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Abstract

We point out that canonical quantization of the two-body problem in (2 + 1)-gravity is related to the high-energy equation in
Yang-Mills theory by a proper ordering of the relevant operators. This feature arises from expanding the Hamiltonian around its
conformal limit—or treating running coupling effects in the Yang-Mills case—and yields a peculiar short distance behaviour
of the wave functions.
© 2002 Elsevier Science B.V. Open access under CC BY license,

1. Introduction

It is a common feature of several theoretical models to show a (nearly) two-dimensional dynamics either because
of fundamental reasons (as in string theory) or due to the importance of certain kinematical configurations. Here
we focus on two models of the latter class, namely gauge theories in the high-energy limit and (2 + 1)-gravity
with pointlike matter. It is known that both models possess a (2 + 1)-dimensional “configuration” space, with a
“time” parameter of quite different meaning in the two cases, and two space dimensions (the transverse ones to the
high-energy momenta in the gauge case). It is less known, and we emphasize it here that the Hamiltonian of either
model is eventually provided by the same operator and is related to a fundamental scale of the system.

In other words, in this Letter we show that Hamiltonian quantization relates in a nontrivial manner a well-known
high-energy tool—the so-called BFKL equation [1,2]—to a quantized (two-body) gravitational system with proper
ordering of the relevant operators. Perhaps the reason why two such different systems happen to have eventually
the same dynamics is that both admit a conformal limit in which the Hamiltonian is just the dilatation operator.
Deviations from the conformal behaviour are then treated by expanding in some mass parameter (with different
physical meaning in the two cases).
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It should be noticed that the relationship of gravitational theories to gauge theories and/or conformal theories
may have a more general origin [3,4]. For gravity in 2 + 1 dimensions [5] this appears from the relevance of
Liouville fields in the classical solutions with cosmological constant [6,7] and/or with matter sources [8,9]. It is not
known however whether these suggestions may have an impact at quantum level also.

From the point of view of (2 + 1)-gravity, the quantization of the two-body system proposed here provides
an alternative to the standard one of Deser, Jackiw and 't Hooft (DJH) [5,10,11], which adds up to those already
known [12]. The large-distance properties (in particular phase-shifts and scattering angle) stay the same, but the
wave function behaves differently at short distances where it shows an anomalous dimension behaviour as in the
gauge theory case.

After introducing Hamiltonian and physics of our two models in Sections 2 and 3, we discuss in detail the
ensuing quantum properties in Section 4 and possible developments at many body level in the conclusive Section 5.

2. The (2 4+ 1)-gravity Hamiltonian

Gravity in three space-time dimensions is characterized by the fact that the Riemann tensor is proportional
to the Einstein tensor and thus to the energy-momentum tensor. As a consequence, space-time is flat outside the
matter sources. If the latter are pointlike particles, local Minkowskian coordinates can be extended all around them,
but are in general multivalued, i.e., carry nontrivial monodromy transformations for parallel transport in a closed
loop around each particle site [13,14].

For a spinless particle at rest, the loop integral of the connection is 8w Gm—or just m, in units of the
energy 1/87 G, so that the Minkowskian coordinates X¢ = (T, Z, Z) possess a branch-cut characterized by the
discontinuity relation

Zu=e"ZI,  Tu=Ti (Z=X+iY), (1)
between values above and below the cut. This corresponds to a cut-out sector or deficit angle m
10| = |arg Z| < 7a, a:l—zﬂzl—mm, )
b

typical of a conical space. For moving particles of momenta P¢, the relation (1) is boosted to Lorentz
transformations—the DJH matching conditions [5]

ne

(X1 — Xp)* = L(P)I(X1— X,)? (PE=m? n=1,...,N), (3)

and the latter do not commute for nonvanishing relative velocities.
In the static case (1), it is straightforward to construct single-valued coordinates x* = (¢, z, z) around each
particle, by a coordinate transformation of the type

K
= = E ~ o :ﬂ:
T =t, Z—Z<)L) z (,u o 4Gm>, 4)

so that Z — e~ Z when z — %7 z. The corresponding metric is nontrivial, with line element

i
ds® = dri* — o i dz (|Argz| <), (5)

and yields the conformal-gauge description. Finally, the scale change p = A(r/2)* (we denote by r and 6 the
modulus and argument of z) brings Eq. (5) into the canonical DJH form

ds? = dr* —a?,o2 —a2p2 d@z, (6)

in which the geometry of a cone with aperture 27« = 27 — 27 i is transparent.



