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Abstract

In this work, we are concerned with a reaction–diffusion system well known as the Sel’kov model, which
has been used for the study of morphogenesis, population dynamics and autocatalytic oxidation reactions.
We derive some further analytic results for the steady states to this model. In particular, we show that no
nonconstant positive steady state exists if 0 < p � 1 and θ is large, which provides a sharp contrast to the
case of p > 1 and large θ , where nonconstant positive steady states can occur. Thus, these conclusions
indicate that the parameter p plays a crucial role in leading to spatially nonhomogeneous distribution of the
two reactants. The a priori estimates are fundamental to our mathematical approaches.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we investigate a well-known reaction–diffusion system which was introduced
by Sel’kov [17] in 1968 as a model for glycolysis and now has been used in various forms in
the study of morphogenesis, population dynamics and autocatalytic oxidation reactions (see [9,
13,18], respectively). In its simplified and nondimensionalized form, the steady-state problem
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of this model subject to the homogeneous Neumann boundary condition satisfies the following
coupled elliptic system:

⎧⎨
⎩

−θ�u = λ
(
1 − uvp

)
in Ω,

−�v = λ
(
uvp − v

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω,

(1.1)

where Ω ⊂ Rn (n � 1) is a bounded domain with smooth boundary ∂Ω , ν is the outward unit
normal vector on ∂Ω and ∂ν = ∂/∂ν. The functions u and v represent the concentrations of two
reactants or densities of two species, and thus are considered to be nonnegative, θ , λ and p are
fixed positive constants. We refer the interested readers to [3,10,17,20] and the references therein
for a more detailed discussion of the implication of this system.

It is obviously noted that (u, v) = (1,1) is the unique constant solution of (1.1). In the recent
decades, the system (1.1) has received extensive studies, analytically as well as numerically,
and please see [7,11] for one spatial dimension, [1,6] for two spatial dimensions and [3] for n

spatial dimensions (n = 1,2,3). In particular, Eilbeck and Furter [7] performed some numerical
bifurcation calculations to show that the one-dimensional problem has nonconstant solutions for
suitable ranges of the parameters. Then, in [3], Davidson and Rynne obtained a priori upper
bounds of positive classical solutions of (1.1) in the two cases where 0 < p < ∞ if n = 1,2,
or 0 < p < 3 if n = 3. Moreover, letting p and θ be fixed and considering λ as a bifurcation
parameter, by the celebrated bifurcation theory due to Crandall and Rabinowitz [2], they studied
the existence of nonconstant positive solutions of (1.1) for some certain but quite restricted ranges
of p, θ and λ. More recently, Wang [20] established some more refined a priori estimates of upper
and lower bonds for the positive solutions of (1.1). Combining these results with the theory of
topological degree (see, for example, [14]), the local and global bifurcation proposed by [2,16],
the author also discussed the bifurcation and global existence of nonconstant positive solutions
with respect to θ and λ, respectively, which greatly improved the conclusions of [3]. One of the
most important steps in their arguments is the establishment of a priori estimates for any positive
solutions to (1.1). However, for n � 3, in [3,20], the authors had to impose a restricted upper
bound on p, namely, p < n/(n − 2). In the most recent paper [10], Lieberman showed that this
technically mathematical condition is unnecessary by proving some much more delicate a priori
estimates for positive solutions of (1.1) for an arbitrary number p in any number of dimensions.
The techniques for his proof include some maximum principle arguments and the weak Harnack
inequality.

In the present paper, we are also concerned with the Sel’kov model, and attempt to derive
some nonexistence results for nonconstant positive solutions of (1.1). In particular, we show that
there is no nonconstant positive steady state provided that 0 < p � 1 and θ is sufficiently large.
This result provides a sharp contrast to the case of p > 1 and large θ , where the author [20]
confirmed that nonconstant positive steady states may occur. Thus, these conclusions indicate
that the parameter p plays a crucial role in leading to spatially nonhomogeneous distribution of
the two reactants in (1.1).

