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Abstract

In this paper we study the existence of a first zero and the oscillatory behavior of solutions of the ordi-
nary differential equation (vz′)′ + Avz = 0, where A, v are functions arising from geometry. In particular,
we introduce a new technique to estimate the distance between two consecutive zeros. These results are
applied in the setting of complete Riemannian manifolds: in particular, we prove index bounds for certain
Schrödinger operators, and an estimate of the growth of the spectral radius of the Laplacian outside compact
sets when the volume growth is faster than exponential. Applications to the geometry of complete minimal
hypersurfaces of Euclidean space, to minimal surfaces and to the Yamabe problem are discussed.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Radialization techniques are a powerful tool in investigating complete Riemannian manifolds.
In favourable circumstances these lead to the study of an ordinary differential equation in order to
control the solutions of a given partial differential equation. In this respect, one of the challenging
problems involved is the study of the sign of the solutions of the ODE, and the positioning of the
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possible zeros. In this paper we determine some conditions ensuring the oscillatory behavior, the
existence of zeros and their positioning, of a solution z(t) of the following Cauchy problem:{(

v(t)z′(t)
)′ + A(t)v(t)z(t) = 0 on (0,+∞),

z′(t) = O(1) as t ↓ 0+, z(0+) = z0 > 0,
(1.1)

where v(t),A(t) are non-negative functions. The application of these results to the geometric
problems we shall consider below leads us to assume the following structural conditions:

A(t) ∈ L∞
loc([0,+∞)), A(t) � 0, A(t) �≡ 0,

0 � v(t) ∈ L∞
loc([0,+∞)), 1/v(t) ∈ L∞

loc((0,+∞)),

v(t) is non-decreasing near 0 and lim
t→0+ v(t) = 0.

Of course, requests A,v � 0, A �≡ 0 are intended in L∞
loc sense, while the last request means that

there exists a version of v(t) which is non-decreasing in a neighborhood of zero and whose limit
as t → 0+ is equal to zero.

Due to the weak regularity of v and A, solutions z(t) of (1.1) are not expected to be classical,
and the Cauchy problem is expected to hold almost everywhere (a.e.) on (0,+∞). Equivalently
(integrating and using the condition in zero), we are interested in solutions z(t) of the integral
equation

z(t) = z0 −
t∫

0

1

v(s)

{ s∫
0

A(x)v(x)z(x) dx

}
ds.

For our purposes we shall look for z(t) ∈ Liploc([0,+∞)), that is, locally Lipschitz solutions.
Note that the locally Lipschitz condition near zero ensures that z′(t) = O(1) hold almost every-
where in a neighborhood of zero. The existence of such solutions in our assumptions will be
given in Appendix, where we will also prove that the zeros of z(t), if any, are attained at isolated
points.

The Cauchy problem (1.1) is a somewhat “integrated" version of that presented in [2], in the
sense that, as we shall see, in the geometric applications the role of v(t) will be played by the
volume growth of geodesic spheres of some complete Riemannian manifold M , and A(t) will
represent the spherical mean of some given function a(x). However, the techniques introduced
here are completely different from those in [2], and remind some in the work of Do Carmo and
Zhou [8].

Nevertheless, as in [2], we recognize an explicit critical function χ(t), depending only on v(t),
which serves as a border line for the behavior of z(t): roughly speaking, if A(t) is much greater
than χ(t) in some region, then z(t) has a first zero, while if A(t) is not greater than χ(t) there are
examples of positive solutions. We will see that χ(t) generalizes the critical functions presented
in [2].

Using χ(t) we will provide a condition in finite form for the existence and localization of
a first zero of z(t) (Corollary 2.3), and a sharp condition for the oscillatory behavior (Corol-
lary 2.4). In particular, this latter Corollary improves on the application of the Hille–Nehari
oscillation theorem (see [10]) to (1.1).
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The key technical result of the paper is Theorem 4.1 which, under very general assumptions,
estimates the distance between two consecutive zeros of an oscillatory solution of (1.1): denoting
with T1(τ ) < T2(τ ) the first two consecutive zeros of z(t) after t = τ , Theorem 4.1 states that

T2(τ ) − T1(τ ) = O(τ) as τ → +∞.

This result is achieved using a new but elementary technique which highly improves on the
application of Sturm’s type arguments to (1.1). Roughly speaking, the estimate will be obtained
performing a careful control on the level sets of the solution of the Riccati equation associated
to (1.1). Moreover, in case

v(t) � f (t) = Λ exp
{
atα logβ t

}
, Λ,a,α > 0, β � 0,

we provide an upper estimate for

lim sup
τ→+∞

T2(τ )

τ

with an explicit constant depending only on α and the growth of A(t) with respect to χ(t) (more
precisely, with respect to a critical curve χf (t) modelled on f (t) instead of v(t)).

There are several geometric applications of the above results; the main idea is that (1.1) natu-
rally appears in spectral estimates. We will follow two slightly different ways. On the one hand,
we will provide an index estimate for Schrödinger type operators L = � + a(x), while, on the
other hand, we will bound from above the growth of the spectral radius of the Laplacian outside
geodesic balls, even when the volume growth of the manifold is faster than exponential. Appli-
cations naturally arise in the setting of minimal hypersurfaces of Euclidean space, their Gauss
map, minimal surfaces and the Yamabe problem. We state these geometric results in the next
subsections.

1.1. The geometric setting

From now on, we let (M, 〈,〉) denote a connected, geodesically complete, non-compact Rie-
mannian manifold of dimension m � 2. Fix an origin o ∈ M and let r(x) = dist(x, o) be the
distance function from o. It is well known that r(x) is a Lipschitz function on M which is
smooth outside o and its cut-locus cut(o). For later use we briefly recall some basic facts on
the cut-locus in case M is geodesically complete; the interested reader can consult, for instance
[21, pp. 267–275].

Denote with exp the exponential map

exp : ToM → M,

which, by the Hopf–Rinow theorem, is surjective and defined on the whole ToM . The origin o

is called a pole of M if it has no conjugate points; for example, this is the case if the sectional
curvature of M is non-positive. It turns out that, if o is a pole, exp is a covering map, hence a
diffeomorphism if M is simply connected. For every w ∈ ToM such that |w| = 1, we indicate
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with γw : [0,+∞) → M the geodesic ray starting from o with velocity 1 in the direction of w,
and we consider

tw = sup
{
s ∈ [0,+∞) such that r

(
γw(s)

)= s
}
.

Clearly, tw > 0 because of the existence of geodesic neighborhoods. If tw < +∞, we define the
cut-point of o along γw as γw(tw). The cut-locus of o is defined as the union of the cut-points
of o along every geodesic ray. In other words, cut(o) = exp(Σ), where

Σ = {
tw ∈ ToM: |w| = 1 and t = tw < +∞}

.

It is easy to see that, if r(γw(s)) = s for some s > 0, then the same equality holds for every
t ∈ [0, s). Therefore, if tw < +∞ then γw is length minimizing for every t ∈ (0, tw] and it does
not minimize length for any t ∈ (tw,+∞). By the Hopf–Rinow theorem we argue that the expo-
nential map restricted to the set U ∪ Σ , where

U = {
tw ∈ ToM: |w| = 1 and t < tw

}
is still surjective, hence exp(U ) = M \ cut(o) = cut(o)c. One can prove that

– cut(o) is a zero measure, closed subset of M , hence U = exp−1{cut(o)c} is open in ToM .
– M is compact if and only if, for every w ∈ ToM , tw < +∞.
– p ∈ cut(o) if and only if either it is a conjugate point of o, or there exist at least 2 distinct

geodesics joining o to p with the same length. The two possibilities do not reciprocally
exclude.

– For every q ∈ exp(U ), there exists a unique minimizing geodesic from o to q . In other words,
exp : U → cut(o)c is a bijection (indeed, a diffeomorphism).

We indicate with Br the geodesic ball of radius r centered at o, with ∂Br its boundary and we
call ∂Br ∩ cut(o)c the regular part of ∂Br . The regular part of ∂Br is an open set in the induced
topology on ∂Br , and ∂Br ∩ cut(o)c is diffeomorphic, through the exponential map, to the set
U ∩ Sm−1(r), where Sm−1(r) is the hypersphere

Sm−1(r) = {
w ∈ ToM: |w| = r

}
.

We denote with Vol(∂Br) the (m−1)-dimensional volume of ∂Br , that is, the Hausdorff measure
of ∂Br . It turns out that it coincides with the induced Riemannian measure when restricted to the
regular part of ∂Br . The points of ∂Br ∩ cut(o) may be image of many points of Σ ∩ Sm−1(r).
For this reason, indicating with θ a point of the unit sphere Sm−1 = Sm−1(1) ⊂ ToM , we define
the multiplicity function

nr(θ) = cardinality of
{
ϕ ∈ Sm−1: exp(rθ) = exp(rϕ)

}
� +∞.
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This coincides with the number of distinct minimizing geodesic segments joining o to q =
exp(rθ), which, analogously, we denote with nr(q). According to the work of Grimaldi and
Pansu [18], if we set

χr(θ) =
⎧⎨⎩

1 if r < tθ ,

1/nr(θ) if r = tθ ,

0 if r > tθ ,

and χr±(θ) = lim
t→r± χt (θ),

then the Hausdorff measure of ∂Br is given by

Vol(∂Br) =
∫

Sm−1

Θ(r, θ)χr (θ) dθ,

where Θ(r, θ) is the density of the Riemannian measure. Moreover, by the dominated conver-
gence theorem,

lim
t→r± Vol(∂Bt ) =

∫
Sm−1

Θ(r, θ)χr±(θ) dθ.

Therefore, in general circumstances Vol(∂Br) may present discontinuities of the “first kind,” that
is, at a point r > 0 we always have the existence of finite limits both from the right and from the
left, possibly with two different values. Indeed, setting v(r) = Vol(∂Br), it is shown in [18] that
for every complete Riemannian manifold

v
(
r+)− v(r−) = −2 Vol

(
∂Br ∩ cut(o)

)
.

The key ingredient of their proof is a technical lemma which shows that, up to a set of (m − 1)-
dimensional measure zero, ∂Br ∩ cut(o) is made up of points having exactly 2 distinct geodesics
which minimize distance from o. Observe that v(t) jumps downward and that, a priori, the dis-
continuities of v(t) may be non-isolated. Note also that, from the definition of χr(θ), we get

χr+(θ) =
⎧⎨⎩

1 if r < tθ ,

0 if r = tθ ,

0 if r > tθ ,

χr−(θ) =
⎧⎨⎩

1 if r < tθ ,

1 if r = tθ ,

0 if r > tθ ,

hence from χr+ � χr � χr− we deduce that v(t) ∈ [v+(t), v−(t)]. Therefore, a necessary and
sufficient condition on Vol(∂Br) to be continuous on [0,+∞) is given by the “transversality
condition”

Vol
(
∂Br ∩ cut(o)

)= 0 ∀r � 0.