M. Ciafaloni, S. Munier / Physics Letters B 544 (2002) 307-315 309

We have introduced in the above equations a scale parameter A which is arbitrary at this stage, but becomes
dependent on the dynamical variables of the system if the metric (5) is interpreted as the asymptotic metric! for
|z] > A(zn, pn) of a system of many particles of coordinates {z,, p,} and invariant mass M = 2 .

The simplest quantization procedure is that of a test particle in the conical space of Egs. (5) and (6), described
by the eigenfunctions of the Laplace operator on the cone [10,11]

m
%, (7)

2
I3 z

A

where p = —id,. Generalizing such approach to the dynamical many-body system [17] is nontrivial, due to the
noncommutativity of the monodromies (3). At the classical level, a single-valued metric of conformal type was
obtained in the instantaneous gauge [8] by Bellini, Valtancoli and one of us (M.C.) [17], and by Welling [18]. The
same solution was exhibited by Menotti and Seminara [9,19] in a canonical formalism, which allows the derivation
of the classical two-body Hamiltonian?

A|cone = ‘_

M
H = ploglz|* +log|p|* = nlog A% (z, p) <M=E>- (8)

Here z = 72 — 71 is the relative coordinate of the two particles, and p is the conjugate momentum, while A(z, p)
turns out to be [19] the scale parameter introduced in Eq. (5), interpreted as the asymptotic metric of the 2-body
system.

The expression (8) is formally the logarithm of (7) and thus may lead to a quantization much similar to that of
Deser, Jackiw and 't Hooft. However, the decomposition (8) as a sum of two contributions suggests a quantization
with different ordering, related to the BFKL equation with running coupling, as we shall see in the following.

3. The high-energy evolution equation

The basic question of high-energy QCD is to find the total cross section G(k, kq; Y) for the scattering of two
gluons at scales k, ko and relative rapidity ¥ = log(s/(kko)), s being their center-of-mass squared energy. The
pioneering work of Balitsky, Fadin, Kuraev and Lipatov [1,2] showed that the perturbative high-energy behaviour
could be resummed in the leading logarithmic approximation by an evolution equation involving a two dimensional
Hamiltonian Hg [20,21]

0
—B—YQ(Y)=5!SHOQ(Y), g(k,ko;0)=32(k—k0), 9)
where

Ho = log|k|? + log|z|? — 2y (1), (10)

k=ki +iky, z=1i0, =i(d] —idp)/2 is the variable conjugated to the 2-dimensional momentum k (its Hermitian
conjugate operatoris z =id;) and a; = oy N/ is the QCD squared coupling constant.

The BFKL evolution equation (9) is solved in terms of the eigenfunctions of the Hamiltonian (10), which is
actually scale-invariant, so that it has characteristic function — x,, (v), where

1+2'”' +iv>=2¢(1)—27ze¢<1_2'”' +iv>, (11)

1) = 29 (1) — 2Rew(

1 Actually, the asymptotic metric takes up a more general ADM form [15] if the angular momentum of the system is nonvanishing [5]. In
Ref. [16], the case of a more complicated topology of space was also investigated.

2 In a general time gauge the Hamiltonian may differ from (8) by a constant factor, which for a “local” observer is ~(1 — w1 — ), as in
the equations of motion of Ref. [17].
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on the power-behaved eigenfunctions ¥, ,(k.k) = k» %71 (y =5 —n =1 —n)/2 +iv and ¥ (x) =
[V(x)/T'(x)). Thus, the evolution equation (9) and Eq. (11) show that the 2-gluon correlator is exponentially
behaved in Y (or power-behaved in s), with exponent wp = &; x0(0), yielding the so-called hard pomeron behaviour
of the cross section.

Let us outline the proof of these classical results. The fact that the eigenfunctions ¥, , are powers of k and k
is due to scale invariance of the Hamiltonian (10). Single-valuedness of the cross section imposes that 7 — y he
an integer. The eigenvalues (11) are then computed by using the relation of H; to the sum of log|k|? and log]|dy|?
which defines our ordering. We start from the definition of the log|z| = log|d; | operator acting on a given function
V(k,k):

logl< W (k. k) = / Lo arrinriog( )G, 5) (12)
' ’ (2m)? 4 T

where ¥ (p, /) is the Fourier transform of ¥ (k, k). It is useful to take the following representation for the logarithm:

| d Ip2\
ol )2 (5)°

We specialize to the power-functions ¥, , (k, k) = k?~1k7=1, Their Fourier transform l17,1,”(,0, p) can be computed
using the formula