The remaining content of this paper is organized as follows. In Section 2, we recall some ex-
isting results about (1.1), which are often used in our later discussions. In Section 3, we mainly
derive some a priori estimates for the gradients of positive solutions to (1.1). Finally, in Sec-
tion 4, based on the a priori estimates, we apply two different methods to obtain nonexistence for
nonconstant positive solutions of (1.1), and also discuss the asymptotic behavior of nonconstant
positive solutions as θ is large enough.
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2. Some preliminary results

In this section, we shall recall some existing results for model (1.1), including the a priori
estimates of positive solutions and existence for nonconstant positive solutions. These results will
be frequently used in the forthcoming sections. To begin with, we first introduce some notations
as follows.

We denote ‖·‖q and ‖·‖m,q to be the usual norms of the Banach spaces Lq(Ω) and Wm,q(Ω),
respectively, and |Ω| to be the volume of the domain Ω . For our later purpose, from now on, we
also let 0 = λ0 < λ1 < λ2 < · · · be all of the eigenvalues of the Laplacian operator −� in Ω with
the homogeneous Neumann boundary condition, and define the algebraic multiplicity of λi by
dim(λi).

In [10], in order to estimate the lower bound of v for any positive solution to (1.1), Lieberman
applied the following local result for weak supersolution of linear elliptic equations (also see, for
example, [19, Theorem 8.18]).

Lemma 2.1. (See [10, Lemma 2.1].) Let Ω be a bounded Lipschitz domain in Rn. Let Λ be
a nonnegative constant and suppose that w ∈ W 1,2(Ω) is a nonnegative weak solution of the
inequalities

0 � �w + Λw in Ω, ∂νw � 0 on ∂Ω.

Then, for any q ∈ [1, n/(n − 2)), there exists a positive constant C0, depending only on q,Λ and
Ω , such that

‖w‖q � C0 inf
Ω

w.

On the other hand, Lieberman adopted the following analogue of [12, Proposition 2.2] to
derive the upper bounds of u and v.

Lemma 2.2. (See [10, Lemma 2.3].) Let Ω be a bounded Lipschitz domain in Rn, and let g ∈
C(Ω̄ × R). If w ∈ W 1,2(Ω) is a weak solution of the inequalities

�w + g(x,w) � 0 in Ω, ∂νw � 0 on ∂Ω,

and if there is a constant K such that g(x, z) < 0 for z > K , then

w � K a.e. in Ω.

Combining Lemmas 2.1, 2.2 with a Harnack inequality for weak solutions (see [10,
Lemma 2.2]), the author obtained a priori upper and lower bounds for any positive solution
(u, v). More precisely, we have

Theorem 2.1. (See [10, Theorem 3.1].) Let P,Θ and Λ be arbitrary positive constants, and
suppose that 0 < p � P , 0 < θ � Θ and 0 < λ � Λ. Let C1 be the value of C0 corresponding to
q = 1 and set ε = |Ω|/C1. Then, any positive solution (u, v) to (1.1) satisfies the inequalities

(
Θε−P + 1

)−P � u � ε−P and ε � v � Θε−P + 1.
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Furthermore, if P < n/n − 2, the paper [10] improved the above Theorem 2.1 by showing
that the estimates are independent of θ . That is,

Theorem 2.2. (See [10, Theorem 3.2].) Let P and Λ be positive constants with 0 < P <

n/(n − 2), and suppose that 0 < p � P and 0 < λ � Λ. Then, there exists positive constants
C2 and C3, determined only by P,Λ and Ω , such that any positive solution (u, v) to (1.1) satis-
fies

C2 < u < C3 and C2 < v < C3.

As far as the existence of nonconstant positive solutions to (1.1) with respect to the parameter
θ is concerned, by use of the argument of topological degree, Wang [20] showed

Theorem 2.3. (See [20, Theorem 6.1].) Assume that λ(p−1) ∈ (λm,λm+1) for some fixed λ > 0,
p > 1 and m � 1. Let Lm = ∑m

i=1 dim(λi). If Lm is odd, then there exists a positive constant Θ

such that (1.1) admits at least one nonconstant positive solution provided that θ � Θ .