However, this reasonable request sometimes is not easy to verify. This is the case, for example,
when one constructs manifolds as immersed submanifolds of some ambient space. This suggests
to work with discontinuous volume functions Vol(∂Br) which will take the role of v in (1.1). The
next result will reveal important in what follows.
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Proposition 1.2. Let v(r) = Vol(∂Br) be the volume of geodesic spheres of a connected, com-
plete, non-compact Riemannian manifold. Then v(r) is continuous and increasing in a neighbor-
hood of r = 0. Furthermore,

v(r) = v(r+) + v(r−)

2
, v(r) > 0 for r > 0,

1

v(r)
∈ L∞

loc((0,+∞)). (1.2)

Proof. The first part is immediate using polar coordinates around zero. As for the first property
in (1.2), we denote with V = {w ∈ Sm−1: rw ∈ U } and with W = {w ∈ Sm−1: rw ∈ Σ}. Since
rV = Sm−1(r) ∩ U is open, then V is an open set of Sm−1. In polar coordinates

v(r) =
∫

Sm−1

Θ(r, θ)χr(θ) dθ ≡
∫

V

Θ(r, θ) dθ +
∫

W

Θ(r, θ)
1

nr(θ)
dθ

= Vol
(
∂Br ∩ cut(o)c

)+ Vol
(
∂Br ∩ cut(o)

)
,

v
(
r+)=

∫
Sm−1

Θ(r, θ)χr+(θ) dθ ≡
∫

V

Θ(r, θ) dθ = Vol
(
∂Br ∩ cut(o)c

)
,

v
(
r−)=

∫
Sm−1

Θ(r, θ)χr−(θ) dθ ≡
∫

V

Θ(r, θ) dθ +
∫

W

Θ(r, θ) dθ

= Vol
(
∂Br ∩ cut(o)c

)+
∫

∂Br∩cut(o)

nr (x) dσ (x).

By the Grimaldi–Pansu lemma [18], up to a set of (m − 1)-dimensional measure zero, the
multiplicity nr(x) is equal to 2. Therefore, by the above expressions is immediate to deduce
that v(r+) + v(r−) = 2v(r). We observe now that if we prove that 1/v ∈ L∞

loc((0,+∞)), then
v(r) > 0 on (0,+∞). Indeed, assume v(r0) = 0 for some r0 ∈ (0,+∞). Then necessarily
v(r+

0 ) = 0, v(r−
0 ) = 2v(r0)−v(r+

0 ) = 0 and 1/v is unbounded in a neighborhood of r0. It remains
to prove that 1/v ∈ L∞

loc((0,+∞)), that is, v(r) is bounded away from zero on every compact set
K disjoint from r = 0. Assume by contradiction that there exists {rk} ⊂ K such that v(rk) → 0.
By compactness, there exists r̃ ∈ K such that rk → r̃ . Up to passing to a subsequence we have
two cases: rk ↑ r̃ or rk ↓ r̃ . In the first case v(r̃−) = 0, in the second v(r̃+) = 0. However, since
v jumps downward, in both cases v(r̃+) = 0. We are going to show that

∂Br̃ ⊆ cut(o). (1.3)

Indeed, let (1.3) be false, and let q ∈ ∂Br̃ ∩ cut(o)c. Since exp is a diffeomorphism in a neigh-
borhood of q , we can choose a unique θ0 ∈ V such that q = exp(r̃θ0). Moreover, since U is open,
from r̃θ0 ∈ U we can chose a neighborhood J with compact closure in U of the form

J = {
rθ : r ∈ (r̃ − 2ε, r̃ + 2ε), θ ∈ Vθ

}
,
0
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where ε > 0 is sufficiently small and Vθ0 is a neighborhood of θ0 on the unit sphere Sm−1,
independent from ε. Since the Riemannian density Θ is smooth and positive, there exists C > 0
independent of ε such that Θ(r, θ) � C on J . It follows that

v(r̃ + ε) =
∫

Sm−1

Θ(r̃ + ε, θ)χr̃+ε(θ) dθ �
∫

Vθ0

C dθ = C VolEucl(Vθ0) ∀ε.

This contradicts v(r̃+) = 0 and proves (1.3). By (1.3) we deduce that, for every geodesic ray
γw starting from o, there exists tw � r such that γw(tw) ∈ cut(o). Therefore, M is compact with
diameter � 2r , against our assumptions. �

Let s(x) be the scalar curvature of (M, 〈,〉). The previous proposition enables us to define the
spherical mean

S(r) = 1

Vol(∂Br)

∫
∂Br

s

on the whole (0,+∞). S(r) is continuous in a neighborhood of zero with limr→0+ S(r) = s(o),
and possesses at least the same regularity as Vol(∂Br). In case (Vol(∂Br))

−1 ∈ L1(+∞) we
define the critical function

χ(r) =
(

2 Vol(∂Br)

+∞∫
r

ds

Vol(∂Bs)

)−2

∈ L∞
loc((0,+∞)), (1.4)

that we shall consider below.
Since in the sequel we will be concerned with spectral arguments, we briefly recall some def-

initions. Let � denote the Laplace–Beltrami operator on M , and consider a differential operator
L = �+a(x), where a(x) ∈ C0(M), and a bounded domain Ω ⊂ M . The kth eigenvalue λL

k (Ω),
of L on Ω (counted with its multiplicity) is defined by Rayleigh characterization:

λL
k (Ω) = inf

Vk�C∞
0 (Ω)

dim(Vk)=k

(
sup

0�=φ∈Vk

∫
Ω

|∇φ|2 − ∫
Ω

aφ2∫
Ω

φ2

)
, (1.5)

where we can substitute C∞
0 (Ω) with Lip0(Ω). If Ω has sufficiently regular boundary, λL

1 (Ω)

is achieved by the non-zero solutions of the Dirichlet problem{
Lu + λL

1 (Ω)u = 0 on Ω,

u ≡ 0 on ∂Ω.
(1.6)

Note that L is non-positive on C∞
0 (Ω) if and only if λL

1 (Ω) � 0. The main example of a non-
positive operator on every Ω is the Laplacian itself.

We define the index indL(Ω) as the number of negative eigenvalues of −L. By Rellich theo-
rem, this number is finite. Indeed, using Rayleigh characterization

λL(Ω) � λ�(Ω) − ‖a‖L∞(Ω),
k k
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therefore L̃ = L − ‖a‖L∞(Ω) is strictly non-positive on C∞
0 (Ω), hence it is invertible. The

Friedrich extension of (−L̃)−1 : L2(Ω) → L2(Ω) is a compact operator, so that its spectrum
consists in a discrete sequence {λj } of eigenvalues, each of them with finite multiplicity. It fol-
lows that the spectrum of −L is {λj − ‖a‖L∞(Ω)}, and indL(Ω) is clearly finite. The bottom of
the spectrum of L on M , also called the first eigenvalue or the spectral radius, λL

1 (M), is defined
by

λL
1 (M) = inf

{
λL

1 (Ω): Ω ⊂ M is a bounded domain
}
. (1.7)

Let Z ⊂ M be a subset. We define the first eigenvalue of L on the “punctured” manifold M \ Z

by

λL
1 (M \ Z) = inf

{
λL

1 (Ω): Ω ⊂ M \ Z is a bounded domain
}
. (1.8)

Similarly, the index of L on M is defined by

indL(M) = sup
{
indL(Ω): Ω ⊂ M is a bounded domain

}
and it may be infinite. Note that indL(M) = 0 if and only if λL

1 (M) � 0.

1.3. Spectral estimates: the two main results

The first theorem deals with the index of L.

Theorem 1.4. Let a(x) ∈ C0(M). Suppose that the spherical mean A(r) of a(x) is non-negative
and not identically null. Consider the following assumptions:

(i) either (
Vol(∂Br)

)−1
/∈ L1(+∞)

or (Vol(∂Br))
−1 ∈ L1(+∞) and there exist 0 < R0 < R1 such that A(r) �≡ 0 on [0,R0] and

R1∫
R0

(√
A(s) −√

χ(s)
)
ds > −1

2

(
log

∫
BR0

a + log

+∞∫
R0

ds

Vol(∂Bs)

)
; (1.9)

(ii) either (
Vol(∂Br)

)−1
/∈ L1(+∞), a(x) /∈ L1(M) (1.10)

or

(
Vol(∂Br)

)−1 ∈ L1(+∞), lim sup
r→+∞

r∫
R

(√
A(s) −√

χ(s)
)
ds = +∞ (1.11)

for some R sufficiently large;
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(iii) (Vol(∂Br))
−1 ∈ L1(+∞),

Vol(∂Br) � Λ exp
{
arα logβ r

}
for some Λ,a,α > 0, β � 0,

and for some R > 0, c > 1,

√
A(r) � c

(
aα

2

)
rα−1 logβ r ∀r � R. (1.12)

Let L = � + a(x). Then

– under assumption (i), λL
1 (M) < 0;

– under assumption (ii), L is unstable at infinity, that is, λL
1 (M \ BR) < 0 for every R > 0. In

particular, L has infinite index;
– under assumption (iii), L is unstable at infinity and

lim inf
r→+∞

indL(Br)

log r
� α

2 log( c+1
c−1 )

. (1.13)

We observe that (1.11) and (1.12) are conditions “at infinity” and they are typical of oscillation
results. On the other hand, condition (1.9) deserves some special attention since it is in finite
form, in the sense that it only involves the behavior of a(x) on a compact set, namely BR1 : the
left-hand side states how much must a(x) exceed the critical curve on the compact annular region
BR1 \BR0 in order to have a negative spectral radius, and it only depends on the behavior of a(x)

near zero (on BR0 ) and on the geometry at infinity of M . Note also that R1 does not appear in
the right-hand side of (1.9).

Remark 1.5. By a famous result of Fisher-Colbrie [14], condition IndL(M) < ∞ implies the
stability at infinity (that is, λL

1 (M \BR) � 0 for some R � 0). As far as we know, it is yet an open
problem to prove the converse, or to provide an explicit counterexample. However, we remark
that a sufficient condition to have finite index is that the strict inequality λL

1 (M \ BR) > 0 hold
for some R. For a detailed account of spectral theory for Schrödinger operators on Riemannian
manifolds we refer the reader to [5].