4 v ~
fdzkky—llzf—le—”"ﬂ=my‘?(z> (E> T») , (14)
o p) Tl—y)

which holds for y — y positive (the case 7 — y negative is obtained by exchanging y and 7). The integral over p
in Eq. (12) is performed using again the same formula. Finally one takes the derivative with respect to ¢ to obtain

(loglz|® + loglk[*) ¥y v (k. k) = (¥ () + ¥ (1 — 7)) Wu (k. ). (15)

As 1 — 7 = y, this equation proves that the functions ¥, , (k, k) = k¥ ~1k”~1 are eigenfunctions of o with
eigenvalues given by Eq. (11). Note that Eq. (15) can be formally written as an identity between operators:
log| 3|2 +log|k|® = ¥ (1 + kd) + ¥ (—kdy). Consequently, the BFKL Hamiltonian can be expressed as a function
of the dilatation operators kd; and kd;, besides admitting the customary integral operator formulation [1,2].
Finally, solutions to the BFKL evolution (9) are linear combinations of the eigenfunctions to which one applies

the evolution operator
—2iv
dv — _ kko
k,ko Y k k Dts'HoYlp k ,k / a;xn(v)Y.
ok = Z/ ol (ko. ko) |kko|Z 27 kke) €
(16)

The dominant large ¥ behaviouris given by the saddle point of the azimuthally symmetric » = 0 component, which
lies at v = 0 so that G(Y)~ exp(a, x0(0) - ), as stated before.

The model just outlined shows conformal invariance at nonvanishing momentum transfer, and can be generalized
to many-gluon correlators [21] and connected to an integrable 2-dimensional model [22].

When subleading logs corrections [23-25] are taken into account, the picture changes qualitatively, because at
this level the QCD coupling acquires renormalization group (RG) evolution in the form

1
- 2 _
& (k) = blogk?/A?’
where A? is the RG invariant QCD scale. Therefore, by introducing the variable o conjugated to ¥, Eq. (9) takes
the form

[(1 + bw)log|k|? +1og|z|*]G = bwlog A%G, (18)

ko

(17)
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apart from a delta function source blog(k(z) /A%)8%(k — ko). Notice that Eq. (18) is no longer scale-invariant, and
involves a new kind of Hamiltonian, of the type

1
= loglk|? + ul 2 = 19
H =loglk|“ + plog]z| (u 1+bw), (19)

whose eigenvalues are related to bw and to the QCD scale A2 itself. This Hamiltonian is exactly the same as the one
given in Eq. (8), except that (19) is already quantized: indeed & and z are operators satisfying to the commutation
relation [z, k] =i.

Let us solve the eigenvalue equation Hor = E ¢ for a coordinate-dependent wave-function ¢ (z, 7). Although
the Hamiltonian is no more scale invariant, we shall take the functions ¥, ,(z,z) =z77z""/(w+/2) as a basis for
its eigenfunctions, where y (n, v) and 7 (n, v) were introduced in the previous section, thus spanning an Ly space.
The normalization is chosen so that the ¥, , are orthonormal | d*z Wy (2, 2) W (2, Z) = 8, 8(v—1"). Since the
w’s are eigenfunctions of H(u = 1) with the eigenvalues in Eq. (15), we canset H =H(u =1) + (u — 1)log|z|2
and we notice the representation 10g|z|2 — —3/3d(iv). It is then easy to see that the linear combination

d
¢E(Z,2)=Z/%an,v(z,z)fE,n,v’ (20)

is an eigenfunction of 7 if the coefficients of the expansion are:

Fen = Z—T[GXP _IVE X, (v) ’ 1)
1—u - 1—-0n

where

F s ol P —iv)
X, = Of 40 ) = 20 D) =log -

The normalization has been fixed by requiring that the set of functions ¢ £ be orthonormal:

/ A2 bp (2. 2)fp (2. 2) = 8(E — E).

The method just outlined is the so-called “y-representation” widely used in high-energy physics. The
expansion (20) is the natural equivalent of a Fourier expansion in the case in which the Hamiltonian is a function
of the dilatation operator zd,. The set of functions ¥, , (z, z) for the expansion plays the role of the Fourier basis
¢'*2: the latter are eigenfunctions of the translation operator 8, while the former are eigenfunctions of the dilatation
operator zd.. Finally, the energy E is fixed in this case by Eq. (18) to be E = (1 — ) log A2 and is thus related to
the QCD scale.