3. A priori estimates for positive solutions to (1.1)

In this section, based on Theorems 2.1 and 2.2, we first establish some a priori estimates for
the W 1,2 norm of u and v. In what follows, we set

ū = 1

|Ω|
∫
Ω

udx and v̄ = 1

|Ω|
∫
Ω

v dx,

and

φ = u − ū and ψ = v − v̄.

As in [20], we integrate the two equations in (1.1) and easily find that

∫
Ω

uvp dx =
∫
Ω

v dx = |Ω|, v̄ = 1. (3.1)

Using the estimates of Theorem 2.1, we have

∣∣θ−1λ
(
1 − uvp

)∣∣ � θ−1λmax
{
1, ε−p

(
θε−p + 1

)p} :≡ A1 (3.2)

and

∣∣λ(
uvp − v

)∣∣ � λmax
{
ε−p

(
θε−p + 1

)p
, θε−p + 1

} :≡ A2. (3.3)

Hence, multiplying the first equation of (1.1) by φ and integrating over Ω , we see

∫
|∇φ|2 dx =

∫
θ−1λ

(
1 − uvp

)
φ dx � A1

∫
|φ|dx � A1|Ω|1/2

(∫
|φ|2 dx

)1/2

. (3.4)
Ω Ω Ω Ω
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Applying the well-known Poincaré inequality

∫
Ω

φ2 dx � λ−1
1

∫
Ω

|∇φ|2 dx,

we yield from (3.4) that

∫
Ω

|∇φ|2 dx � A1λ
−1/2
1 |Ω|1/2

(∫
Ω

|∇φ|2 dx

)1/2

,

which, together with the Poincaré inequality again, implies the following:

∫
Ω

|∇φ|2 dx � A2
1λ

−1
1 |Ω| and

∫
Ω

φ2 dx � A2
1λ

−2
1 |Ω|. (3.5)

In a similar manner, we can use the equation for v in (1.1) to claim that

∫
Ω

|∇ψ |2 dx � A2
2λ

−1
1 |Ω| and

∫
Ω

ψ2 dx � A2
2λ

−2
1 |Ω|. (3.6)

Therefore, it follows from (3.2), (3.3), (3.5) and (3.6) that

Theorem 3.1. Suppose that (u, v) is any positive solution to (1.1). Then, the following estimates
hold:

‖φ‖1,2 �
(
1 + λ

1/2
1

)
λ−1

1 θ−1λmax
{
1, ε−p

(
θε−p + 1

)p}|Ω|1/2

and

‖ψ‖1,2 �
(
1 + λ

1/2
1

)
λ−1

1 θ−1λmax
{
ε−p

(
θε−p + 1

)p
, θε−p + 1

}|Ω|1/2.

In the following, we establish the relationship of the gradients of u and v. It will be seen that
our proof does not depend on the previous estimates.

Theorem 3.2. Assume that (u, v) is any positive solution to (1.1). Then, the gradients of u and v

satisfy

θ−2
∫
Ω

|∇v|2 dx �
∫
Ω

|∇u|2 dx �
(
2 + 2λ−1

1 λ + λ−2
1 λ2)θ−2

∫
Ω

|∇v|2 dx.

Proof. To prove our statement, we need to define w = θu + v. Thus, (1.1) and (3.1) show

−�w = λ(1 − v) = λ(v̄ − v) = −λψ in Ω, ∂νw = 0 on ∂Ω. (3.7)

Since
∫

φ dx = ∫
ψ dx = 0, it follows from (3.7) that
Ω Ω
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∫
Ω

|∇w|2 dx = −λ

∫
Ω

wψ dx = −λθ

∫
Ω

(u − ū)ψ dx − λ

∫
Ω

(v − v̄)ψ dx

= −λθ

∫
Ω

φψ dx − λ

∫
Ω

ψ2 dx. (3.8)

On the other hand, we have

∫
Ω

|∇w|2 dx =
∫
Ω

∣∣∇(θu + v)
∣∣dx = θ2

∫
Ω

|∇φ|2 dx + 2θ

∫
Ω

∇φ · ∇ψ dx +
∫
Ω

|∇ψ |2 dx.

