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Let f e C”+ ‘I - 1, l] and let H[ f I(x) be the nth degree weighted least squares 
polynomial approximation to f with respect to the orthonormal polynomials { qk) 
associated with a~distribution da on C-1, 11. It is shown that if llq,+llf/llq,/l > 

max(q,+I(lYq,(l), -qn+l(-ll)lq,,-ll)), then If--HCf II< bf@‘+l)ll+z,+lll/ 
1lqjl”+:“~/, where Ij.11 denotes the supremum norm. Furthermore, it is shown that in 
the case of Jacobi polynomials with distribution (1 -t)” (1 + t)D dt, LY, p> -1, the 
condition on lI~,+lll/lla,ll is satisfied when either max(a, /I)2 -l/2 or -1 <GI= 
p < -1/z. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let {qk} be the orthonormal polynomials associated with the dis- 
tribution da on the interval [ -1, 11. Let f~C”+r[-1, 11. The weighted 
least squares approximation to f is given by 

w2”l(x) = i %c(X) j’ &f(f) qdt) Mt). (l-1) 
k=O -1 

Brass [l] has shown that if the distribution dcl has the symmetry 
property that for all continuous functions g 

and if llqkll = q,(l), k= 0, 1, . . . . n+ 1, then a bound for the error, 
f(x) - H[ f](x), in this approximation is given by 

where II . II denotes the supremum norm on [ - 1, 11. 
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With regard to the distribution (1 - t)” (1 $1)$ dt, CI, /I > -1, an 
associated normalised Jacobi polynomials, the conditions required by 
are satisfied only if a = p > -l/2. 

Previously Paget [2] has given bounds of the form (1.2) in the Jacobi 
polynomial case for a, /3 such that either max(a, 8) 3 -l/2 or 
-1 <ol=fi< -l/2. 

It is the purpose of this present paper to show that the method of 
[ I] may be extended to include all those cases considered in Paget [Z]. 

2. THE THEOREM OF BRASS EXTENDED 

With the s-norm for functionals Q on C”[ - 1, 11 define 

llQlls= ,,;;P, IlQLflll 

and for x E [ - I, 1] the functional R, defined on C”’ ’ 

fxf1 =.0x) - Kfl(xh 

rass [I] has shown that 

IIR,lln+l~(n+P;g max(Il~,+,C,+~,~,+~ll., l/~n+iCn-qnCn+ilinjr 
n+l 

(2,3) 

where 6, > 0 is the coefficient of xk in qk(x), Ljk = jIqkll, an 
C, is defined on Cn[ - 1, l] by 

so that we need to consider polynomials of the form q*n + 1(t) - cq,(t) where 
c is a constant. 

THEQREM 2.1 (Szegii [3, p. 461). Let c be an arbitrary real co~~ta~t~ 
then the polynomial 

4n+ 1(t) - cq,(t) 



316 DAVID PAGET 

has n + 1 distinct real zeros. If c > 0 (c < 0) these zeros lie in ( - 1, 1) with 
the exception of the greatest (least) zero which lies in [ - 1, l] if and only if 

C~4n+l(l)h,(l) (C~qn+l(--)/qn(-l)). 

Using this result the theorem of Brass may be extended in the following 
way. 

THEOREM 2.2. rf q,,, qn + 1 are such that 

G+ 1/iL 2 max(q,+ 1(lY4n(l)y -4n+1(-1)/4n(-l)h (2.6) 

thenforfEC”+‘[-1, l] 

Ilf -HCf Ill G Ilf (n+l)ll II%l+111/l14~~11)ll. (2.7) 

ProoJ Consider the polynomial 

P,,(t)=q,+lq,(t)-&qF7+,(t). (2.8) 

By Theorem 2.1 p;+ 1 has n + 1 distinct zeros, n of which lie in (- 1, 1). If 
41n+1/~n=qn+1(1)/q,(1)then1i~azeroofp~+l.If~,+l/~,~q,+l(l)/q,(l) 
then the greatest zero of p;+ 1 is greater than 1. Thus we may write 

n+l 

P,I(t)= --4ndn+1 rl (t-Vk), 
k=l 

where 

-1<11<?,< ... <qn<ldqn+l. 

