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Abstract

Let G be a connected reductive algebraic group over an algebraically closed field K of characteristic
zero. Let G/B denote the complete flag variety of G. A G-homogeneous space G/H is said to be spherical
if H has finitely many orbits in G/B. A class of spherical homogeneous spaces containing the tori, the
complete homogeneous spaces and the group G (viewed as a G × G-homogeneous space) has particularly
nice properties. Namely, the pair (G,H) is called a spherical pair of minimal rank if there exists x in G/B

such that the orbit H.x of x by H is open in G/B and the stabilizer Hx of x in H contains a maximal torus
of H . In this article, we study and classify the spherical pairs of minimal rank.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field K of char-
acteristic zero. Let B denote the complete flag variety of G. Let H be an algebraic subgroup of
G which acts on B with finitely many orbits; the subgroup H and the homogeneous space G/H

are said to be spherical.
In this article, we study and classify a class of spherical homogeneous spaces containing the

tori, the complete homogeneous spaces and the group G viewed as a G×G-homogeneous space.
Namely, the pair (G,H) is called a spherical pair of minimal rank if there exists x in B such
that the orbit H.x of x by H is open in B and the stabilizer Hx of x in H contains a maximal
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torus of H . In [7], the rank rk(G/H) of the homogeneous space G/H is defined. Moreover, for
any spherical subgroup H of G, we have rk(G/H) � rk(G) − rk(H) (where rk(G) and rk(H)

denote the ranks of the groups G and H ) with equality if and only if (G,H) is of minimal
rank. This explains the name. The spherical pairs (G,H) of minimal rank such that H is a
symmetric subgroup of G have been introduced in [5]. During the redaction of this article the
compactifications of the spherical homogeneous spaces of minimal rank have been studied in
[14] and [1].

Let us state our main result. Propositions 3.1, 3.2 and 4.2 reduce the classification to the
special case when G is semisimple adjoint and H is simple. Indeed, any spherical pair of min-
imal rank is obtained from special ones and toric ones by products, finite covers and parabolic
inductions. Next, we prove

Theorem A. Up to conjugacy by an automorphism of G, the spherical pairs (G,H) of minimal
rank with G semisimple adjoint and H simple are:

(i) G = H .
(ii) H is simple and diagonally embedded in G = H × H .

(iii) (PSL2n,PSp2n) with n � 2.
(iv) (PSO2n,SO2n−1) with n � 4.
(v) (SO7,G2).

(vi) (E6,F4).

We denote by H(B) the set of H -orbit closures in B. If H = P is a parabolic subgroup of G,
the elements of H(B) are the famous Schubert varieties. Most of combinatorial and geomet-
ric properties of the Schubert varieties cannot be generalized to the elements of H(B) if H is
only assumed to be spherical. However, if H has minimal rank the elements of H(B) have nice
properties. Let us give details.

The Weyl group W of G acts transitively on the set of Schubert varieties; this action
parametrizes these varieties by W/WP . In general, F. Knop has defined in [7] an action of W in
H(B); but, it seems to be difficult to deduce a parametrization of H(B) from this action. We show
in Proposition 2.1 that G/H is of minimal rank if and only if the action of W is transitive on
H(B). In this case, the isotropy groups are isomorphic to the Weyl group WH of H ; and W/WH

parametrizes H(B).
The Schubert varieties are normal; but, in general elements of H(B) are not normal (see [4]

or [8] for examples). By a result of Brion, if G/H is of minimal rank, the elements of H(B) are
normal.

In [7], F. Knop also defined an action of a monoid W̃ (constructed from the generators of W )
on H(B). Moreover, the inclusion defines an order on H(B) which generalizes the Bruhat order
for the Schubert varieties. The description of the Bruhat order from the action of W̃ is well known
as the cancellation lemma. In general, no such description of this order is known. Corollary 2.1
is a cancellation lemma in the minimal rank case.

The number of Schubert varieties of dimension d equals the number of those of the codimen-
sion d . In Proposition 2.3 we show such a symmetry property of H(B) for any spherical pair
(G,H) of minimal rank.

Let us explain another important motivation for this work. Let T be a maximal torus of G and
X be a G-equivariant embedding of a spherical homogeneous space G/H of minimal rank. In
Proposition 2.4, we show that for all fixed points x of T in X, G.x is complete. This property
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seems to play a key role in several works about the embeddings of G × G/G (see for example
[13]). We also prove a stability property for the set of spherical homogeneous spaces of minimal
rank: any orbit in a toroidal embedding of a spherical homogeneous space of minimal rank is
spherical of minimal rank.

In Section 2, we study the properties of H(B) and of the toroidal embeddings of G/H for the
spherical pairs (G,H) of minimal rank. This allows us to give several characterizations of the
minimal rank property. In Section 3, we reduce the classification to the case when G and H are
semisimple. In Section 4, we classify such pairs by associating to (G,H) an involution on the
vertexes of the Dynkin diagram of G.

2. Equivalent definitions and first properties

2.1. Minimal rank and orbits of H in B

2.1.1. Let us fix some general notation. If X is a variety, dim(X) denotes the dimension of X.
If x belongs to X, TxX denotes the Zariski tangent space of X at x. If Γ is an algebraic group
a Γ -variety X is a variety endowed with an algebraic action of Γ . Let Γ be an affine algebraic
group and X be a Γ -variety. For x a point in X, we denote by Γx the isotropy group of x and by
Γ.x its orbit. We denote by XΓ the set of fixed points of Γ in X. We denote by Γ u the unipotent
radical of Γ .