The second result can be probably regarded as the core of the paper: it provides a sharp upper
bound for the growth of λ�

1 (M \ BR) as a (monotone) function of R. In the literature, bounds
for the spectral radius on M are obtained under at most exponential volume growth of geodesic
spheres. On the contrary, Theorem 1.6 works also with faster volume growths. To better appre-
ciate the result that we shall introduce below, we begin with some preliminary considerations.

It is well known that, if Z is any compact subset of Rm, then λ�
1 (Rm \ Z) = 0. Extending a

result of Cheng and Yau [12], Brooks [13] has shown that if the manifold (M, 〈,〉) has at most
sub-exponential volume growth then λ�

1 (M) = 0. However, if we puncture the manifold by a
compact set Z �= ∅, contrary to the case of Rm, it may happen that λ�

1 (M \ Z) �= 0. Indeed, Do
Carmo and Zhou, [8], give an example where Vol(M) < +∞ and

λ�
1 (M \ B1) � 1

.

4
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Moreover, up to the missing requirement of continuity of Vol(∂Br), they prove (see also [13],
where slightly more general results are proved by a different method) that in case M has infinite
volume,

– if M has sub-exponential volume growth of geodesic spheres, then

λ�
1 (M \ BR) = 0 ∀R � 0; (1.14)

– if Vol(∂Br) � C ear for some C,a > 0, then

λ�
1 (M \ BR) � a2

4
∀R � 0. (1.15)

It is interesting to see what happens when the volume growth is faster than exponential. Towards
this aim, we extend Do Carmo and Zhou’s example to grasp the situation a step further. Thus we
consider the model, in the sense of Greene and Wu, (M,ds2) = (Rm,ds2), with metric given in
polar coordinates by

ds2 = dr2 + h(r)2 dθ2, (1.16)

where h ∈ C∞([0,+∞)) is positive on (0,+∞) and satisfies

h(r) =
{

r on [0,1],
exp

{
arα

m−1

}
on [2,+∞)

(1.17)

for some a > 0, α � 1. Note that (1.16) extends smoothly at the origin because of the definition
of h near 0, and that, for r � 2, Vol(∂Br) = exp{arα}. We let b ∈ (0, a) and set

ub(x) = e−br(x)α on M \ B2. (1.18)

A simple checking shows that

�ub + λb(r)ub = 0 on M \ B2,

where λb(r) is defined as

λb(r) = α2b(a − b)r2(α−1) + α(α − 1)brα−2. (1.19)

Observe that, in case α = 1, λb(r) ≡ b(a − b), while, if α > 1, λb(r) is strictly increasing on
(R0,+∞), with R0 sufficiently large that

2α(a − b)Rα
0 + (α − 2) > 0.

Up to further enlarging R0, we can also assume that

α − 1 1
<

a
for r � R0. (1.20)
2α rα 2
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Applying a result of Cheng and Yau, [12] we have that, for every b ∈ (0, a), R � R0,

λ�
1 (M \ BR) � inf

M\BR

−�ub

ub

= inf[R,+∞)
λb(r) = λb(R).

The choice

b̃ = a

2
+ α − 1

2α

1

Rα

maximize λb(R) and b̃ ∈ (0, a) because of (1.20). Then, for R � R0,

λ�
1 (M \ BR) � α2

(
a2

4
− (α − 1)2

4α2

1

R2α

)
R2(α−1). (1.21)

Note that for α = 1 the above reduces to

λ�
1 (M \ BR) � a2

4
.

In particular, this shows that the upper bound in Theorem 3.1 in [8] is sharp. This example, for
Vol(∂Br) � Cearα

, C,a > 0, α � 1, suggests to look for an upper bound of λ�
1 (M \ BR) of the

form

C1R
2(α−1)

with C1 = C1 (a,α) > 0. The guess is indeed correct, as Theorem 1.6 shows.

Theorem 1.6. If M is a connected, complete, non-compact Riemannian manifold such that(
Vol(∂Br)

)−1 ∈ L1(+∞), Vol(∂Br) � Λ exp
[
arα logβ r

]
for r large,

for some Λ,a,α > 0, β � 0, the following estimates hold:

– If 0 < α < 1, then

λ�
1 (M \ BR) = 0 ∀R � 0.

– If α � 1, then

lim sup
R→+∞

(
λ�

1 (M \ BR)

R2(α−1) log2β R

)
� a2α2

4
inf

c∈(1,+∞)

{
c2
(

c + 1

c − 1

) 4(α−1)
α

}
. (1.22)

Remark 1.7. Note that (Vol(∂Br))
−1 ∈ L1(+∞) implies Vol(M) = ∞. This follows from

Schwarz inequality

R∫
r

ds

Vol(∂Bs)

R∫
r

Vol(∂Bs) ds � (R − r)2

letting R → +∞.
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We stress that the hypothesis Vol(M) = ∞ is essential. In fact, Do Carmo and Zhou example
quoted above shows that the theorem fails if Vol(M) < ∞. On the contrary, the stronger assump-
tion (Vol(∂Br))

−1 ∈ L1(+∞) is for convenience: if it fails, we will show in Lemma 5.13 that
λ�

1 (M \ BR) = 0 for every R � 0. We underline that in Theorem 1.6 we have been considering
volume growth assumptions, which are weaker and more general than the usual curvature con-
ditions used in estimating λ�

1 (M) (see for instance [15]). It is also worth mentioning that the
problem of estimating λ�

1 (M \ BR) from above arises naturally in the study of unstable hyper-
surfaces with constant mean curvature: see for example [8] for details and further references.

1.8. Geometric consequences

The first geometric consequence is the following density theorem for complete minimally
immersed hypersurfaces of Euclidean space.

Theorem 1.9. Let ϕ : M → Rm+1 be a minimal hypersurface. We identify TxM with ϕ∗TxM

viewed as an affine hyperplane in Rm+1 passing through ϕ(x). Assume that(
Vol(∂Br)

)−1
/∈ L1(+∞), s(x) /∈ L1(M) (1.23)

or that (
Vol(∂Br)

)−1 ∈ L1(+∞), Vol(∂Br) � Λ exp
{
rα
}
, (1.24)

S(r) � − C

rμ
(1.25)

for r � 1 and some constants C,Λ,α > 0, μ ∈ R, with

2α < 2 − μ. (1.26)

Then, for every compact set Ω ⊆ M ⋃
x∈M\Ω

TxM ≡ Rm+1. (1.27)

We note that Halpern [6] has proved that, when the hypersurface is compact and orientable,⋃
x∈M TxM �≡ Rm+1 if and only if M is embedded as the boundary of an open star-shaped

domain of Rm+1. In case M is non-compact there are many examples with
⋃

x∈M TxM �≡ Rm+1,
for instance cylinders over suitable curves. However, in case m = 2 complete minimal surfaces
in R3 for which

⋃
x∈M TxM �≡ R3 are planes: this has been proved by Hasanis and Koutroufiotis

in [9].
In an analogous way, we prove the following result.

Theorem 1.10. Let ϕ : M → Rm+1 be a connected, complete non-compact minimal hypersurface
in Rm+1. Assume that either(

Vol(∂Br)
)−1

/∈ L1(+∞), s(x) /∈ L1(M) (1.28)
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or that, for some C,Λ,α > 0, μ ∈ R,(
Vol(∂Br)

)−1 ∈ L1(+∞), Vol(∂Br) � Λ exp
{
rα
}
,

S(r) � − C

rμ
and 2α < 2 − μ. (1.29)

Fix an equator E in Sm. Then the spherical Gauss map ν meets E infinitely many times along a
divergent sequence in M .

Note that we have not assumed the orientability of M ; hence, the spherical Gauss map is
only locally defined. However, due to the central symmetry of the equators, the conclusion of the
theorem does not depend on the chosen local orientation: if ν(x) ∈ E, then also −ν(x) ∈ E.

As a third consequence of Theorem 1.4, we have the following result of Fisher-Colbrie [14]
and Gulliver [19].

Theorem 1.11. Let N be a flat 3-manifold, and let ϕ : M → N be a simply connected, minimally
immersed surface. We denote with K the (necessarily non-positive) sectional curvature of M .

Consider the stability operator L = � + |II|2. If M is stable at infinity (in particular, if
IndL(M) < ∞), then M is parabolic and∫

M

|K| < +∞. (1.30)

With the same technique, we recover a well-known result of Do Carmo and Peng [16], Fisher-
Colbrie and Schoen [1] and Pogorelov [17].

Corollary 1.12. Let ϕ : M → R3 be a minimally immersed surface. If M is stable, then M is
totally geodesic (hence, an affine plane).

The last geometrical application employs directly Theorem 1.4, together with Theorems 2.4
and 2.1 of [4], to yield the following existence result for the Yamabe problem which requires no
assumptions on the Ricci curvature.

Theorem 1.13. Suppose that the dimension of M is m � 3 and that the spherical mean S(r)

satisfies

S(r) � 0 on [0,+∞), S �≡ 0.

Let k(x) ∈ C∞(M) be non-positive on M and strictly negative outside a compact set. Set
K0 = k−1{0} and, for

L = � − 1

cm

s(x) where cm = 4(m − 1)

m − 2
,

define λL
1 (K0) = supD λL

1 (D), where D varies among all open sets with smooth boundary con-
taining K0. Suppose

λL(K0) > 0.
1
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Assume that either (Vol(∂Br))
−1 /∈ L1(+∞) or otherwise that there exists 0 < R0 < R1 such

that S �≡ 0 on [0,R0] and

R1∫
R0

(√ |S(t)|
cm

−√
χ(t)

)
dt > −1

2

(
log

∫
BR0

|s(x)|
cm

+ log

+∞∫
R0

dt

Vol(∂Bt )

)
. (1.31)

Then, the metric 〈,〉 can be conformally deformed to a new metric of scalar curvature k(x).

As the discussion after Theorem 1.4 suggests, this latter result implies that a strongly nega-
tive scalar curvature on a compact region Ω gives the existence of the conformal deformation
independently of the behavior of s(x) outside Ω .

2. Existence of a first zero and oscillations

Fix R ∈ (0,+∞] (note that the value +∞ is allowed), and consider the following set of
assumptions:

(A1) 0 � A(t) ∈ L∞
loc([0,R)), A �≡ 0 in L∞

loc sense;

(V1) 0 � v(t) ∈ L∞
loc([0,R)),

1

v(t)
∈ L∞

loc((0,R)), lim
t→0+ v(t) = 0.

