 
= 0} ⊆ Z/d and supp(Ωj − Ωj) ⊆ (−1/d,1/d) + Aj − Aj . But
Aj − Aj is 1/d-separated, so supp(Ωj − Ωj) ∩ supp(δ̂Λ) = {0} for otherwise as Ej + Aj ⊆ Ω

and |Ej | > 0 we get supp(Ω −Ω)∩supp(δ̂Λ) 
= {0} and thus (Ω,Λ) cannot be a spectral set. �
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