2.1.2. Let us recall that G is a connected reductive group, B its complete flag variety, H a
spherical subgroup of G and H(B) the set of H -orbit closures in B. If V belongs to H(B), we
denote by V ◦ the unique open H -orbit in V .

We recall the definition given in [9] of a graph Γ (G/H) whose vertexes are the elements of
H(B). The original construction of Γ (G/H) due to M. Brion is equivalent but slightly different
(see [4]).

Consider the set � of conjugacy classes of minimal non-solvable parabolic subgroups of G. If
α belongs to �, we denote by Pα the G-homogeneous space with isotropy α. Then, there exists
a unique G-equivariant map φα : B −→ Pα which is a P1-bundle.

Let V ∈ H(B) and α ∈ �. We assume that the restriction of φα to V ◦ is finite and we denote
its degree by d(V,α). Then, φ−1

α (φα(V )) is an element denoted V ′ of H(B); in this case, we say
that α raises V to V ′. One of the three following cases occurs.

• Type U : H has two orbits in φ−1
α (φα(V ◦)) (V ◦ and V ′ ◦) and d(V,α) = 1.

• Type T : H has three orbits in φ−1
α (φα(V ◦)) and d(V,α) = 1.

• Type N : H has two orbits in φ−1
α (φα(V ◦)) (V ◦ and V ′ ◦) and d(V,α) = 2.

Definition. Let Γ (G/H) be the oriented graph with vertexes the elements of H(B) and edges
labeled by �, where V is joined to V ′ by an edge labeled by α if α raises V to V ′. This edge
is simple (resp. double) if d(V,α) = 1 (resp. 2). Following the above cases, we say that an edge
has type U , T or N .

2.1.3. Let us fix a Borel subgroup B of G. Let Y be a B-variety. The character group X (Y )

of Y is the set of characters of B that arise as weights of eigenvectors of B in the function
field K(Y ). Then X (Y ) is a free abelian group of finite rank rk(Y ), the rank of Y (see [7]). It
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is well known that a B-orbit O is isomorphic as a variety to Kl × (K∗)r where r = rk(O) and
l = dim(O) − rk(O).

If V belongs to H(B), we set:

VH = {
gH ∈ G/H : g−1B ∈ V

}
.

Then, VH is a B-orbit closure in G/H . Moreover, the map V �−→ VH is a bijection from H(B)

onto the set of the B-orbit closures in G/H . The rank of VH is also denoted by rk(V ) and called
the rank of V.

2.1.4. Let T be a maximal torus of B . Let W denote the Weyl group of T . Every α in � has
a unique representative Pα which contains B . Moreover, there exists a unique sα in W such that
BsαB is dense in Pα ; and this sα is a simple reflexion of W . The map � −→ W , α �−→ sα is a
bijection from � onto the set of simple reflexions of W .

F. Knop defined in [7] an action of W on the set H(B) by describing the action of the sα’s, for
any α ∈ �:

• Type U : sα exchanges the two vertexes of an edge of type U labeled by α.
• Type T : If α raises V1 and V2 to V , then sαV1 = V2 and sαV = V .
• Type N : sα fixes the two vertexes of a double edge labeled by α.
• sα fixes all other vertexes of Γ (G/H).

2.1.5. We can now characterize the spherical pairs of minimal rank in terms of H(B):

Proposition 2.1. With the above notation, the following are equivalent:

(i) There exists x ∈ B such that H.x is open in B and Hx contains a maximal torus of H .
(ii) rk(G) − rk(H) = rk(G/H).

(iii) All the elements of H(B) have the same rank.
(iv) All the edges in Γ (G/H) have type U .
(v) W acts transitively on Γ (G/H).

If (G,H) satisfies these properties, we say that (G,H) is of minimal rank.

Proof. The equivalence between the two first assertions follows from [10, Corollary 3.1].
Let us recall some properties of the graph Γ (G/H) from [4]. If α raises V to V ′ by an edge

of type U (resp. T or N ) then rk(V ′) = rk(V ) (resp. rk(V ′) = rk(V ) + 1). Moreover, any V in
H(B) is joined to B by an increasing path in Γ (G/H) (property of connectedness). Finally, the
rank of a closed H -orbit in B equals rk(G) − rk(H).

Now, one easily checks the equivalence between assertions (ii), (iii), (iv) and (v). �
2.1.6. Let (G,H) be a spherical pair of minimal rank. Then, the elements of H(B) can be

parametrized. Indeed, let W0 be the stabilizer of B for the action of W . In [10], it is shown that
W0 is isomorphic to the Weyl group WH of H . Moreover, Proposition 2.1 shows that Knop’s
action gives a bijection between W/W0 and H(B). In particular, we have: |H(B)| = |W |

|WH | , where
|E| denotes the cardinality of the finite set E.
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Each orbit closure V of H in B is multiplicity-free in the sense of [4, p. 284]. In particular,
by [4, Theorem 5] V is normal.

2.1.7. In this paragraph, we are interested in reading the generalized Bruhat order off the
graph Γ (G/H). Let us start by showing the following nice property of this graph:

Proposition 2.2. There exists a unique closed orbit of H in B and it is the only minimal element
of Γ (G/H).