In case 1/v ∈ L1(R−), we define the critical function

χR(t) =
(

2v(t)

R∫
t

ds

v(s)

)−2

=
[(

−1

2
log

R∫
t

ds

v(s)

)′]2

∈ L∞
loc((0,R)). (2.1)

For the ease of notation we write χ(t) in case R = +∞. We are now ready to prove:

Theorem 2.1. Let A,v satisfy (A1), (V1) and let z ∈ Liploc([0,R)) be a positive solution of{(
v(t)z′(t)

)′ + A(t)v(t)z(t) = 0 almost everywhere on (0,R),

z′(t) = O(1) as t ↓ 0+, z(0+) = z0 > 0.
(2.2)

Then

1

v
∈ L1(R−) (2.3)

and for every 0 < T < t < R such that A �≡ 0 in L∞([0, T ])
t∫

T

(√
A(s) −√

χR(s)
)
ds � −1

2

(
log

T∫
0

A(s)v(s) ds + log

R∫
T

ds

v(s)

)
. (2.4)
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Proof. We set

y(t) = −v(t)z′(t)
z(t)

on (0,R). (2.5)

Then y ∈ Liploc([0,R)); this follows since (vz′)′ = −Avz ∈ L∞
loc([0,R)), therefore vz′ is locally

Lipschitz. Moreover, from (V1) and (2.2) we deduce that y(0+) = 0. Differentiating, we can
argue that y(t) satisfies Riccati equation

y′ = A(t)v(t) + 1

v(t)
y2 a.e. on (0,R). (2.6)

Note that, since A(t) �≡ 0, z is non-constant and y �≡ 0. Moreover, y′(t) � 0 almost everywhere
on (0,R). From (A1) and (2.6) it follows that, for every T > 0 such that A �≡ 0 on [0, T ]

y(t) � y(T ) �
T∫

0

A(s)v(s) ds > 0 ∀t ∈ [T ,R). (2.7)

From (2.6) and the elementary inequality εa2 + ε−1b2 � 2|a||b|, a, b ∈ R, ε > 0, we also deduce
y′ � 2

√
A(t)|y(t)| and therefore

y′ � 2
√

A(t)y a.e. on [T ,R). (2.8)

From (2.7) and (2.8) we infer

y(t) �
( T∫

0

A(s)v(s) ds

)
e2
∫ t
T

√
A(s)ds on [T ,R). (2.9)

Moreover, from (2.6) and (A1),

y′

y2
� 1

v(t)
a.e. on [T ,R). (2.10)

Integrating on [t,R − ε] for some small ε > 0 we get

1

y(t)
� 1

y(R − ε)
+

R−ε∫
t

ds

v(s)
�

R−ε∫
t

ds

v(s)
. (2.11)

Letting ε → 0+ we obtain (2.3), and using (2.11) into (2.9) we reach the following inequality:

t∫ √
A(s) ds � −1

2
log

T∫
A(s)v(s) ds − 1

2
log

R∫
ds

v(s)
. (2.12)
T 0 t
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Inequality (2.4) is simply a rewriting of (2.12): it is enough to point out that

−1

2
log

R∫
t

ds

v(s)
= −1

2
log

R∫
T

ds

v(s)
+

t∫
T

√
χR(s) ds (2.13)

which follows integrating the definition of χR(t). �
Although very simple, inequality (2.4) is deep. As we have already stressed in the Introduc-

tion, the right-hand side of (2.4) is independent both of t and of the behavior of A after T : if
(2.4) is contradicted for some 0 < T < t < R, the left-hand side represents how much must A(t)

exceed the critical curve on the compact region [T , t] in order to have a first zero of z(t), and it
only depends on the behavior of A and v before T (the first addendum of the right-hand side),
and on the growth of v after T .

For geometrical purposes, from now on we will focus on the case R = +∞. However, the
next corollaries can be restated on (0,R) replacing +∞ with R and χ(t) with χR(t).

Remark 2.2. Consider (2.13) with R = +∞:

−1

2
log

+∞∫
t

ds

v(s)
= −1

2
log

+∞∫
T

ds

v(s)
+

t∫
T

√
χ(s) ds,

valid for 1/v ∈ L1(+∞). Letting t → +∞ we deduce that√
χ(t) /∈ L1(+∞). (2.14)

Corollary 2.3 (Existence of a first zero). In the assumptions of Theorem 2.1 with R = +∞,
suppose that either 1/v /∈ L1(+∞) or otherwise there exist 0 < T < t such that

t∫
T

(√
A(s) −√

χ(s)
)
ds > −1

2

(
log

T∫
0

A(s)v(s) ds + log

+∞∫
T

ds

v(s)

)
. (2.15)

Then, for every solution z(t) ∈ Liploc([0,+∞)) of (2.2), there exists T0 = T0(z) > 0 such that
z(T0) = 0. Moreover, the first zero is attained on (0,R], where R > 0 is the unique real number
satisfying

t∫
T

√
A(s) ds = −1

2
log

T∫
0

A(s)v(s) ds − 1

2
log

R∫
t

ds

v(s)
. (2.16)

Proof. Observe that (2.15) is equivalent to say that (2.4) with R = +∞ is false for some
0 < T < t . Hence, the existence of a first zero on (0,+∞) is immediate from Theorem 2.1.

As for the position of T0, note first that (2.4) is a rewriting of (2.12). Suppose that
1/v ∈L1(+∞). We note that the RHS of (2.12) is strictly decreasing as a function of R ∈ (t,+∞),
limR→t− RHS = +∞, and (2.12) is contradicted for R = +∞ by assumption (2.15). Therefore,
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there exists a unique R ∈ (t,+∞) such that (2.16) holds. Choosing ε > 0 and applying Theo-
rem 2.1 on the interval (0,R + ε) we deduce the existence of a first zero on (0,R + ε). Letting
ε → 0 we reach the desired conclusion.

The case 1/v /∈ L1(+∞) is similar: we restrict the considerations on a finite interval [0,R],
with R > t small enough that (2.12) holds on [0,R]. Then, we enlarge R in such a way to reach
the equality in (2.12), and we conclude as in the previous case. �
Corollary 2.4 (Oscillatory behavior). Fix t0 ∈ (0,+∞). Suppose that (A1), (V1) are met on
[t0,+∞), with 1/v ∈ L∞

loc([t0,+∞)), and let z0 ∈ R \ {0}. Assume that either

1

v(t)
/∈ L1(+∞), A(t)v(t) /∈ L1(+∞) (2.17)

or

1

v(t)
∈ L1(+∞), lim sup

t→+∞

t∫
T

(√
A(s) −√

χ(s)
)
ds = +∞ (2.18)

for some (hence any) T > t0. Then, every solution z(t) ∈ Liploc([t0,+∞)) of{(
v(t)z′(t)

)′ + A(t)v(t)z(t) = 0 a.e. on (t0,+∞),

z(t0) = z0,
(2.19)

is oscillatory.

Proof. First, we claim that the two conditions in (2.18) imply that A(t)v(t) /∈ L1(+∞). In-
deed, from (2.14) and the second condition of (2.18) it follows that

√
A(t) /∈ L1(+∞), and from

Cauchy–Schwarz inequality( t∫
T

A(s)v(s)

)( t∫
T

ds

v(s)

)
�
( t∫

T

√
A(s) ds

)2

letting t → +∞ we deduce the claim.
Suppose by contradiction that z(t) has eventually constant sign. Up to replacing z with −z,

we can assume z(t) > 0 on [τ,+∞), for some τ � t0. We define y as in (2.5). Then
y ∈ Liploc([τ,+∞)) and satisfies (2.6), hence it is increasing. Integrating we get

y(t) � y(T ) � y(τ) +
T∫

τ

A(s)v(s) ds ∀t > T > τ. (2.20)

By assumption, in both cases the non-integrability of A(t)v(t) ensures that there exists T > τ

such that

y(τ) +
T∫

A(s)v(s) ds > 0,
τ
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therefore y > 0 on [T ,+∞). Now, we argue as in Theorem 2.1. In particular, integrating (2.10)
on [t,R0] we get

1

y(t)
� 1

y(t)
− 1

y(R0)
�

R0∫
t

ds

v(s)
∀R0 > t > T, (2.21)

so that 1/v ∈ L1(+∞), which contradicts (2.17). As for (2.18), from y′ � 2y
√

A almost every-
where we deduce

y(t) � y(T ) exp

{
2

t∫
T

√
A(s) ds

}
∀t > T . (2.22)

Combining (2.20), (2.21), (2.22) and using the definition of χ(t) we obtain the following in-
equality:

t∫
T

(√
A(s) −√

χ(s)
)
ds � −1

2
log

(
y(τ) +

T∫
τ

A(s)v(s) ds

)
− 1

2
log

+∞∫
T

ds

v(s)
.

Letting t → +∞ along a sequence realizing (2.18) we reach the desired contradiction. �
Here are some stronger conditions which imply oscillation, and that will be used in the sequel.

Proposition 2.5. In the assumptions (A1), (V1) on the interval [t0,+∞), Eq. (2.19) is oscillatory
in the following cases:

– 1/v ∈ L1(+∞) and one of the following conditions is satisfied for some T > t0:

(i) A(t) � χ(t) a.e. on [T ,+∞) and
√

A(s) − √
χ(s) /∈ L1(+∞);

(ii) lim sup
t→+∞

∫ t

T

√
A(s) ds∫ t

T

√
χ(s) ds

> 1;

(iii) lim inf
t→+∞

√
A(t)√
χ(t)

> 1;

(iv) lim sup
t→+∞

∫ t

T

√
A(s) ds

− 1
2 log

∫ +∞
t

ds
v(s)

> 1;

– v(t) /∈ L1(+∞), v(t) � f (t) a.e. for some continuous function f (t) such that 1/f ∈
L1(+∞), and

(v) A is positive, increasing and
√

A(tn) > inft>tn{− 1
2

log
∫ +∞
t

ds
f (s)

t−tn
} for some increasing

sequence {tn} ↑ +∞.

Proof. Implications (i)–(iii) are immediate from (2.14). To obtain (iv) we also use equality (2.13)
with R = +∞. Regarding (v), we proceed, by contradiction, as in Corollary 2.4, restricting the
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problem on [τ,+∞), τ > t0. Since A(t) is increasing, it is bounded from below away from zero
on [τ,+∞). Therefore, since v(t) /∈ L1(+∞) we can choose T > τ such that

y(τ) +
T∫

τ

A(s)v(s) ds � 1.