To get rid of the term
∫
Ω

∇φ ·∇ψ dx, multiplying the equation of w by ψ and integrating over Ω ,
we find that

−λ

∫
Ω

ψ2 dx =
∫
Ω

∇w · ∇ψ dx = θ

∫
Ω

∇φ · ∇ψ dx +
∫
Ω

|∇ψ |2 dx.

As a result, we obtain

∫
Ω

|∇w|2 dx = θ2
∫
Ω

|∇φ|2 dx − 2λ

∫
Ω

ψ2 dx −
∫
Ω

|∇ψ |2 dx. (3.9)

Consequently, we yield

θ−2
∫
Ω

|∇ψ |2 dx �
∫
Ω

|∇φ|2 dx,

which is equivalent to the left-hand side inequality of Theorem 3.2.
Next, we verify the right-hand side inequality of Theorem 3.2. From (3.8) and (3.9), it follows

that

∫
Ω

|∇φ|2 dx = −λθ−1
∫
Ω

φψ dx + θ−2
∫
Ω

|∇ψ |2 dx + λθ−2
∫
Ω

ψ2 dx

� λθ−1
∫
Ω

|φ||ψ |dx + (
1 + λ−1

1 λ
)
θ−2

∫
Ω

|∇ψ |2 dx

� 1

2
λ1

∫
Ω

φ2 dx + 1

2
λ−1

1 λ2θ−2
∫
Ω

ψ2 dx + (
1 + λ−1

1 λ
)
θ−2

∫
Ω

|∇ψ |2 dx

� 1

2

∫
Ω

|∇φ|2 dx +
(

1

2
λ−2

1 λ2 + λ−1
1 λ + 1

)
θ−2

∫
Ω

|∇ψ |2 dx.

This implies the desired result. We now finish the proof. �
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Remark 3.1. We like to mention that, if (u, v) is a nonconstant positive solution to (1.1), applying
Theorem 3.2 and the Poincaré inequality, we also have

λ1(1 + λ1)
−1θ−2 �

∫
Ω

(|∇φ|2 + φ2)dx∫
Ω

(|∇ψ |2 + ψ2)dx
� λ−1

1

(
2 + 2λ−1

1 λ + λ−2
1 λ2)θ−2.

4. Nonexistence of nonconstant positive solutions to (1.1)

This section is devoted to the nonexistence of nonconstant positive solutions to (1.1) in the two
cases: (a) arbitrary p and λ is small; (b) 0 < p � 1 and θ is large. To this aim, our proof depends
on two different mathematical approaches, that is, the energy integration and the application of
the implicit function theorem. Moreover, we also study the asymptotic behavior of nonconstant
positive solutions to (1.1) as θ converges to infinity if λ and p enter into some certain ranges.
As the by-product of this result, we also yield a sufficient condition for existence of nonconstant
positive solutions to a nonlocal elliptic equation.

4.1. Nonexistence of nonconstant positive solutions for any p and small λ

In this subsection, we derive some results of nonexistence of nonconstant positive solutions
for arbitrary p and small λ through integration of equations and energy estimates. Obviously,
theses results improve Theorems 4.1 and 4.2 in [20].

Theorem 4.1. Suppose that p, θ and λ satisfy one of the following conditions, then (1.1) has no
nonconstant positive solution:

(i) 1 < p and λpε−p(θε−p + 1)p[1 + θ2(θε−p + 1)−2] < 2λ1θ .
(ii) 0 < p � 1 and λpε−1(1 + θ2) < 2λ1θ .