4. Quantum scattering solutions

We have just shown that the cross section for gluon scattering at high-energy obeys a Schrodinger equation. Its
Hamiltonian is classically the same as the one describing the diffusion of 2 massive particles in 2 + 1 dimensions
(see Section 2).

We shall now take advantage of this equivalence to investigate the new quantization scheme for gravity which
comes from the ordering induced by Eq. (15). We shall study the properties of the wave function obtained in the
previous section.
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We will consider separately each component of given angular momentum » of the wave function. Introducing
the modulus  and argument & of the transverse coordinate vector z, we write

Gr(r.0) = u(r.0|E). (23)
n
We recast the partial waves in the following form:
eine ]. e dU g @iv] )
\r 24
(pﬂ (rv 9) \/(17_ r ( )
where
1 r (M — iv)
E,Giv|r) = =2ivlog(k (E)r) — lo 2 , (25)
and where we have singled out the scale of distances by defining
K2(E) = eE/A-1), (26)
For sake of simplicity, the E-dependence will be implicit in most of the following equations which involve «.
We note that in the particular case u = 0, the wave function (24) reduces to a Bessel function:
P inf
(pn(r,9)|M:0=7J‘n‘(2Kr). (27)

For the general case, we will investigate the behaviour of the wave function (24) in different limits of the
parameter «r. Technically, we will use the steepest descent method. The equation a&,(iv|r)/d(iv) = 0 defines
the saddle points i vy as roots of the equation

—2log(xr) + ! {w<1+|n| )+1ﬂ(1+|n| ivs)}zo. (28)
1—n 2

As we shall only be interested in the leading terms in |log(xr)|, we will solve this equation by taking the relevant
approximations for the v function. The wave function reads in the saddle point approximation

ein@ 511(“)3 [r)

Jrd=p)r Z\/zn(a%‘ (iv]r)/3iv)2)iv=iv,

345n(l\1|r)/8(lv)4|iv:ivs
% {1 3, I /0D i }

The sum goes over all the roots of Eq. (28). We have singled out the dominant contribution as well as the first
correction to it.

First, the study of the large distance behaviour of the wave function («r >> 1) enables to identify the phase shift
due to the scattering [10]. Since log(xr) is large and positive, the saddle point defined by Eq. (28) sits at large
ivs. One can use the approximation v (z)~log z which then gives (7)1 =% = ((1 4 |n[)/2)? 4 v2 up to terms of
relative order 1/(«xr)1~#), Taking into account the two roots of this equation, we use formula (29) and we obtain

@n(r,0) =

(29)

inf 1—pn
ke —(4)/2 2(kr) _nlmw
on(r.0) = ——r) COS( % 20— 1) (30)
for the leading contribution. The first relative correction is 3/4 - (1 — u)(xr)~ = from Eq. (29). It is subleading
in |log(xr)|, which justifies the method.
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This result should be compared to the wave function for scattering in flat space: the partial wave of angular
momentum n is given by Jj,(2«r) ~ /1/mircos(2xr — |n|7 /2 — 7/4). In this case, the wave front is rotated by
an angle 7 in the scattering process. In our case, by analogy, we see on Eq. (30) that the wave front is rotated by
/(1 — w). Thus the scattering angle is = /(1 — w), and corresponds to the deficit angle of the effective conical
space in which the particles are moving. Both phase shifts in Eq. (30) and scattering angle agree with the results of
DJH.

The small distance behaviour of the wave function is also of interest because in the context of high-energy
scattering, this regime corresponds to a configuration in which the interacting gluons have large virtualities.
As log(xr) is large and negative, the saddle point defined by Eq. (28) sits near the pole of the v function at
(1 + |n])/2 + iv = 0. The v functions are approximated by v (z) ~ —1/z. The equation for the saddle point then
gives (1 + |n|)/2 +ivy = —1/(2(1 — w)log(xr)). Applying once again formula (29), one obtains the leading term

N celn? 2e(1 — 1) 1/(A—-w) | /(i)
O e IR — ) (m T |n|>> ()" logter) Gy

A bit of care is in order in this case. Indeed, the first relative correction to this approximation (second term in the
parenthesis in Eq. (29)) is 18(1 — w). Hence the saddle point method only provides the coefficient of the leading
behaviour of the wave function up to terms of relative order 1 —