Using the monotonicity of A and v � f , (2.12) becomes

√
A(T )(t − T ) �

t∫
T

√
A(s) ds � −1

2
log

+∞∫
t

ds

v(s)
� −1

2
log

+∞∫
t

ds

f (s)

for every T < t ; (v) contradicts this last chain of inequalities. �
Corollary 2.4 is related to the classical Hille–Nehari oscillation theorem (see [3]). However,

in order to apply this latter to ensure that a solution z(t) of (2.19) is oscillatory, one needs to
perform a change of variables which requires 1/v ∈ L1(+∞). Therefore, Hille–Nehari criterion
is not straightforwardly applicable when 1/v /∈ L1(+∞). Moreover, in case 1/v ∈ L1(+∞), in
order to have oscillatory solutions the criterion requires that

lim inf
t→+∞

√
A(t)v(t)

+∞∫
t

ds

v(s)
>

1

2
(2.23)

which is exactly request (iii) of Proposition 2.5, using definition (2.1) of χ(t). It is worth to point
out that (2.18) implies oscillations even in some cases when the “liminf” in (2.23) is equal to 1/2,
an unpredictable case in Hille–Nehari theorem.

3. Why is the critical curve really critical?

In this section we show that Corollary 2.4 is sharp. This will be done by studying the relation-
ship between χ(t) and the two critical functions introduced in [2].

Consider the “Euclidean” problem{(
tm−1z′(t)

)′ + A(t)tm−1z(t) = 0 on (0,+∞),

z′(0+) = 0, z(0) = z0 > 0, m � 3.
(3.1)

In this case, from v(t) = tm−1 it is immediate to see that

χ(t) = (m − 2)2

4

1

t2
. (3.2)

Suppose that 0 � A(t) ∈ C∞([0,+∞)) is such that, for some ε > 0,

A(t)

⎧⎪⎪⎨⎪⎪⎩
� (m − 2)2

4

1

t2
on [0, ε),

= (m − 2)2 1
on [ε,+∞).

(3.3)
4 t2
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Then, problem (3.1) admits a positive solution 0 < z(t) ∈ C1([0,+∞)) satisfying, by Proposi-
tion 4.1 of [2],

C−1t−
m−2

2 log t � z(t) � Ct−
m−2

2 log t

for some positive constant C and t � 1. Suppose now that A(t) = H 2/t2 on [ε,+∞). By Propo-
sition A.4 in Appendix A, there exists a positive solution for every H � m−2

2 , while in case
H > m−2

2 the limit in item (iii) of (2.5) is

lim
t→+∞

√
A(t)√
χ(t)

= 2H

m − 2
> 1, (3.4)

and by Corollary 2.4 every solution z(t) is oscillatory. Therefore, in the Euclidean case we rec-
ognize (3.2) as the correct critical curve for the behavior of z(t).

The hyperbolic case is less immediate. However, fix B > 0 and consider

{(
sinhm−1(Bt)z′(t)

)′ + A(t) sinhm−1(Bt)z(t) = 0 on (0,+∞),

z′(0+) = 0, z(0) = z0 > 0, m � 2.
(3.5)

In this case v(t) = sinhm−1(Bt) and the expression of χ(t) is more complicated. Nevertheless,
using De l’Hopital theorem, we see that, as t → +∞,

χ(t) =
[

1

2 sinhm−1(Bt)
∫ +∞
t

sinh1−m(Bs)ds

]2

∼ (m − 1)2B2

4
coth(Bt).

Suppose now that 0 � A(t) ∈ C∞([0,+∞)) is such that, for some ε > 0,

A(t)

⎧⎪⎪⎨⎪⎪⎩
� (m − 1)2B2

4
coth(Bt) on [0, ε),

= (m − 1)2B2

4
coth(Bt) on [ε,+∞).

(3.6)

Then, (3.5) has a positive solution z ∈ C1([0,+∞)) satisfying

C−1te− m−1
2 Bt � z(t) � Cte− m−1

2 Bt

for some appropriate constant C > 0 and t � 1.
In case A(t) = H 2B2 coth(Bt) on [ε,+∞), again using Proposition A.4 we deduce that, for

every H � m−1
2 , there exists a positive solution of (3.5). On the contrary, if H > m−1

2 the limit
in item (iii) of Proposition 2.5 is strictly greater than 1, hence every solution is oscillatory. The
characteristic curve χ(t) is “asymptotically sharp” even in the hyperbolic case, and numerical

evidences show it agrees sharply with the curve (m−1)2B2
coth(Bt) outside t = 0.
4
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4. Oscillation estimates: the key result

So far, we have only ensured an oscillatory behavior of solutions of (2.19) in case A(t) is,
for example, asymptotic to the critical curve and

√
A(t) − √

χ(t) is eventually positive and
non-integrable at infinity. Under these assumptions, we cannot expect the oscillations to be auto-
matically thick, since we have proved that χ(t) is sharp as a border line function. Nevertheless,
suppose that

A(t)

χ(t)
� c > 1 for t � 1.

In this case, one may expect that the somewhat “uniform” mass of A(t) exceeding from χ(t)

can control the distance between zeros from above. The key result, Theorem 4.1, goes in this
direction: given two consecutive zeros T1(τ ) < T2(τ ) of z(t) after τ it states that

T2(τ ) − T1(τ ) = O(τ) as τ → +∞.

Moreover, in case

v(t) � f (t) = Λ exp
{
atα logβ t

}
, Λ,a,α > 0, β � 0, (4.1)

we will be able to estimate the quantity

lim sup
τ→+∞

T2(τ )

τ
.

Theorem 4.1 exploits upper bounds for the function v(t) in terms of some function f (t), instead
of dealing with v(t) itself. The necessity of working with such an upper bound needs some
preliminary comment.

Although the critical function χ(t) is suitable to describe the oscillatory behavior of (2.19),
due to its integral expression in v(t) it is in general not easy to handle. Moreover, v(t) itself
can behave very badly since, in our geometric applications, it represents the volume growth of
geodesic spheres; indeed, in many situations, such as volume comparison results, one deals only
with upper bounds of the volume growth in terms of some known function f (r) which possesses
some further regularity property (for example, as we will suppose in the sequel, monotonicity
and differentiability). Hence, it would be useful to look for a modified more manageable critical
functions depending on f (t) instead of v(t). The most natural way is to define

χf (t) =
[

1

2f (t)
∫ +∞
t

ds
f (s)

]2

=
[(

−1

2
log

+∞∫
t

ds

f (s)

)′]2

. (4.2)

Obviously χf ≡ χ in case v ≡ f . It is not hard to see that, if we substitute χ(t) with χf (t) and
v(t) with its upper bound f (t) in the assumptions (with the exception of the terms involving
integrals of A(t)v(t)), all the conclusions of the theorems of Section 2 are still true.
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Unfortunately, despite the further properties of f , even this critical function is too difficult to
handle in many instances. Hence, we choose the simpler critical function

χ̃f (t) =
[

f ′(t)
2f (t)

]2

. (4.3)

Since (4.1) represents the prototype of most volume growth bounds, it is important to stress
the relationship between χf (t) and χ̃f (t) in case f (t) = Λ exp{atα logβ t}. Using De l’Hopital
theorem we have

lim
t→+∞

√
χ̃f (t)√
χf (t)

= lim
t→+∞

f ′(t)2

f (t)f ′′(t)
= 1 since α > 0. (4.4)

Therefore, with this choice of f the modified critical function χ̃f (t) is asymptotic to the critical
function χf (t). This justifies the use of χ̃f (t) as a border line “at infinity” for A(t) in (A4) below.

Throughout this section we shall require the validity of the following properties on [t0,+∞),
for some t0 > 0.

(V2) 0 � v(t) ∈ L∞
loc([t0,+∞)),

1

v(t)
∈ L∞

loc([t0,+∞)),
1

v(t)
∈ L1(+∞),

(F1) f ∈ C1([t0,+∞)), f (t0) > 0,

(F2) f is non-decreasing on [t0,+∞),

(F3) v(t) � f (t) a.e. on [t0,+∞),

(F4) ∀t � t0,
f ′(t)
f (t)

� 1

Dtμ
for some D > 0, μ < 1,

(A2) A ∈ L∞
loc([t0,+∞)), A(t) � 0 a.e. on [t0,+∞),

(A3) lim sup
t→+∞

t∫
t0

(√
A(s) −√

χ(s)
)
ds = +∞,

(A4) ∃c > 0 such that
√

A(t) � c

√
χ̃f (t) = c

2

f ′(t)
f (t)

a.e. on [t0,+∞).

Next, we introduce two classes of functions: for f ∈ C0([t0,+∞)), f > 0 on [t0,+∞), h, k

piecewise C0 and non-negative on [t0,+∞), c > 0 we set

A(f,h, c) =
{
g: [t0,+∞) → [0,+∞) piecewise C0 such that

lim sup
t→+∞

(
sup

ξ∈(0,1)

(1 − ξ)g(t)f (t + g(t) + h(t))c

f (t + (1 − ξ)g(t) + h(t))c+1

)
< +∞

}
, (4.5)
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B(f, k, c) =
{
g: [t0,+∞) → [0,+∞) piecewise C0 such that

lim sup
t→+∞

(
sup

ξ∈(0,1)

ξg(t)f (t + (1 − ξ)g(t) + k(t))c

f (t + g(t) + k(t)) · f (t + k(t))c

)
< +∞

}
. (4.6)

Definition. We shall say that f satisfies property (P ) for some c > 0 if whenever

h(t), k(t) = O(t) as t → +∞, g ∈ A(f,h, c) ∪ B(f, k, c)

implies g(t) = O(t) as t → +∞.