Proof. Let (u, v) be a positive solution of (1.1), and denote ū, v̄, φ and ψ as in Section 3. Then,
multiplying the first equation of (1.1) by φ, integrating over Ω and using Theorem 2.2, we have
that

θ

∫
Ω

|∇φ|2 dx = λ

∫
Ω

(
1 − uvp

)
φ dx = λ

∫
Ω

(
ūv̄p − uvp

)
φ dx

= −λ

∫
Ω

{
vpφ2 + pūξp−1φψ

}
dx, (4.1)

where ξ(x) lies between v and v̄.
If p > 1, together with Theorems 2.1, 3.2, it follows from (4.1), the Cauchy inequality and

Poincaré inequality that

θ

∫
Ω

|∇φ|2 dx � λpε−p
(
θε−p + 1

)p−1
∫
Ω

|φ||ψ |dx

� 1

2
λpε−p

(
θε−p + 1

)p
∫

φ2 dx + 1

2
λpε−p

(
θε−p + 1

)p−2
∫

ψ2 dx
Ω Ω
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� 1

2
λ−1

1 λpε−p
(
θε−p + 1

)p
∫
Ω

|∇φ|2 dx

+ 1

2
λ−1

1 λpε−p
(
θε−p + 1

)p−2
∫
Ω

|∇ψ |2 dx

� 1

2
λ−1

1 λpε−p
(
θε−p + 1

)p[
1 + θ2(θε−p + 1

)−2] ∫
Ω

|∇φ|2 dx.

Under our assumption, the inequality becomes impossible except that u = ū is a positive con-
stant. Furthermore, Theorem 3.2 implies that v = v̄ is also a positive constant. Thus, this confirms
our conclusion (i).

For 0 < p � 1, by Eq. (4.1), Theorems 2.1 and 3.2 again, the analysis as above shows

θ

∫
Ω

|∇φ|2 dx � λpε−1
∫
Ω

|φ||ψ |dx � 1

2
λpε−1

∫
Ω

(
φ2 + ψ2)dx

� 1

2
λ−1

1 λpε−1(1 + θ2)∫
Ω

|∇φ|2 dx.

Consequently, (1.1) has no nonconstant positive solution when (ii) holds. The proof is com-
plete. �

It is clear that (1.1) has no nonconstant positive solution if λ is small. We also remark here
that, by the equation for v, Theorems 2.1 and 3.2, we can also obtain some other conditions for
nonexistence of nonconstant positive solution to (1.1). The details are left to the interested reader.

4.2. Nonexistence of nonconstant positive solutions for 0 < p � 1 and large θ

In this subsection, we shall analyze the nonexistence of nonconstant positive solutions to
(1.1) via the implicit function theorem provided that 0 < p � 1 and θ is sufficiently large. As a
preliminary, we need some basic lemmas. Firstly, we can claim a counterpart of Lemma 2.2.

Lemma 4.1. Let Ω be a bounded Lipschitz domain in Rn, and let g ∈ C(Ω̄ ×R). If w ∈ W 1,2(Ω)

is a weak solution of the inequalities

�w + g(x,w) � 0 in Ω, ∂νw � 0 on ∂Ω,

and if there is a constant K such that g(x, z) > 0 for z < K , then

w � K a.e. in Ω.

Proof. The proof is similar to that of Lemma 2.3 in [10]. In fact, multiplying the inequality by
the test function (K − w)+, we have

∫
g(x,w)(K − w)dx � −

∫
|∇w|2 dx.
{w<K} {w<K}
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Due to our hypothesis, it is necessary that {w < K} has zero measure, and this indicates w � K

a.e. in Ω . �
Applying Lemmas 2.2 and 4.1, one easily obtains a useful result, whose stronger form was

stated in [15] (see Lemma 3.2 there).

Lemma 4.2. Let Ω be a bounded Lipschitz domain in Rn, and let g ∈ C(Ω̄ × R+). If w ∈
W 1,2(Ω) is a weak solution of the equation

�w + g(x,w) = 0 in Ω, ∂νw = 0 on ∂Ω,

and if there is a positive constant K such that g(x, z) > 0 for 0 < z < K and g(x, z) < 0 for
z > K , then

w = K.

To study the nonexistence of nonconstant solutions for large θ by the implicit function theo-
rem, we also have to investigate the asymptotic behavior of positive solutions to (1.1) as θ → ∞.