We note that in the particular case in which 1/(1 — w) is an integer, the wave function is a Meijer function. All
subleading orders can be computed by expanding it in a power series of «r. This can be done by picking up the
successive poles of the integrand in the upper v-plane. For u = 1/2, we obtain the following result:

son<r9>—2xe’"9\f< )”(F'zlz’ff|)'|) F3(L1+ [nl.1+n, (kr)?)

w VA +E)+ ¢ +n| +k))
i Z(W) P20+ o2+ jn +6) ) (32)

For u # 0, the behaviour of the wave function for small «» computed in Eqgs. (31), (32) is to be contrasted with
the one found in Refs. [10,19], within the DJH quantization scheme

einG (Kr)liﬂ ein9 (Kr)lnl
W)= 1, ( ) ~ : , (33)
% T ul 1—u Jergl 2 21%1’*(1_’_%)

which does not show the logarithmic corrections of Egs. (31), (32). The latter are due to the Yang-Mills anomalous
dimension which in turn are embodied in the small y behaviour of the eigenvalue function (15). The occurrence
of such logarithms in the weak coupling regime M ~ hix <« 1/G can possibly be ascribed to quantum loops, but
no comparison with consistent calculations is actually possible, because string-gravity loops have been studied
only close to D =4 [26], due to the occurrence of an infrared anomaly at D = 3. Eq. (31) provides also the
resummation of such logarithms, formally valid for ©« =4GM < 1. However, before the conformal limit © =1 is
reached, effects related to the Planck scale #G could become relevant also. Furthermore, inelastic effects of matter
radiation—not included in the quantum mechanical Hamiltonian—are expected to affect the low partial waves
n=0,1,..., too [27].

Anyway, it is amusing to note that the relevant regimes of the two theories are somehow exchanged. The short
distance behaviour, which in (2 + 1)-gravity is dependent on the quantization procedure and is expected to be
of strong-coupling nature is related to the perturbative anomalous dimension regime of the gauge model. On the
other hand, the large distance behaviour, fixed in (2 + 1)-gravity by the semiclassical limit, is related to the large
|Imy| behaviour of the characteristic function, which in the gauge model is expected to be affected by higher
order corrections. This interchange of weak- and strong-coupling regimes is analogous to what happens in duality
transformations.
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Finally, we check the consistency of the wave function that we have constructed by taking its classical limit. We
get the time evolution of the system by applying the operator ¢/’ to a wave packet. We choose to construct the
latter by combining all the wave functions corresponding to different values of the energy E with an equal weight:
O, (t,r,0)=e Tt fjo".f’ dE ¢, (r,0|E). This enables to express the variable v as a function of 7: v = (1 — )z and
therefore to get rid of the integration over v. We obtain:

l—n

®,(t,r,0) ="’

(e +id —mr)} G

1
expy —(1+2it(1 —w))logr — lo
p{ ( Jlog l—p gF(l—'Em—i(l—,u)t)
The classical limit of the wave function corresponds to large angular momenta, i.e., large ||. In this limit, the
phase is stationary for:

_ I—p _
(1 — )6 = tan™! 2(1|7“)’ (i) G (35)

n| 20 ]

where we have reintroduced the complex coordinate vector z (- = zZ), and zg is its value for r = 0. Eq. (35) give

the classical trajectory for the effective particle which agrees with previous results [9,17]. One sees that in the
conformal limit of small 1 — w, the angle & grows linearly with time while the radius r is fixed: we have a circular
motion of body 2 around body 1.

5. Outlook

The preceding analysis shows that in the two body case, the Hamiltonian of both (2 + 1)-gravity and the high-
energy model are related to a basic scale of the problem which, in the conformal limit, takes the form ~ log| p|2|z|2.
Thus canonical quantization, with proper ordering of operators, leads to analogous features, even when scaling
violations O(1 — ) are turned on.

A natural question is whether this analogy is kept in the many-body case. In the conformal limit of the high-
energy model, some exact three-body solutions are known (the “odderon” [21,28]). Much less is known in the
case of running coupling (or scaling violations). On the other hand, the general structure of the Hamiltonian is
known [19] in (2 + 1)-gravity too, but becomes tractable in the small speed limit only [17]. Furthermore, the
conformal limit © — 1 is ambiguous, in the sense that it depends on the mass parameters y; also, and it is
conceivable that the high-energy model may correspond to some special mass configuration. Therefore, a deeper
analysis is needed in order to understand whether the amusing correspondence found here survives in the general
case.
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