Proof. Let V0 be a closed orbit of H in B. Let H0 be the set of H -orbit closures in B linked with
V0 by an oriented path in Γ (G/H). It is sufficient to prove that H0 = H(B).

We assume that H(B)−H0 is not empty. Since B belongs to H0 and all the orbits are joined to
B by an oriented path, there exist Z ∈ H(B) − H0 and α ∈ � such that α raises Z to an element
Z′ of H0 (it is sufficient to take Z of maximal dimension in H(B) − H0). Let us fix such a pair
(Z,α) such that Z is of minimal dimension.

Since Z′ �= V0, there exist β ∈ � and Y ∈ H0 such that β raises Y to Z′. Since the edges of
Γ (G/H) are of type U and Y �= Z, we have β �= α.

Using [4, Lemma 3], one easily checks that one of the two following graphs is a subgraph of
Γ (G/H):

Z′

Y

β

Z

α

V

α

V ′
β

V ′′

αβ

Z′

Y

β

Z

α

V

βα

In the first case, Z, V ′ and V ′′ do not belong to H0. By minimality of the dimension of Z and
by considering (V ′′, β) we deduce that V does not belong to H0. Now, the pair (V ,α) contradicts
the minimality of the dimension of Z. A similar argument works in the second case. �

Let V be in H(B) and V0 denote the unique closed H -orbit B. By Proposition 2.2, there exists
an increasing path in Γ (G/H) from V0 to V . Let (α1, . . . , αs) be the sequence of the labels of
the edges of such a path. Notice that s = dim(V ) − dim(V0). The inclusion relation in H(B) can
be read off the graph Γ (G/H) by the following cancellation corollary:

Corollary 2.1. We use the above notation and fix V ′ in H(B). Set k = dim(V ′)− dim(V0). Then,
V ′ ⊂ V if and only if there exist i1 < · · · < ik such that the increasing path starting from V0 and
with labels (αi1, . . . , αik ) ends at V ′.

Proof. Using Proposition 2.2, the proof of [12] works here. �
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2.1.8. Let dG (resp. dH ) denote the dimension of the complete flag variety of G (resp. H ).
Then, we have the following “symmetry” on the set H(B):

Proposition 2.3. Here we assume that H is connected. For all 0 � δ � dG − dH , the number of
elements in H(B) of dimension dG − δ equals the number of those of dimension dH + δ.

Proof. Consider PG(t) and PH (t) the Poincaré polynomials of the complete flag varieties of
G and H . By Poincaré duality, they are symmetric polynomials of degrees dG and dH ; that is,
tdGPG(1/t) = PG(t) and tdH PH (1/t) = PH (t).

Consider the following polynomial:

Q(t) =
∑

V ∈H(B)

tdim(V )−dH .

We claim that Q(t).PH (t) = PG(t). The claim implies that Q(t) is symmetric and so the propo-
sition.

Let BH denote the complete flag variety of H . For any x ∈ B, Hx is a solvable subgroup
of H containing a maximal torus of H . It follows that Hx is contained in a Borel subgroup
of H : consider ϕx : H.x −→ BH the map induced by this inclusion. The fiber ϕ−1

x (ϕx(x)) is
homogeneous under the Borel subgroup Bx of H corresponding to ϕx(x). Since x is fixed by a
maximal torus of Bx , it follows that ϕ−1

x (ϕx(x)) is isomorphic to an affine space. Moreover, this
space has dimension dim(H.x) − dH .

We choose one point in each orbit of H in B and consider the associated morphisms ϕx .
There exists a finitely generated extension K of Q such that G, H , the inclusion of H in G,
the chosen points in B, the morphisms ϕx , the isomorphisms between the fibers of the ϕx ’s and
corresponding affine spaces are all defined. By taking an extension if necessary, we may (and
shall) also assume that the Schubert cells (for fixed Borel subgroups of G and H ) of B and BH

are defined and isomorphic to affine spaces over K .
Now, we consider a finite quotient Fq of K and the points B(Fqn) of B over Fqn for all positive

integers n. By using the decompositions of B and BH in Schubert cells, one obtains:

∣∣B(Fqn)
∣∣ = PG

(
qn

)
and

∣∣BH (Fqn)
∣∣ = PH

(
qn

)
.

Now, we count the points in B(Fqn) by using the decomposition in H -orbits:

∣∣B(Fqn)
∣∣ =

∑
V ∈H(B)

∣∣V ◦(Fqn)
∣∣ =

∑
V ∈H(B)

∣∣BH (Fqn)
∣∣.(qn

)dim(V )−dH = PH

(
qn

)
.Q

(
qn

)
.

The claim follows. �
2.2. Minimal rank and toroidal embeddings

2.2.1. In this subsection, (G,H) is a spherical pair not necessarily of minimal rank. An
embedding of G/H is a pair (X,x) where X is a normal and irreducible G-variety and x is a
point of X such that G.x is open in X and Gx = H . Such an embedding is said to be toroidal if
any irreducible B-stable divisor of X which contains a G-orbit is G-stable.
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Lemma 2.1. Let G/H be a spherical homogeneous space (not necessarily of minimal rank). Let
(X,x) be a toroidal embedding of G/H and y be a point in X.