Lemma 4.3. Let p,λ be fixed with 0 < p � 1 and assume that (uθ , vθ ) is the positive solution
of (1.1), then (uθ , vθ ) → (1,1) in C2(Ω̄) × C2(Ω̄) as θ → ∞.

Proof. As 0 < p � 1, using the equations in (1.1), from Theorem 2.2, the standard Lp and
Schauder’s estimates of elliptic equations and embedding theory guarantee that there exists a
sequence θi with θi → ∞ as i → ∞ and the corresponding positive solution (uθi

, vθi
) of (1.1)

for θ = θi such that (uθi
, vθi

) → (ũ, ṽ) in C2(Ω̄) × C2(Ω̄) as i → ∞, where ũ is a positive
constant and ṽ is a positive solution of

−�ṽ = λ
(
ũṽp − ṽ

)
in Ω, ∂νṽ = 0 on ∂Ω. (4.2)

Thanks to Lemma 4.2, Eq. (4.2) has a unique positive solution ṽ = (ũ)1/(1−p) if 0 < p < 1.
Thus, the first identity of (3.1) implies (ũ, ṽ) = (1,1). For p = 1, the positivity of ṽ and the
characterization for the first eigenvalue give ũ = 1 and ṽ is a constant, which also leads to ṽ = 1
by (3.1) again. This verifies our result. �
Theorem 4.2. Let p,λ, λ̄ be arbitrary fixed positive numbers with 0 < p � 1 and λ < λ̄. Then
there exists Θ > 0, which depends only on p,λ, λ̄ and Ω , such that (1.1) has no nonconstant
solution provided that θ � Θ and λ � λ � λ̄.

Proof. To our end, we make the following decomposition:

u = ξ + w with
∫
Ω

w dx = 0 and ξ ∈ R+,

and denote

L2
0(Ω) =

{
g ∈ L2(Ω)

∣∣∣
∫

g dx = 0

}
and W 2,2

ν = {
g ∈ W 2,2(Ω)

∣∣ ∂νg = 0 on ∂Ω
}
.

Ω
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Hence, finding the positive solution of (1.1) is equivalent to solving the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w + λρP
(
1 − (ξ + w)vp

) = 0 in Ω,∫
Ω

{
1 − (ξ + w)vp

}
dx = 0,

�v + λ
(
(ξ + w)vp − v

) = 0 in Ω,

∂νw = ∂νv = 0 on ∂Ω,

ξ > 0, v(x) > 0 in Ω,

(4.3)

where

ρ = θ−1 and Pz = z − 1

|Ω|
∫
Ω

zdx,

i.e., P is the projective operator from L2(Ω) to L2
0(Ω).

Obviously, (0,1,1) is a solution of (4.3). From the above analysis, to verify our assertion, by
the finite covering argument, it is enough to prove that for any fixed λ̃ ∈ [λ, λ̄], there exists a
small positive constant δ0 such that if ρ ∈ (0, δ0), λ ∈ (λ̃− δ0, λ̃+ δ0), then (0,1,1) is the unique
solution of (4.3).

For this purpose, we need to define

F(ρ,w, ξ, v)

= (f1, f2, f3) : R+ × (
L2

0(Ω) ∩ W 2,2
ν (Ω)

) × R+ × W 2,2
ν (Ω) → L2

0(Ω) × R × L2(Ω),

with

f1(ρ,w, ξ, v) = �w + λ̃ρP
{
1 − (ξ + w)vp

}
,

f2(ρ,w, ξ, v) =
∫
Ω

{
1 − (ξ + w)vp

}
dx,

f3(ρ,w, ξ, v) = �v + λ̃
{
(ξ + w)vp − v

}
.