An example of f satisfying property (P ) that we shall use in the sequel is the following. Let

f (t) = exp
{
atα logβ t

}
, a > 0, α > 0, β � 0 for t � t0. (4.7)

Then f satisfies property (P ) for every c > 1. Indeed, let h and k be non-negative and such that
h(t), k(t) = O(t) as t → +∞ and let g ∈ A(f,h, c). Assume, by contradiction, the existence of
a sequence {tn} → +∞ with the property

g(tn)

tn
→ +∞ as n → +∞. (4.8)

Without loss of generality we suppose g(tn) > 1 ∀n and we define ξn = 1 − 1
g(tn)

. Then

(1 − ξn)g(tn)f (tn + g(tn) + h(tn))
c

f (tn + (1 − ξn)g(tn) + h(tn))c+1

= f (tn + g(tn) + h(tn))
c

f (tn + 1 + h(tn))c+1
(4.9)

= exp
{
ac
(
tn + g(tn) + h(tn)

)α logβ
(
tn + g(tn) + h(tn)

)
− a(c + 1)

(
tn + 1 + h(tn)

)α logβ
(
tn + 1 + h(tn)

)}
= exp

{
acg(tn)

α logβ
(
tn + g(tn) + h(tn)

)
×
[(

1 + tn

g(tn)
+ h(tn)

g(tn)

)α

(4.10)

− (c + 1)tαn

cg(tn)α

(
1 + 1

tn
+ h(tn)

tn

)α logβ(tn + 1 + h(tn))

logβ(tn + g(tn) + h(tn))

]}
. (4.11)

Note that expression (4.10) tends to 1 as n → +∞, while expression (4.11) goes to 0. Their
difference is thus eventually positive, so (4.9) goes to +∞, but this contradicts the fact that
g ∈ A(f,h, c). Observe that here any c > 0 would work. Let now g ∈ B(f, k, c) and reason
again by contradiction. Let {tn} be as above. Then
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ξg(tn)
f (tn + (1 − ξ)g(tn) + k(tn))

c

f (tn + g(tn) + k(tn)) · f (tn + k(tn))c
(4.12)

= ξg(tn) exp

{
ac(1 − ξ)αg(tn)

α

(
1 + 1

1 − ξ

(
tn

g(tn)
+ k(tn)

g(tn)

))α

× logβ
(
tn + (1 − ξ)g(tn) + k(tn)

)− ag(tn)
α

(
1 + tn

g(tn)
+ k(tn)

g(tn)

)α

× logβ
(
tn + g(tn) + k(tn)

)− actαn

(
1 + k(tn)

tn

)α

logβ
(
tn + k(tn)

)}
� ξg(tn) exp

{
ag(tn)

α logβ
(
tn + (1 − ξ)g(tn) + k(tn)

)
×
[(

c(1 − ξ)α − logβ(tn + g(tn) + k(tn))

logβ(tn + (1 − ξ)g(tn) + k(tn))

)(
1 + tn

g(tn)
+ k(tn)

g(tn)

)α

(4.13)

− c
tαn

g(tn)α

(
1 + k(tn)

tn

)α logβ(tn + k(tn))

logβ(tn + (1 − ξ)g(tn) + k(tn))

]}
. (4.14)

Since expression (4.14) goes to 0 as n → +∞, we can choose n such that it is eventually less
than ε, for some fixed ε > 0. Moreover, since ∀ξ ∈ (0,1)

logβ(tn + g(tn) + k(tn))

logβ(tn + (1 − ξ)g(tn) + k(tn))
→ 1 as n → +∞,

and using now c > 1, we can choose a suitable ξ such that expression (4.13) is eventually strictly
positive and greater than 2ε, if we choose ε sufficiently small. Now letting n → +∞ we have
that (4.12) goes to infinity, which implies g /∈ B(f, k, c), a contradiction. Note that assumption
α > 0 is necessary: it is not hard to see that, if f (t) has polynomial growth, then f does not
satisfy property (P ) for any c > 0. On the contrary, proceeding in a way similar to that outlined
above one verifies, for instance, that also the function

Λ exp
{
aebt

}
, Λ,a, b > 0,

satisfies property (P ) for every c > 1. Assuming f (t) of this type, one can prove analogous
estimates as those in (4.16) and (1.22).

Going back to (4.7), we observe that (F1), (F2) and (F4) are satisfied. We also observe that
the validity of (V2), (A2) and (A3) enables us to apply Corollary 2.4 to conclude that Eq. (2.19)
is oscillatory on [t0,+∞), and that, by Proposition A.3 of Appendix A, the zeros of z(t) are
isolated.

Now, we are ready to prove our main technical result.

Theorem 4.1. Assume the validity of (V2), (F1)–(F4), (A2)–(A4) and that f satisfies prop-
erty (P ) for the parameter c > 0 required in (A4). Let z �≡ 0 be a locally Lipschitz solution
of (2.19) on [t0,+∞). Let τ ∈ [T ,+∞), where T is defined in Corollary 2.4, and let T1(τ ),
T2(τ ) be the first two consecutive zeros of z(t) on [τ,+∞). Then

T2(τ ) − τ = O(τ) as τ → +∞. (4.15)
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Moreover, in case f (t) = Λ exp[atα logβ t] we have the estimate

lim sup
τ→+∞

T2(τ )

τ
�
(

c + 1

c − 1

) 2
α

. (4.16)

Proof. As we have observed, z(t) is oscillatory. Having fixed τ ∈ [T ,+∞), let

U = [
τ, T2(τ )

)∖{
T1(τ )

}
and on U consider the locally Lipschitz function

y(t) = −v(t)z′(t)
z(t)

solution of

y′(t) = A(t)v(t) + 1

v(t)
y2(t) a.e. on [t0,+∞). (4.17)

Because of (A2) and (V2), (4.17) shows that y is non-decreasing on U . Indeed, from (A4), (F4),
(V2) we can argue that y is strictly increasing on U . Since z �≡ 0, proceeding analogously to
Proposition A.3 in Appendix A we deduce that

y
(
T1(τ )+

)= −∞, y
(
T1(τ )−

)= +∞, y
(
T2(τ )−

)= +∞. (4.18)

Note that it could be U = (T1(τ ), T2(τ )): this is exactly the case when T1(τ ) = τ .
Due to the fact that y is non-decreasing, U can be decomposed as a disjoint union of intervals

of the types

I1 ⊆ {
x ∈ U : y(x) ∈ [−1,1]} interval of type 1,

I2 ⊆ {
x ∈ U : y(x) > 1

}
interval of type 2,

I3 ⊆ {
x ∈ U : y(x) < −1

}
interval of type 3. (4.19)

To fix ideas we consider the case y(τ) < −1 (see Fig. 1).
In this case we have

U = I3 ∪ I1 ∪ I2 ∪ I ′
3 ∪ I ′

1 ∪ I ′
2

where:

I1 is the first interval of type 1, after τ and before T1(τ );
I2 is the first interval of type 2, after τ and before T1(τ );
I3 is the first interval of type 3, after τ and before T1(τ );
I ′

1 is the first interval of type 1, after T1(τ ) and before T2(τ );
I ′

2 is the first interval of type 2, after T1(τ ) and before T2(τ );
I ′ is the first interval of type 3, after T1(τ ) and before T2(τ ).
3
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Fig. 1. Riccati solution.

We study this situation which is “the worst” it could happen. The remaining cases can be dealt
with similarly and we shall skip proofs.

For i = {1,2,3} we set |Ii | = gi(τ ) and |I ′
i | = g′

i (τ ). We are going to prove that, in the above
hypotheses, each gi(τ ), g′

i (τ ) is O(τ) as τ → +∞.
We consider at first an open interval J of type 3 so that J could be either I3 or I ′

3. Set
P(τ) < Q(τ) to denote its end points; thus g3(τ ) = |J |(τ ) = Q(τ) − P(τ) and g3(τ ) is clearly
piecewise C0([T ,+∞)). We have y(Q) = −1 and y(P ) � −1 if y is defined in P , otherwise
y(P +) = −∞. As in Theorem 2.1, (4.17) yields

y′ � 2
√

A(t)|y| = 2
√

A(t)(−y) a.e. on J.

Fix t ∈ (P,Q] and integrate on [t,Q]. Recalling that y(s) � y(Q) = −1 ∀s ∈ (P,Q] we have

y(t) � − exp

{
2

Q∫
t

√
A(s) ds

}
∀t ∈ (P,Q]. (4.20)

Since y′/y2 � 1/v almost everywhere, integrating on [P + ε, t] for some small ε > 0 we obtain

1

y(P + ε)
− 1

y(t)
�

t∫
P+ε

ds

f (s)
. (4.21)

Letting ε → 0+ we get

− 1

y(t)
� − 1

y(P +)
+

t∫
ds

f (s)
�

t∫
ds

f (s)
(4.22)
P P
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which is valid ∀t ∈ (P,Q]. Now, because of (A4),

2

Q∫
t

√
A(s) ds � c

Q∫
t

f ′(s)
f (s)

ds = log

(
f (Q)

f (t)

)c

and therefore, from (4.20),

− 1

y(t)
�
(

f (t)

f (Q)

)c

.

Substituting into (4.22) and using (F2) we obtain

1 �
(

f (Q)

f (t)

)c
t∫

P

ds

f (s)
� (t − P)

f (Q)c

f (t)c+1
∀t ∈ (P,Q). (4.23)

Suppose now that J = I3, so that P(τ) = τ and Q(τ) = τ +g3(τ ) . Since t ∈ (P,Q), there exists
ξ ∈ (0,1) such that

t = τ + (1 − ξ)g3(τ ), t − P = (1 − ξ)g3(τ )

and since t was arbitrary, from (4.23) we obtain

sup
ξ∈(0,1)

(1 − ξ)g3(τ )f (τ + g3(τ ))c

f (τ + (1 − ξ)g3(τ ))c+1
� 1 (4.24)

in this case it follows that g3 ∈ A(f,0, c) and then g3(τ ) = O(τ) as τ → +∞.
We will deal with the case J = I ′

3 later.
Next, we consider an interval J of type 1. Set P(τ) < Q(τ) to denote its end points; thus

g1(τ ) = |J |(τ ) = Q(τ) − P(τ) and g1(τ ) is piecewise C0([T ;+∞)). In this case y(P ) = −1,
y(Q) = 1 and |y| � 1 on J . We integrate Riccati equation (4.17) on [P,Q] to obtain

2 =
Q∫

P

y′(s) ds =
Q∫

P

A(s)v(s) ds +
Q∫

P

y2(s)

v(s)
ds �

Q∫
P

A(s)v(s) ds.

Next, without loss of generality we can suppose to have chosen T sufficiently large that (V2), in
particular 1/v ∈ L1(+∞), implies

+∞∫
T

ds

v(s)
� 1

so that

Q∫
ds

v(s)
� 1.
P
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From the above inequality, using (A4) and the generalized mean value theorem it follows that,
for some T0 ∈ [P,Q],

2 �
Q∫

P

A(s)v(s) ds

Q∫
P

ds

v(s)
�

Q∫
P

c2

4

(
f ′(t)
f (t)

)2

v(s) ds

Q∫
P

ds

v(s)

= c2

4

(
f ′(T0)

f (T0)

)2
Q∫

P

v(s) ds

Q∫
P

ds

v(s)
.