Then, we have the inequality:

rk(G/H) + rk(H) � rk(G.y) + rk(Gy).

In particular, if G/H is of minimal rank, G.y is.

Proof. Firstly, we prove that it is sufficient to show the lemma when dim(G.y) = dim(X) − 1.
By [2, Lemma 2.1.1], since X is toroidal, there exist G-orbits O0, . . . , Os such that G.y = O0 ⊂

O1 ⊂ · · · ⊂ Os = X (where Oi denotes the closure of Oi in X) and dim(Oi+1) = dim(Oi ) + 1
for all i = 0, . . . , s − 1. For each i, we fix a point yi in Oi . Since Oi is normal, we can apply the
case when dim(G.y) = dim(X) − 1 to each Oi ⊂ Oi+1 showing that

rk(G.yi+1) + rk(Gyi+1) � rk(G.yi) + rk(Gyi
).

The inequality of the lemma follows.
We now assume that dim(G.y) = dim(X) − 1. Set O = G.y. Consider the linear action of the

group Gy on the quotient TyX/Ty O of TyX by Ty O. Since X is normal, it is smooth at y and
TyX/Ty O is a line. So, the action of Gy defines a character χ : Gy −→ K∗.

Let Ty be a maximal torus of Gy . Let S denote the identity component of the kernel of the
restriction of χ to Ty . We claim that S has fixed points in G.x. Set Ω = G.x ∪ O; it is open in X

and hence it is a smooth variety. By a result of Białynicki–Birula, we have Ty(Ω
S) = (TyΩ)S .

In particular, ΩS is not contained in O. This proves the claim.
By the claim, a subgroup conjugated to S fixes x and

rk(H) � dim(S) = dim(Ty) − 1 = rk(Gy) − 1.

Moreover, since X is toroidal rk(G/H) = rk(O) + 1. The lemma follows. �
2.2.2. The fixed points of a maximal torus of G in the toroidal embeddings of spherical

homogeneous spaces of minimal rank are easy to localize. Indeed, we have:

Proposition 2.4. Let (G,H) be a spherical pair and T be a maximal torus of G. The following
are equivalent:

(i) (G,H) is of minimal rank.
(ii) There exists a complete toroidal embedding (X,x) of G/H such that for any x ∈ XT G.x

is complete.
(iii) For any complete toroidal embedding (X,x) of G/H and for any x ∈ XT , G.x is complete.

Proof. We assume that (G,H) is of minimal rank and fix a complete toroidal embedding (X,x)

of G/H . Let y ∈ XT . Lemma 2.1 shows that rk(G.y) = 0; that is (see for example [3, Corol-
laire 1]), G.y is complete. This proves that assertion (i) implies assertion (iii).

Conversely, let (X,x) satisfy assertion (ii). It remains to prove that (G,H) is of minimal rank.
Let λ be a one-parameter subgroup of T such that T is the centralizer of the image of λ (that

is, λ is regular) and Xλ = XT (where Xλ denote the set of fixed points of the image of λ). Since
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λ is regular, the set of g ∈ G such that limt→0 λ(t)gλ(t−1) exists in G is a Borel subgroup of
G denoted by B(λ). By Proposition 2.1, it is sufficient to prove that for any y ∈ G.x we have
rk(B(λ).y) = rk(G/H). This holds by Lemma 2.2 below since the rank of a complete G-orbit
equals zero. �
Lemma 2.2. Let (X,x) be a complete toroidal embedding of the spherical homogeneous space
G/H . Let y be a point in the open G-orbit in X. Let λ be a regular one-parameter subgroup of
T such that Xλ = XT . Set z = limt→0 λ(t)y.

Then, we have

rk(G/H) − rk
(
B(λ).y

) = rk(G.z).

Proof. Let us introduce some material and notation from [2]. There exists a parabolic sub-
group P of G containing T such that Pz is reductive. Let Q denote the parabolic subgroup
of G containing T and opposite to P . We have Gu

z ⊂ Qu and there exists a closed subvariety
A ⊂ Qu, Pz-stable, such that the product in G induces an isomorphism A × Qu

z −→ Qu. By
[2, Lemma 1.1], there exists a locally closed affine normal and irreducible subvariety S of X

such that S ∩ G.z = {z}, S is Pz-stable and the morphism G × S −→ X induced by the action is
smooth at (1, z). In particular, we have

dim(S) = dim(G/H) − dim(G.z) = rk(G/H) − rk(G.z). (1)

Let P ×Pz (A×S) denote the quotient of P ×A×S by the action of Pz defined by p.(q, a, s) =
(qp−1,pap−1,ps), where p ∈ Pz, (q, a, s) ∈ P × A × S. The group P acts naturally on this
variety. By [2, Theorem 5], the morphism

Θ : P ×Pz (A × S) −→ X
(
p : (a, s)

) �−→ (pa).s

is an open immersion.
Consider the Białynicki–Birula cell

X(λ, z) =
{
p ∈ X: lim

t→0
λ(t)p = z

}
.

Notice that y ∈ X(λ, z). By [2, Propositions 2.1 and 2.3], X(λ, z)∩G.x = B(λ).y and G.x ∩S =
T .y′ for some y′ ∈ B(λ).y. Then, the proof of [2, Proposition 2.3] shows that Θ induces by
restriction an isomorphism:

(
P ∩ B(λ)

) ×B(λ)z

((
A ∩ B(λ)

) × T .y′) −→ B(λ).y.