It is clear that (4.3) is equivalent to solving F(ρ,w, ξ, v) = 0. Moreover, (4.3) has a unique
solution (w, ξ, v) = (0,1,1) when ρ = 0. By a simple computation, we have

D(w,ξ,v)F (0,0,1,1) :
(
L2

0(Ω) ∩ W 2,2
ν (Ω)

) × R × W 2,2
ν (Ω) → L2

0(Ω) × R × L2(Ω),

where

D(w,ξ,v)F (0,0,1,1)(y, ζ, z) =
⎛
⎝ �y∫

Ω
{−y − ζ − pz}dx

˜ ˜ ˜

⎞
⎠ .
�z + λ(p − 1)z + λy + λζ
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We observe that � :L2
0(Ω) ∩ W 2,2

ν (Ω) → L2
0(Ω) is invertible, thus D(w,ξ,v)F (0,0,1,1) is in-

vertible if and only if

L(ζ, z) =
( ∫

Ω
{−ζ − pz}dx

�z + λ̃(p − 1)z + λ̃ζ

)

is invertible. Note that ζ ∈ R. Thus, it is not hard to verify that L : R × W 2,2
ν (Ω) → R × L2(Ω)

is invertible if 0 < p � 1. Moreover, direct computations show that D(w,ξ,v)F (0,0,1,1) is also
a surjection under this assumption.

By the implicit function theorem, there exist positive constants ρ0 and δ0 such that, for
each ρ ∈ [0, ρ0], (0,1,1) is the unique solution of F(ρ,w, ξ, v) = 0 in Bδ0(0,1,1), where
Bδ0(0,1,1) is the ball in (L2

0(Ω) ∩ W 2,2
ν (Ω)) × R × W 2,2

ν (Ω) centered at (0,1,1) with ra-
dius δ0. Let (wρ, ξρ, vρ) be any solution of (4.3) for small ρ > 0, Lemma 4.3 shows that
(wρ, ξρ, vρ) → (0,1,1) as ρ → 0+. As a result, (1,1) is the unique solution of (1.1) as θ is
sufficiently large. This finishes our proof. �

Now, we make some remarks in the case of 1 < p < n/(n − 2) and large θ . Let (uθ , vθ )

be a positive solution to (1.1). In this case, Theorem 2.2 says that the upper and lower bounds
of (uθ , vθ ) are independent of θ . Then, the standard theory implies that (uθ , vθ ) → (u, v) on
C2(Ω̄) × C2(Ω̄) as θ → ∞, where u is a positive constant and v is a positive function on Ω̄ . In
addition, using the first identity of (3.1) and the second equation of (1.1), (ũ, ṽ) solves

ũ = |Ω|
(∫

Ω

ṽp dx

)−1

(4.4)

and

−�ṽ = λ

(
|Ω|

(∫
Ω

ṽp dx

)−1

ṽp − ṽ

)
in Ω, ∂νṽ = 0 on ∂Ω. (4.5)

The same analysis as in the proof of Lemma 4.3 shows that v = 1 is the unique positive
solution of (4.5) if 0 < p � 1. Suppose that (4.5) has only the constant positive solution v = 1,
thus Lemma 4.3 holds. Further suppose that

λ(p − 1) 
= λi, i = 1,2,3, . . . ,

is satisfied. By checking the proof of Theorem 4.2, it is not difficult to find that for such fixed p

and λ, the implicit function theorem still works and so (1.1) has no nonconstant positive solution
for large θ . On the other hand, under the conditions of Theorem 2.3, nonconstant positive solu-
tions exist for (1.1) provided that θ is large enough. Based on this consideration, we can conclude
the following

Theorem 4.3. Assume that 1 < p < n/(n − 2) and λ(p − 1) ∈ (λm,λm+1) for some fixed m �
1. Let Lm = ∑m

i=1 dim(λi) and suppose that Lm is odd. Then, the nonlocal elliptic problem
(4.5) admits at least one nonconstant positive solution. In addition, for any nonconstant positive
solution (uθ , vθ ) to (1.1), there exists a subsequence (uθi

, vθi
) of (uθ , vθ ) such that (uθi

, vθi
)
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converges to (ũ, ṽ) on C2(Ω̄) × C2(Ω̄) as θi → ∞, where ṽ is a nonconstant positive solution
of (4.5) and ũ is uniquely determined by (4.4).