On the other hand, from Hölder inequality

(Q − P)2 �
Q∫

P

v(s) ds

Q∫
P

ds

v(s)

so that

√
2 � c

2

(
f ′(T0)

f (T0)

)
(Q − P)

or, in other words, using (F1), (F2) and observing that (F4) implies that f ′ is eventually positive,

2
√

2

c

f (T0)

f ′(T0)
� Q − P. (4.25)

Now, if J = I1, P(τ) = τ + g3(τ ), Q(τ) = P(τ) + g1(τ ) and there exists θ ∈ [0,1] such that
T0 = τ + g3(τ ) + θg1(τ ). Substituting in (4.25) and using (F4) we obtain

g1(τ ) � 2
√

2

c

f (τ + g3(τ ) + θg1(τ ))

f ′(τ + g3(τ ) + θg1(τ ))
� 2D

√
2

c

(
τ + g3(τ ) + θg1(τ )

)μ
. (4.26)

In case μ � 0 we immediately obtain g1(τ ) = O(τ), hence we examine the case μ ∈ (0,1).
Using the already known equality g3(τ ) = O(τ) and inequality (x + y)μ � xμ + yμ, there exist
constants K1,K2 > 0 such that

g1(τ )

τ
� K1

τ 1−μ
+ K2g1(τ )μ

τ
. (4.27)

Using a simple reasoning by contradiction, (4.27) implies g1(τ ) = O(τ) as τ → +∞.
If J = I ′

1, P(τ) = τ + (g1 + g2 + g3)(τ ) + g′
3(τ ), Q(τ) = P(τ) + g′

1(τ ), T0 =
τ + (g1 + g2 + g3)(τ ) + g′

3(τ ) + θg′
1(τ ), and substituting into (4.25)

g′
1(τ ) � 2

√
2

c

f (τ + (g1 + g2 + g3)(τ ) + g′
3(τ ) + θg′

1(τ ))

f ′(τ + (g + g + g )(τ ) + g′ (τ ) + θg′ (τ ))
. (4.28)
1 2 3 3 1
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We will come back to this inequality later to prove g′
1(τ ) = O(τ) as τ → +∞. Indeed, by the

same argument as above, the only things that remain to show for this purpose are g2(τ ) = O(τ)

and g′
3(τ ) = O(τ) as τ → +∞, and we are going to prove these facts now.

We consider an interval J of type 2 and again let P(τ) < Q(τ) denote its end points. Clearly
y(P ) = 1 and y(Q) = μ > 1 (or y(Q−) = +∞ in case that z(Q) = 0. Indeed, what follows
works with any μ > 0). Again

y′ � 2
√

A(t)y and
y′

y2
� 1

v
a.e. on J.

Fix t ∈ [P,Q). Using y(P ) = 1, integration of the first inequality on [P, t] yields

y(t) � exp

{
2

t∫
P

√
A(s) ds

}
∀t ∈ [P,Q), (4.29)

while integrating the second one on [t,Q− ε), for some small ε > 0, and proceeding as in (4.21)
we have

1

y(t)
�

Q∫
t

ds

f (s)
∀t ∈ (P,Q). (4.30)

Thus, observing that

2

t∫
P

√
A(s) ds � log

(
f (t)

f (P )

)c

we deduce from (4.29)

1

y(t)
�
(

f (P )

f (t)

)c

.

Finally, substituting into (4.30)

1 �
(

f (t)

f (P )

)c
Q∫

t

ds

f (s)
� (Q − t)

1

f (Q)

(
f (t)

f (P )

)c

∀t ∈ (P,Q). (4.31)

Suppose now J = I2 so that g2(τ ) = Q(τ) − P(τ),

P(τ) = τ + g3(τ ) + g1(τ ),

Q(τ) = τ + g3(τ ) + g1(τ ) + g2(τ )
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and since t ∈ (P,Q), for some ξ ∈ (0,1) we have

t = τ + (1 − ξ)g2(τ ) + g1(τ ) + g3(τ ),

Q − t = ξg2(τ ).

Substituting into (4.31) yields,

sup
ξ∈(0,1)

ξg2(τ )f (τ + (1 − ξ)g2(τ ) + g1(τ ) + g3(τ ))c

f (τ + g2(τ ) + g1(τ ) + g3(τ ))f (τ + g1(τ ) + g3(τ ))c
� 1. (4.32)

Thus, setting (g1 + g3)(τ ) = k(τ ) since g1(τ ) = O(τ) and g3(τ ) = O(τ) as τ → +∞, we have
that k(τ ) = O(τ) as τ → +∞ and

g2 ∈ B(f, k, c)

and so g2(τ ) = O(τ) as τ → +∞.
We can now deal with the case J = I ′

3. We have already shown that g1(τ ) + g2(τ ) + g3(τ ) =
O(τ) as τ → ∞. We go back to (4.23) with J = I ′

3 = (P (τ),Q(τ)): note that now

P(τ) = τ + g3(τ ) + g1(τ ) + g2(τ ), Q(τ) = P(τ) + g′
3(τ ),

where, obviously, g′
3(τ ) = |I ′

3|. Since t ∈ (P,Q), for some ξ ∈ (0,1) we have

t = τ + (1 − ξ)g′
3(τ ) + (g3 + g1 + g2)(τ ),

t − P = (1 − ξ)g′
3(τ )

and substituting into (4.23), since t ∈ (P,Q), is arbitrary we have

sup
ξ∈(0,1)

(1 − ξ)g′
3(τ )f (τ + g′

3(τ ) + (g1 + g2 + g3)(τ ))c

f (τ + (1 − ξ)g′
3(τ ) + (g1 + g2 + g3)(τ ))c+1

� 1. (4.33)

Thus, setting h(τ) = (g1 +g2 +g3)(τ ), h(τ) = O(τ) as τ → +∞ and so we have g′
3 ∈ A(f,h, c)

therefore g′
3(τ ) = O(τ) as τ → +∞.

Coming back to inequality (4.28), we can now claim that also g′
1(τ ) = O(τ) as τ → +∞.

The last case is J = I ′
2 so that g′

2(τ ) = Q(τ) − P(τ). Now we have

P(τ) = τ + (g3 + g1 + g2 + g′
3 + g′

1)(τ ),

Q(τ) = P(τ) + g′
2(τ )

and since t ∈ (P,Q) there exists ξ ∈ (0,1) such that

t = τ + (1 − ξ)g′
2(τ ) + (

g3 + g1 + g2 + g′
3 + g′

1

)
(τ ),

Q(τ) − t = ξg′ (τ ).
2
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Setting k(τ ) = (g3 + g1 + g2 + g′
3 + g′

1)(τ ), we have already proved that k(τ ) = O(τ) as
τ → +∞. Substituting into (4.31) yields

sup
ξ∈(0,1)

ξg′
2(τ )f (τ + (1 − ξ)g′

2(τ ) + k(τ ))c

f (τ + g′
2(τ ) + k(τ ))f (τ + k(τ ))c

� 1. (4.34)

Thus we have

g′
2 ∈ B(f, k, c)

therefore g′
2(τ ) = O(τ) as τ → +∞, and this shows that

T2(τ ) − T1(τ ) � T2(τ ) − τ = (
g3 + g1 + g2 + g′

3 + g′
1 + g′

2

)
(τ ) = O(τ)

as τ → +∞, so we have the first part of the theorem, that is (4.15).
To conclude, we shall estimate the quantity

K = lim sup
τ→+∞

T2(τ ) − τ

τ
.

Looking at the group of Eqs. (4.24), (4.26), (4.32), (4.33), (4.28) and (4.34), we first note that
each of the functions gi(τ ) and g′

i (τ ) involved in the proof (shortly g(τ)) satisfies one of the
following inequalities, for τ � T and for some suitable function h(τ) which is known to be O(τ):

sup
ξ∈(0,1)

(1 − ξ)g(τ )f (τ + g(τ) + h(τ))c

f (τ + (1 − ξ)g(τ ) + h(τ))c+1
� 1 for g3 and g′

3, (4.35)

g(τ) � 2
√

2

c

f (τ + h(τ) + θg(τ))

f ′(τ + h(τ) + θg(τ))
for g1 and g′

1, (4.36)

sup
ξ∈(0,1)

ξg(τ )f (τ + (1 − ξ)g(τ ) + h(τ))c

f (τ + g(τ) + h(τ)) · f (τ + h(τ))c
� 1 for g2 and g′

2. (4.37)

For the sake of simplicity, we perform computations in case

f (t) = Λ exp
{
atα

}
, a,Λ,α > 0

(note that f satisfy property (P ) for every c > 1). We shall determine K by computing, in each
of the tree cases above,

Kj = lim sup
τ→+∞

g(τ)

τ

(the index j corresponds to the cases satisfied by gj and g′
j ), and then summing the terms “in-

ductively” following the changes of the known function h case by case. For this purpose let

H � lim sup
h(τ)

.

τ→+∞ τ
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Consider at first inequality (4.36): we immediately find that, for this choice of f ,

g(τ)

τ
� 2

√
2

c

1

τ

1

aα(τ + h(τ) + θg(τ))α−1
� 2

√
2

caα

(
1 + h(τ)

τ
+ g(τ)

τ

)1−α

τα
.

We claim that K1 = 0. Indeed, suppose by contradiction that there exists a divergent sequence
{τn} such that g(τn)/τn → K1 > 0. Then, evaluating the above inequality along {τn} and passing
to the limit we reach

0 < K1 � 0 a contradiction.

We now focus our attention on (4.35). By an algebraic manipulation

g(τ) � 1

1 − ξ

f (τ + (1 − ξ)g(τ ) + h(τ))c+1

f (τ + g(τ) + h(τ))c
∀ξ ∈ (0,1).

Due to the form of f , better estimates can be obtained choosing ξ near 1. For τ > 1, we choose
ξ = (τ − 1)/τ . For the ease of notation let x(τ) = g(τ)/τ , so that x(τ) is bounded on [T ,+∞)

because f satisfies property (P ). With this choice of ξ we have

x(τ) � f (τ + x(τ) + h(τ))c+1

f (τ + τx(τ) + h(τ))c
, (4.38)

thus substituting

x(τ) � Λ exp

{
aτα

[
(c + 1)

(
1 + x(τ)

τ
+ h(τ)

τ

)α

− c

(
1 + x(τ) + h(τ)

τ

)α]}
.