Since T is contained in B(λ)z, this isomorphism implies that

rk
(
B(λ).y

) = dim
(
T .y′) = dimS. (2)

The lemma follows from equalities (1) and (2). �
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3. Reduction to the case when G and H are semisimple

The goal of this section is to reduce the classification of the spherical pairs (G,H) to those
with G semisimple adjoint and H semisimple.

Proposition 3.1. Recall that G is a connected reductive group and H is a subgroup of G. Then,
(G,H) is a spherical pair of minimal rank if and only if there exist a parabolic subgroup P of
G with a Levi decomposition P = P uL and a reductive subgroup K of L such that:

(i) H = P uK ,
(ii) (L,K) is a spherical pair of minimal rank.

Proof. We first assume that H = P uK with P,L and K as in the statement. Let BL denote the
variety of Borel subgroups of L. The variety B contains a P -stable open subset isomorphic to
P u × BL. Let x in BL be such that Kx contains a maximal torus of K and such that K.x is
dense in BL. One easily checks that H.x is open in B and Hx contains a maximal torus of H .
So, (G,H) is a spherical pair of minimal rank.

Conversely, let us assume that (G,H) is a spherical pair of minimal rank. We can write H =
HuK , where K is a reductive subgroup of H . But, by [6, 30.3], there exists a parabolic subgroup
P = P uL of G such that Hu ⊆ P u and K ⊆ L. We claim that P and L satisfy the proposition.

Let us firstly prove that P u = Hu.
Let T (H) be a maximal torus of K (and hence of H ). The variety B contains an open subset

stable by P (and hence by H ) isomorphic to P u × BL. By assumption, there exists a point x in B
fixed by T (H) such that H.x is open in B. But, x = (u, y) belongs to P u × BL. Since the H -orbit
of x is open in P u × BL, so is its intersection with P u × {y}. Hence, the set of hkuk−1 ∈ P u

such that h ∈ Hu and k ∈ Ky is open and dense in P u. In particular, the Ky -orbit Ky.(uHu) is
open and dense in P u/Hu.

Since x ∈ BT (H), uHu ∈ (P u/Hu)T (H). But, Ky is a solvable group with T (H) as maximal
torus. So, K◦

y .uHu is one orbit of the unipotent radical Ku
y of K◦

y . In particular, it is closed in the
affine variety P u/Hu. But it is also open. We deduce that Ky acts transitively on P u/Hu.

But Ku
y is contained in K and normalizes Hu. So, Hu is a fixed point of Ky in P u/Hu. We

deduce that P u/Hu has only one point; that is, that P u = Hu.
On the other hand, K.y is open in BL and y is fixed by the maximal torus T (H) of K . We

deduce that (L,K) is a spherical pair of minimal rank. �
Since the parabolic subgroups of a given reductive group are very well known, Proposition 3.1

reduces the problem of classification of the spherical pairs (G,H) of minimal rank to the case
when H is reductive.

Proposition 3.2. Let G be a connected reductive group. Set Gad = G/Z(G) and consider the
projection p : G −→ Gad. Let H be a reductive subgroup of G. Then:

(i) The pair (G,H) is spherical of minimal rank if and only if the pair (Gad,p(H)) is.
(ii) The pair (G,H) is spherical of minimal rank if and only if the pair (G,H ◦) is.

(iii) If G/H is of minimal rank, the identity component p(H)◦ of p(H) is semisimple.

Proof. Assertions (i) and (ii) are obvious from assertion (i) of Proposition 2.1.
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To prove the last assertion, it is sufficient to prove that the connected center S of H is con-
tained in the center of G. There exists x ∈ B fixed by S such that H.x is open in B. Since,
H ⊂ GS , GS.x is open in B. But, GS.x is an irreducible component of BS by [11]. Therefore,
BS = B and S is central in G. �

Proposition 3.2 reduces the problem of classification of the spherical pairs (G,H) of minimal
rank to the case when G is semisimple adjoint and H is semisimple. From now on, we only
consider such pairs.

4. Classification of Lie algebras

Let (G,H) be a spherical pair of minimal rank with G semisimple adjoint and H semisimple.
Let g (resp. h) denote the Lie algebra of G (resp. H ).

4.1. Root systems of g and h

Let T (H) be a maximal torus of H . Let T ⊃ T (H) be a maximal torus of G. Let X (T ) =
Hom(T ,K∗) (resp. X (T (H)) = Hom(T (H),K∗)) denote the character group of T (resp. T (H)).
Let φg ⊂ X (T ) (resp. φh ⊂ X (T (H))) be the set of roots of g (resp. h). Let ρ : X (T ) −→
X (T (H)) be the restriction map.

In this subsection, we will prove some very constraining relations between φg, φh and ρ.

4.1.1. A reduction
The following stability of the set of spherical pairs of minimal rank will be used to localize

the study over some fixed roots of h:

Lemma 4.1. Let S be a subtorus of H .
Then, (GS, HS) is a spherical pair of minimal rank.