Proof. The first part of Theorem 4.3 has been verified as above. Now, we prove the remaining
part by an indirect argument.

Suppose that there exists a sequence {θi} with θi → ∞ as i → ∞ and the corresponding
nonconstant positive solution (ui, vi) to (1.1) for θ = θi , such that our statement is not true.
Then, combined with Theorem 2.2, the standard Lp and Schauder’s estimates and the embedding
theorems show that there is a subsequence of (ui, vi), still labelled by itself, such that (ui, vi) →
(1,1) on C2(Ω̄) × C2(Ω̄) as i → ∞.

Set

hi = ui − 1, ki = vi − 1,

and

h̃i = hi

‖hi‖∞ + ‖ki‖∞
, k̃i = ki

‖hi‖∞ + ‖ki‖∞
.

Thus, it is easy to check that

−�h̃i = −θ−1
i λ

(
v

p
i h̃i + pξ

p−1
i k̃i

)
in Ω, ∂νh̃i = 0 on ∂Ω, (4.6)

and

−�k̃i = λ
(
v

p
i h̃i + pξ

p−1
i k̃i − k̃i

)
in Ω, ∂νk̃i = 0 on ∂Ω, (4.7)

where ξi lies between 1 and vi for each i � 1.
Since the right-hand sides of (4.6) and (4.7) are L∞ bounded by Theorem 2.2 and

‖h̃i‖∞,‖k̃i‖∞ � 1, it follows from the Lp estimates and the Sobolev embedding theorems that
h̃i → h̃ and k̃i → k̃ in C1(Ω̄). Noting that (ui, vi) → (1,1) on C2(Ω̄) × C2(Ω̄) as i → ∞ and
passing to the limit in (4.6) and (4.7), we see

−�h̃ = 0, −�k̃ = λ(p − 1)k̃ + λh̃ in Ω, ∂νh̃ = ∂ν k̃ = 0 on ∂Ω.

Hence, h̃ is a constant and so our assumption indicates k̃ = h̃/(1 − p). Furthermore,
‖h̃i‖∞ + ‖k̃i‖∞ = 1 for each i � 1 gives

(
1 + ∣∣1/(1 − p)

∣∣)|h̃| = 1.

However, by the second identity of (3.1), it is necessary that
∫
Ω

k̃ dx = 0, leading to h̃ = 0.
A contradiction occurs, and this completes our proof. �
Remark 4.1. In [20, Remark 2.1], since the constant positive solution (u, v) = (1,1) is uniformly
asymptotically stable for the corresponding reaction–diffusion system of (1.1) in the sense of [8]
if 0 < p � 1, the authors pointed out that it is difficult to expect the bifurcation of (1.1) near
(u, v) = (1,1) in this case. Our Theorem 4.2 shows that no bifurcation will happen for (1.1)
provided that 0 < p � 1 and θ is sufficiently large because the existence of bifurcation will
imply the local existence of nonconstant positive solutions to (1.1).
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Remark 4.2. As pointed out in the proof of Theorem 3.1 in [10], for any p > 0, the upper
and lower bounds of positive solutions (uθ , vθ ) to (1.1) are independent of the lower bound
of θ . Therefore, we can claim that for any fixed p and λ, (uθ , vθ ) → (1,1) uniformly on Ω̄ as
θ → 0. Our proof depends on the following result: Assume that μ > 0 is a constant and a(x) is
a continuous positive function on Ω̄ . Then, the problem

−�w = μ
(
1 − a−1(x)w

)
in Ω, ∂νw = 0 on ∂Ω,

has a unique positive solution wμ, and wμ → a(x) uniformly on Ω̄ as μ → ∞. For the similar
details of proof of this result, please refer to [5]. We also like to mention that Du and Ma [4]
established a similar result when the homogeneous Dirichlet boundary condition is concerned
(see Lemma 2.2 there). However, we have to mention that we are unable to derive some results for
the existence or nonexistence of nonconstant positive solutions to (1.1) when θ is small enough.
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