A similar argument using Theorem 2.1 with c < 0 yields 

(2.9) 

(2.10) 

n 

P,‘,I(t)=9n+1qn(t)+4nqn+I(t)=4nJn+1 kfjo tt-ikh t2.11) 

where 

co< -l<[,<[,< ‘.. <[,<l. (2.12) 

Again, following Brass, let L,- 1 [g] denote the (n - 1)th degree inter- 
polation polynomial coinciding with g at ql, q2, . . . . un. Then 

(4n+l G-GG+1 )Cgl= j:, g(t)P;+,(t)d@(t) 

1 
= s ~1 (g(t)--L,~,Cgl(t))p~+I(t)dcl(t) 

l s’“‘(W) n = s -1 n! ,v, ct - vk) .P, I(t) da(t), 
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where c(t)~ (-1, 1). From (2.9) and (2.10) we see that 
;1= I (t - qk) .p;+ I(t) does not change sign on [ - 1, 11. On applying the 

mean value theorem and using the orthogonality of (qk) we deduce that 

for some < E ( - 1, 1). Thus 

lllf .+lc,,-,ncn+llln=~. 
. n 

(2.13) 

Similarly, by constructing the interpolation po!ynomial to coinci 
g at Cl, 12, . . . . 5, (see (2.11), (2.12)) it may be shown that 

114 ,i+lcn+~ncn+lll~=~. (2.14) 
. n 

Then from (2.3), (2.13), and (2.14) we have that 

The result (2.7) then follows directly from Definitions (2.6) an 

We note that in this theorem the distribution symmetry condition of 
Brass’ theorem is not required and also that the maximum value of jqk(x)l 
in [ - 1, I] may be attained at an interior point provided that (2.6) is 
satisfied. 

3. APPLICATION TO JACOBI POLYNQMIALS 

We show that Condition (2.6) of Theorem 2.2 is satisfied by the nor- 
mahsed Jacobi polynomials provided that either max(a, /?) 2 -l/2 or 
- 1 < CI = fi < -i/2. This result shows that Theorem 2.2 is a significant 
extension of the theorem of Brass [l] which, for the Jacobi 
only covers the case CI = fi > -l/2. 

The distribution being considered is (1 - t)” (1 + t)B dt with LX, ,8 > - 1, 
and the associated orthonormal polynmials are 

qk(t) = h,“Vy-B’(r), (3,f) 

where 

hk = j1 (Pjyyt))* (1 - t)” (1 + t)P df. 
-1 



318 DAVID PAGET 

For all LX, p > -1 we have that 

s,+1(1) h, “‘P$Pj(l) h, 1’2n+1+a -= - 
( 1 

-= - 
qn(l) kz,l ( 1 Plp,P’(l) h,+i n+l 

and 

1’2 Pp;Dj(-l)= h, 
(3 

‘j2n+1+/? 
P$B’(-l) h,,, n+l ’ 

Therefore 

max 4n+l(l) 
( 

4n+1(-1) ‘I2 n + 1 + max(a, /I) 

4,0’- q&-1) )=(k) n+l 
. (3.3) 

Cuse 1. max(a, fi) > -l/2. From Szegii [3, p. 1681 we have that 

‘I2 n + 1 + max(a, /I) 
n+l * (3.4) 

Thus from (3.3) and (3.4) we see Condition (2.6) is satisfied. 

Case 2. - 1 < CI = /I < -l/2. This case is more complicated because we 
have no precise expression for qk when k is odd. 