Proof. Let T (H) be a maximal torus of H which contains S. Let x be a fixed point of T (H)

in B such that V := H.x is open in B. Since V ∩ GS.x is open in GS.x, it is irreducible. So, it
is an irreducible component of V S . Now, [11, Theorem A] implies that V ∩ GS.x = HS.x. In
particular, HS.x is open in GS.x � BGS and x is fixed by the maximal torus T (H) of HS . The
lemma follows. �
Lemma 4.2. With the above notation, we have ρ(φg) = φh.

Proof. Let α ∈ φg. Set S = Ker(ρ(α))◦ ⊂ T (H). By Lemma 4.1, HS is a spherical subgroup of
GS and rk(GS/HS) = rk(GS) − rk(HS). Since the semisimple rank of GS is one, this implies
that HS◦

is not a torus. So, ρ(α) is a root of h.
Moreover, since h ⊂ g, φh ⊂ ρ(φg). �
By Lemma 4.2, we can define the map ρφ : φg −→ φh, α �−→ ρ(α).

Lemma 4.3. The spherical pairs (G,H) of minimal rank with G semisimple adjoint, H con-
nected and h = sl2 are:
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(i) (PSL2,PSL2).
(ii) PSL2 diagonally embedded in PSL2 × PSL2.

Proof. By assertion (i) of Proposition 2.1, the dimension of B is at most 2. We deduce that
G = PSL2 or PSL2 × PSL2. The lemma follows easily. �
Lemma 4.4. Let α ∈ φh.

Then, ρ−1
φ (α) contains either one root of g or two orthogonal roots of g. Moreover, if

ρ−1
φ (α) = {α◦} then hα = gα◦ ; and if ρ−1

φ (α) = {α−, α+} with α− �= α+ ∈ φg then hα �= gα± .

Proof. Set S = ker(α)◦. Since hS has semisimple rank one and by Lemma 4.1, we can apply
Lemma 4.3 to (GS/S,HS/S). The lemma follows immediately. �

Lemma 4.4 divides the set of roots of h in two parts:

φ1
h := {

α ∈ φh:
∣∣ρ−1

φ (α)
∣∣ = 1

}
and φ2

h := {
α ∈ φh:

∣∣ρ−1
φ (α)

∣∣ = 2
}
.

We denote by WH the Weyl group NH (T (H))/T (H) of H .

Lemma 4.5. The sets φ1
h

and φ2
h

are stable by the action of WH .

Proof. By Lemma 4.1, (GT (H), T (H)) is a spherical pair of minimal rank. So, GT (H) is a torus
and GT (H) = T . In particular, NH (T (H)) is contained in NG(T ); this inclusion induces an
injection of WH = NH (T (H))/T (H) into W = NG(T )/T . By this injection, we obtain an action
of WH on X (T ) such that ρ is WH -equivariant. The lemma follows. �
4.1.2. Simple roots

In Section 4.1.1, we just proved that ρ induces a map from φg onto φh. In this section, we
will prove that ρ induces a map from the Dynkin diagram of g onto that of h.

Let us fix a choice φ+
h

of positive roots for h. Set φ+
g = ρ−1

φ (φ+
h

). Note that, since the pullback
by ρ of a half space in a half space, φ+

g is a choice of positive roots for φg. Let �g (resp. �h) be
the set of simple roots of φg (resp. φh).

Lemma 4.6. Let α be a root of g. Then, α ∈ �g if and only if ρφ(α) ∈ �h.

Proof. Since α ∈ φ+
g if and only if ρ(α) ∈ φ+

h
, we may assume that α ∈ φ+

g .
Let us assume that α /∈ �g. Then, there exist β and γ in φ+

g such that α = β + γ . By apply-
ing ρ, we see that ρ(α) does not belong to �h.

Let us assume that α ∈ �g. By absurd, we assume that there exist β and γ in φ+
h

such that
ρ(α) = β + γ . Three cases occur:

Case 1: β and γ belong to φ1
h

.
Let β◦ and γ ◦ be in φg such that ρ(β◦) = β and ρ(γ ◦) = γ . By Lemma 4.3, gβ◦ = hβ and

gγ ◦ = hγ . So, we have

[gβ◦ , gγ ◦ ] = [hβ, hγ ] = hρ(α).
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Fig. 1. Dynkin diagram of (PSL4,PSp4).

In particular this bracket is non-zero and β◦ + γ ◦ is a root of g. Moreover, gβ◦+γ ◦ = hρ(α). So,
Lemma 4.3 shows that ρ(α) ∈ φ1

h
. But α and β◦ + γ ◦ belong to ρ−1

φ (ρ(α)). So, α = β◦ + γ ◦;
and this root is not simple.

Case 2: β ∈ φ1
h

and γ ∈ φ2
h

.

Let β◦ be as above. We can write ρ−1
φ (γ ) = {γ +, γ −}. We have

gβ◦+γ + + gβ◦+γ − ⊃ [gβ◦ ,gγ + + gγ −] ⊃ [gβ◦ ,hγ ] = [hβ,hγ ] = hβ+γ = hρ(α).

Moreover, since hγ is different from gγ + and gγ − , hρ(α) is different from gβ◦+γ + and gβ◦+γ − .

In particular, β◦ + γ + and β◦ + γ − are roots of g; and ρ−1
φ (ρ(α)) = {β◦ + γ +, β◦ + γ −}. So,

α = β◦ + γ + or β◦ + γ −; and this root is not simple.

Case 3: β and γ belong to φ2
h

.
With obvious notation, we have

gβ++γ + + gβ++γ − + gβ−+γ + + gβ−+γ − ⊃ [hβ,hγ ] = hβ+γ .

If hβ+γ equals one of the four spaces gβ±+γ ± , Lemma 4.4 shows that α equals β± + γ ± and
is not a simple root. Otherwise, two of the four spaces gβ±+γ ± are not zero and α equals one of
the two corresponding roots; in particular α is not simple. �

Consider the map

ρ� : �g −→ �h

α �−→ ρφ(α).

Set �2
h

= �h ∩ φ2
h

and �1
h

= �h ∩ φ1
h

.

On the Dynkin diagram of h, we color in black the simple roots in �2
h

. The so obtained
diagram is called the colored Dynkin diagram of h and is denoted by Dh. From now on, when
we draw the Dynkin diagram Dg of g, two simple roots α and β are placed on the same vertical
line if and only if ρ�(α) = ρ�(β); in such a way, ρ� identifies with the vertical projection. Note
that by Lemma 4.4, α and β are orthogonal. For (PSL4,PSp4), we obtain Fig. 1.

By exchanging the simple roots in a fiber of ρ�, we define an involution σh on the set of
vertexes of the Dynkin diagram of g. Note that σh is not necessarily an automorphism of Dg (see
the pair (SO7,G2)).
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4.2. A result of unicity

Proposition 4.1. For a fixed pair (Dg, σh) there exists at most one (up to conjugacy by an element
of G) spherical pair (G,H) where G is adjoint and H connected.

Proof. Obviously, G is determined by Dg. Let us fix a Borel subgroup B of G and a maximal
torus T of B . Let �g denote the set of simple roots of G. For any α ∈ �g, we fix an sl2-triple
(Xα,Yα,Hα). Consider

Θ : T −→ (
K∗)�2

h

t �−→ (
β(t)α

(
t−1))

α �=β∈�g

ρ�(α)=ρ�(β)

.

The identity component S of the kernel of Θ is a subtorus of T of dimension |�g|−|�2
h
| = |�h|.

Moreover, Θ is surjective.
Let H be a semisimple subgroup of G such that (G,H) is a spherical pair of minimal rank

with (Dg, Dh, ρ�) as associated triple. Let T (H) be a maximal torus of H . Up to conjugacy, we
may assume that T (H) is contained in T . But, T (H) is contained in S; by a dimension argument
we conclude that T (H) = S.

For all α ∈ �1
g, we have gα = hρ(α). Moreover, we claim that up to conjugacy, we may assume

that for all α �= β ∈ �g such that ρ�(α) = ρ�(β) we have hρ(α) = K.(Xα + Xβ).
We write �2

h
= {α1, . . . , αk} and �2

g = {α−
1 , . . . , α−

k } ∪ {α+
1 , . . . , α+

k } such that for all i =
1, . . . , k, ρ(α±

i ) = αi . By Lemma 4.4, there exist x1, . . . , xk ∈ K∗ such that for all i = 1, . . . , k,
hαi

= K.(Xα−
i

+ xiXα+
i
). Since Θ is surjective, there exists t ∈ T such that Θ(t) = (x1, . . . , xk).

By conjugating H by t , we obtain the claim.
Let i ∈ {1, . . . , k}. There exists y ∈ K∗ such that h−αi

= K.(Yα−
i

+ yYα+
i
). Since α−

i and α+
i

are orthogonal, ξ := [Xα−
i

+Xα+
i
, Yα−

i
+yYα+

i
] = Hα−

i
+yHα+

i
. But, ξ belongs to the Lie algebra

of T (H) = S, so (α−
i − α+

i )(ξ) = 0. We conclude that y = 1.
Finally, since h is generated as Lie algebra by the h±α for α ∈ �h; h is generated by

{Xα}α∈�1
g
∪ {Yα}α∈�1

g
∪ {Xα−

i
+ Xα+

i
}α∈�2

h
∪ {Yα−

i
+ Yα+

i
}α∈�2

h
.

In particular, h only depends on the pair (Dg, σh). �
4.2.1. The case when rk(H) = 2

Lemma 4.3 considers the case when rk(H) = 1. We now consider the case when rk(H) = 2:

Lemma 4.7. We assume that rk(H) = 2. Then, the possibilities for (Dg, σh) up to conjugacy by
an automorphism of Dg are:

(i) (Dh, Identity) obtained with G = H .
(ii) (Dh ∪ Dh,Exchange) obtained with H embedded diagonally in H × H .

(iii) Dg = A1 ∪ A1 ∪ A1 and σh exchanges the two first copies. This case corresponds to sl2 ×
sl2 → sl2 × sl2 × sl2, (ξ, η) �→ (ξ, ξ, η).
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(iv) Dg = A3 and σh fixes the central vertex and exchanges the two others; obtained with H =
PSp4 ⊂ G = PSL4:

Dg

Dh

(v) Dg = B3 and σh fixes the central vertex and exchanges the two others; obtained with G2 ⊂
SO7:

Dg

Dh

Proof. If φ2
h

is empty, the dimensions of g and h are equal and hence g = h. From now on, we

assume that φ2
h

is not empty. Since φ2
h

is stable by the action of the Weyl group WH of H , �2
h

is
nonempty.