For k even we have the expression (see [3, p. 1711) 

qk = h,lj2 Ip~“‘(O)l = h;1’2T(k+.+ 1) 
2k(k/2)! T((k/2) + CI + 1)’ 

k even. (3.5) 

For k odd we note that Pj$“) is an odd function and Pp.*‘(O) = 0. We use 
a particular case of Sonin’s theorem ([3, p. 1661) and an adaptation of it. 

Let g be defined by 

g(x) = (P!y)(X))’ + ,,,:-,;+ 1) (2 W~aV4)2~ (3.6) 

Using the differential equation for Pp”) we have 

2(2L% + 1) 
g’(x)=k(k+2cc+ 1) (3.7) 

Since 21x + 1 < 0 we see that g is non-decreasing in (- 1,0) and non- 
increasing in (0, 1). It follows that IP, (“,“)(x)l achieves its maximum value at 
+x,*, the two stationary points of P p”) closest to zero. Since g(xk*) <g(O), 

IPP”’ (x:)1 <(k(k+2a+ l))-“’ IPjy”(O)l. (3.8) 
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Let h be defined by 

h(x) = (1 - x2p+ l g(x). 

Then using (3.6) and (3.7) we have that 

h’(x) = -2(2a + 1) x( 1 - x2p (Pp”‘(x))*. 

We see that h is non-increasing in ( - 1,O) an eon-decreasing in (0, 1). 
Thus h(xz) >/z(O) and 

IP~~*;(x;)/ > (k(k+2a+ l))-“* (1 -.x;~)--(~+~‘~’ 1 

From (3.8) and (3.11) we have, for k odd, 

IPjy”(O)l 
IW”‘(xk*)l =Dfc (k(k+ 2@ + 1))‘,2 

=W 
(k+2ct+1)1’2~(k+ol+1) 

k k”22k((k - 1)/2)! T((k/2) + M $ (3/2))’ 
(3.12) 

where 

FrOhn 

(1 -xp- !a + WI < w, < 1. 

(3.5) and (3.12) it follows that 

(3.13) 

if n is even, 

if II is odd, 

(3.14) 

with bounds for D,, D,, 1 given by (3.13). 
Recalling that 2a+ I-CO, we see from (3.3), (3.13), and (3.14) that for n 

odd 

4 ntl h 

-4 > g?l ‘h,_, 

Ii2 n + cI + 1 tL,l(lS &+1(-~) 
n+l 

so that the Condition (2.6) is satisfied. 
For n even we need to look closer at W, + 1. Since 
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the n stationary points of Pr;*j are precisely the n zeros of P1p+ l.Ol+ I). Thus 
we may take x,*+~ to be the smallest positive zero of Pp+ lxa+ l). From 
[3, p. 1391 we have 

xx+ I< cos 
(n+cr+(1/2))n . n 71 
2(n + a + (3/2)) =Sm2n+2a+3<2n+2a+3’ 

Thus 
2 

I-x;:,>1- 
(2n+;a+3)2’ 

Now, for 0 <a, b < 1 it may be shown that 

ab 
(1 -a)“> l-- 

l-a’ 

Therefore, since 0 < -(2a + 1) < 1, 

R+1 >(1--&-m+u 
7L2 -((Za+ 1) 

‘-(2n+2~+3)~ 

(2a+ 1)7c2 
‘1+(2n+2a+3)2-~2 

n+2a+2 
> 

n+l ’ 
provided n B 4. 

The proviso for this last inequality is algebraically obtained as 

n> max ((1/8)(n2-12-8a)+(~/8)(n2+8-16a)”2)>3.019. 
-1<a< -t/2 

For n= 2 the maximum value of Pp”) can be evaluated 
(P$9(2a + 5)-“2) = (1/6)(a + 2)(1x + 3)(2a + 5)-‘12) so that from (3.12) 

D2’ 8(a+2) ,2~+4 
3 3(201+5) --?----’ 

the inequality being valid for - 1 < c1< -l/2. 
Thus for all even integers n we have 

so that from (3.14) and (3.3) it follows that Condition (2.6) is satisfied. 
This completes case 2. 
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