By invariance by WH the possibilities for colored Dynkin diagrams of h are:

In each case, using the action of WH , one can determine φ1
h

and φ2
h

and thus, compute the

cardinality |φg| of φg which equals |φ1
h
| + 2|φ2

h
|. For example, assume that the colored Dynkin

diagram of h is the first one in the above list. Then, φ2
h

= φh. Then, the cardinality of φg is 8, and

g has rank 4. We deduce that g = sl42; and that, (Dg, σh) corresponds to the diagonal embedding
of (sl2)

2 in sl42.
In a similar way, one can check that the second case corresponds to sl2 × sl2 → sl2 × sl2 ×

sl2, (ξ, η) �→ (ξ, ξ, η).
Consider a remaining case. Since there is no nontrivial morphism from h to sl2, the group H

acts trivially on P1. Since H has an open orbit in B, this implies that P1 is not a factor of B. So,
Dg cannot have isolated vertex.

Consider now the third colored Dynkin diagram. The Dynkin diagram of g has 4 vertexes,
two over each vertex of Dh. Since |φg| = 2|φh| = 12, Dg cannot have a triple edge (G2 has 12
roots!). Assume now that Dg has a double edge. Since sp4 has 8 roots, Dg has no more edge;
which contradicts the fact the Dg have no isolated vertex. Finally, Dg has only simple edges.
Moreover, Lemma 4.3 shows that the two simple roots of g which map on a given simple root of
φ2

h
are orthogonal. This implies that (Dg, σh) is that of sl3 ⊂ sl3 × sl3.
In the remaining cases, h is either sp4 or G2. We claim that if g is not simple then h is

diagonally embedded in g = h × h. Assume that g = g1 × g2, with nontrivial g1 and g2. We
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Table 1

Case h Colored
Dynkin diagram
of h

(|φ1
h
|, |φ2

h
|) |φg| Dynkin diagram

of g

g

1 sp4 (4,4) 12 sl4

2 sp4 (4,4) 12 sl4

3 G2 (6,6) 18 so7

4 G2 (6,6) 18 so7

already seen that g1 and g2 cannot have rank one; we deduce that g1 and g2 have rank two.
By projection, one obtains two nontrivial (otherwise, H cannot act on B with an open orbit)
morphisms from h to g1 and g2. It follows that g1 � g2 � h. Finally, one easily checks that h is
diagonally embedded in h2.

From now on, we assume that g is simple; that is, that Dg is connected. The same arguments
(cardinality of φg and no edges between two vertexes mapped on one of Dh) as above allow to
show easily that the only possibilities for (Dg, Dh, ρ�) with h equals to sp4 or of type G2 are
those enumerated in Table 1.

Consider Case 1. Let α (resp. β) denote the short (resp. long) simple root of h. Set α◦ =
ρ−1

� (α). By Lemma 4.5, the short root α + β belongs to φ1
h

; we set (α + β)◦ = ρ−1
φ (α + β). So,

h2α+β = [hα,hα+β ] = [gα◦,g(α+β)◦ ] = gα◦+(α+β)◦ .

Now, Lemma 4.4 shows that 2α + β ∈ φ1
h

. With Lemma 4.5, this contradicts β ∈ φ2
h

.
By elimination, the inclusion of PSp4 in PSL4 corresponds to Case 2.
Consider Case 3. Let α (resp. β) denote the short (resp. long) simple root of h. By Lemma 4.5,

β + 2α belongs to φ1
h

. By the argument used in Case 1 before, one easily checks that β + 3α =
(β + 2α) + α belongs to φ1

h
. This contradicts Lemma 4.5, since β + 3α is a long root.

Case 4 corresponds to the inclusion of G2 in SO7. �
We may now assume that H is simple. Indeed, we have:
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Proposition 4.2. Let (G,H) be a spherical pair of minimal rank with G semisimple adjoint and
H connected. If H is not simple then there exist two spherical pairs (G1,H1) and (G2,H2) of
minimal rank such that G = G1 × G2 and H = H1 × H2.

Proof. By assumption, Dh is the disjoint union of two Dynkin diagrams D1 and D2. By Lem-
mas 4.7 and 4.1, for all α,β ∈ �g such that ρ(α) and ρ(β) are orthogonal, α and β are
orthogonal. We deduce that Dg is the disjoint union of ρ−1

� (D1) and ρ−1
� (D2). The proposition

follows. �
By Proposition 4.2, to classify all the spherical pairs (G,H) of minimal rank with G semisim-

ple adjoint and H semisimple, we may assume that H is simple. Theorem 1 stated in the
introduction lists all such spherical pairs. We can now prove this classification.

Proof of Theorem A. By Proposition 4.1, it is sufficient to classify the possible triples (Dg, σh),
up to conjugacy by an automorphism of Dg. By Lemma 4.7, we may assume that rk(H) � 3.
Moreover, we may assume that �2

h
is nonempty and different from �h. Let α ∈ �2

h
and β ∈ �1

h
.

By Lemma 4.7, either α and β are orthogonal or α is the short root joined to the long root β by
a double edge. One easily deduces that the colored Dynkin diagram of h is one of the following:

One easily deduces from Lemmas 4.1 and 4.7 than in the three preceding cases the Dynkin
diagram Dg is respectively:

The theorem follows. �
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