Suppose now that K3 > 0, and evaluate this inequality along a sequence {τn} such that
x(τn) → K3. Choose 0 < δ < K3, and let n be large enough that the following inequalities hold:

x(τn) > K3 − δ,
x(τn)

τn

< δ.

This yields:

x(τn) � Λ exp

{
aτα

n

[
(c + 1)

(
1 + δ + h(τn)

τn

)α

− c

(
1 + K3 − δ + h(τn)

τn

)α]}
. (4.39)

Suppose now that K3 satisfies

max
μ∈[0,H ]

{
(c + 1)(1 + μ)α − c(1 + K3 + μ)α

}
< 0, (4.40)

and compare it with (4.39). We can say that, by continuity, there exists a small δ > 0 such that
the expression between square brackets is strictly less than 0. Letting now τn go to infinity in
(4.39) we deduce 0 < K3 � 0, a contradiction. Note that (4.40) holds if and only if

(c + 1) − c

(
K3 + 1

)α

< 0 ∀μ ∈ [0,H ],

μ + 1
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that is,

K3 >

[(
c + 1

c

) 1
α − 1

]
(1 + H).

Hence, if K3 > 0, we necessarily have

K3 �
[(

c + 1

c

) 1
α − 1

]
(1 + H). (4.41)

The same technique can be exploited when dealing with (4.37): from

g(τ) � 1

ξ

f (τ + g(τ) + h(τ)) · f (τ + h(τ))c

f (τ + (1 − ξ)g(τ ) + h(τ))c
∀ξ ∈ (0,1), (4.42)

we deduce that it is better to choose ξ near 0, so we set ξ = 1/τ and we obtain, with the same
notations,

x(τ) � f (τ + τx(τ) + h(τ)) · f (τ + h(τ))c

f (τ + (τ − 1)x(τ ) + h(τ))c
.

Thus

x(τ) � Λ exp

{
aτα

[(
1 + x(τ) + h(τ)

τ

)α

+ c

(
1 + h(τ)

τ

)α

− c

(
1 + τ − 1

τ
x(τ) + h(τ)

τ

)α]}
.

Next, if K2 > 0 we choose a sequence {τn} realizing K2 and we consider n sufficiently large that

(τn − 1)

τn

> (1 − δ), K2 − δ < x(τn) < K2 + δ

obtaining the estimate

x(τn) � Λ exp

{
aτα

n ·
[(

1 + (K2 + δ) + h(τn)

τn

)α

+

+ c

(
1 + h(τn)

τn

)α

− c

(
1 + (1 − δ)(K2 − δ) + h(τn)

τn

)α]}
. (4.43)

Now, if K2 satisfies

max
{
(1 + K2 + μ)α + c(1 + μ)α − c(1 + K2 + μ)α

}
< 0, (4.44)
μ∈[0,H ]
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we reach a contradiction proceeding as in the previous case. Similarly to what we did above this
yields the bound

K2 �
[(

c

c − 1

) 1
α − 1

]
(1 + H). (4.45)

To simplify the writing we now set

W =
[(

c + 1

c

) 1
α − 1

]
, Z =

[(
c

c − 1

) 1
α − 1

]
.

To estimate g3(τ )/τ , we shall use (4.41) and, from (4.24), we deduce h(τ) ≡ 0 and thus H = 0.
Therefore, we get

K3 � W.

We have already shown that K1 = 0. Next, to estimate g2(τ )/τ we shall consider (4.45).
By (4.32) h(τ) = g3(τ ) + g1(τ ), so we can use for H the sum W + 0 = W , hence

K2 � Z(1 + W).

Proceeding along the same lines we obtain the estimates

K ′
3 � W

(
1 + W + Z(1 + W)

);
K ′

1 = 0;
K ′

2 � Z
(
1 + W + Z(1 + W) + W

(
1 + W + Z(1 + W)

))
.

Summing up the Kj and the K ′
j , we obtain the surprisingly simple expression

K �
3∑

j=1

(
Kj + K ′

j

)= (W + 1)2(Z + 1)2 − 1 =
(

c + 1

c − 1

) 2
α − 1.

Thus we eventually have

lim sup
τ→+∞

T2(τ )

τ
�
(

c + 1

c − 1

) 2
α

. (4.46)

With few modifications in the computations, it can be seen that, considering f (t) =
Λ exp[atα logβ t] instead of the above, the value of the constant K does not change. �
Remark 4.2. Since f (t) = Λ exp{atα logβ t} satisfies property (P ) for every c > 1, in this case
conditions (A3) and (A4) may be replaced by

(A3 + A4)
√

A(t) � c

(
aα

)
tα−1 logβ t a.e. on [T ,+∞), for some c > 1.
2
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Indeed, since v � f for t � 1 we have e

0 < −1

2
log

+∞∫
t

1

v
ds � −1

2
log

+∞∫
t

1

v
ds ∼ atα logβ t

2
.

Since c > 1, we deduce that (iv) of Proposition 2.5 holds, and therefore so does (A3). Since (A4)
clearly holds, applying Theorem 4.1 yields

lim sup
τ→+∞

T2(τ )

τ
=
(

c + 1

c − 1

) 2
α

,

showing that (4.16) holds.

Remark 4.3. One might ask if varying the choice of the level sets in (4.19) one could obtain
better estimates. It is not hard to see that, for every choice of the level, (4.46) does not change.

5. Geometric applications

This section is devoted to the proofs of the geometric applications given in the Introduction,
which follow from the results of Sections 2 and 4. The core are Theorems 1.4 and 1.6, where
the Cauchy problems (2.2), (2.19) appear in order to obtain suitable radial test functions which
yield estimates for the Rayleigh quotients of L and � respectively. An almost direct use of
Theorem 1.4 proves Theorems 1.9, 1.10 and 1.13, while Theorem 1.11 requires some special
attention and further work.

5.1. The index of � + a(x): proof of Theorem 1.4

Choose v(t) = Vol(∂Bt ). From Proposition 1.2 it follows that the spherical mean A(t) be-
longs to L∞

loc([0,+∞)), the validity of (V1) and the existence of a locally Lipschitz solution
of (2.2) whose zeros (if any) are isolated (Theorems A.1 and A.3 of Appendix A). Consider
problem (2.2), and note that, by the coarea formula,

0 <

R0∫
0

A(s)v(s) ds =
R0∫

0

( ∫
∂Bs

a

)
ds =

∫
BR0

a.

By Corollary 2.3, assumption (i) guarantees the existence of a first zero of every locally Lipschitz
solution z(t), whereas Corollary 2.4 implies that assumption (ii) forces z(t) to be oscillatory.
Note that a different choice of R in assumption (ii) does not affect the value of the “limsup.”

We now consider case (i): choose a locally Lipschitz solution z(t) of (2.2), and denote with T

its first zero. Define

ψ(x) = z
(
r(x)

)
so that

ψ ∈ Lip(BT ), ψ ≡ 0 on ∂BT , ∇ψ(x) = z′(r(x)
)∇r(x) a.e. on M



1804 B. Bianchini et al. / Journal of Functional Analysis 256 (2009) 1769–1820
and fix 0 < ε < T . Then, using the coarea formula, Gauss lemma and (2.2) we obtain

∫
BT \Bε

|∇ψ |2 − a(x)ψ2 =
∫

BT \Bε

|∇ψ |2 − A(r)ψ2

=
T∫

ε

(
z′(r)

)2
v(r) dr −

T∫
ε

A(r)z2(r)v(r) dr

= −z(ε)z′(ε)v(ε) −
T∫

ε

z(r)
[(

v(r)z′(r)
)′ + A(r)v(r)z(r)

]
= −z(ε)z′(ε)v(ε)

and letting ε ↓ 0+ we deduce

∫
BT

|∇ψ |2 − a(x)ψ2 � 0.

By Rayleigh characterization of eigenvalues and by domain monotonicity we conclude
λL

1 (M) < 0.
Suppose now we are in case (ii), and assume by contradiction that there exists R > 0 such that

λL
1 (M \ BR) � 0. (5.1)

As already stressed in the Introduction, by a result of Fisher-Colbrie [14], if the index of L is
finite then (5.1) holds for a sufficiently large R.

In our assumptions, every locally Lipschitz solution z(t) of (2.19) is oscillatory. Let T1 < T2

be two consecutive zeros of z(t) strictly after R. Define ψ(x) = z(r(x)) in the annular region
BT2 \BT1 , and ψ(x) ≡ 0 in the rest of M . Then ψ ∈ Lip0(M) with support contained in M \BR .
Proceeding as in the previous case, we obtain

∫
BT2 \BT1

|∇ψ |2 − a(x)ψ2 � 0,

hence, by strict domain monotonicity, λ1(M \ BR) < 0, contradicting (5.1).
Let us finally consider case (iii). By Remark 4.2 and Theorem 4.1, (2.2) is oscillatory, thus

L is unstable at infinity. In particular, the index of L is infinite. Note that (1.13) is equivalent to
prove that

lim inf
indL(Br) � 1

, with K =
(

c + 1
) 2

α

.

r→+∞ log r logK c − 1
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Fix ε > 0. Then, by Theorem 4.1 there exists T = T (ε) such that on [T ,+∞)

T2(r)

r
� Kε =

(
c + 1

c − 1

) 2
α + ε.

Proceeding as above, on M \ Br we can find a radial function ψ1(x), with support contained in
BKεr , which makes the Rayleigh quotient non-positive. Starting from T2(r), the second zero after
T2(r) is attained before KεT2(r) � K2

ε r , and we can construct a new Lipschitz radial function
ψ2(x) which makes the Rayleigh quotient non-positive. Moreover, the support of ψ2 is disjoint
from that of ψ1. In conclusion, the index of L grows at least by 1 when the radius is multiplied
by Kε , hence

indL(Br) � indL(BT ) +
⌊

logKε

(
r

T

)⌋
,

where �s� denotes the floor of s. Therefore we have

lim inf
r→+∞

indL(Br)

logKε
r

� 1 ∀ε > 0. (5.2)

From the change of base theorem, for every u,v > 1, r > 0

logu r

logv r
= logu v = logv

logu
, (5.3)

so that

lim inf
r→+∞

indL(Br)

log r
� 1

logKε

∀ε > 0. (5.4)

Letting ε → 0 yields the desired conclusion.

5.2. Tangent envelopes: proof of Theorem 1.9

We briefly recall some well known facts. Suppose we are given an isometrically immersed
hypersurface

ϕ : Mm −→ Nm+1,

where N is orientable. We fix the index notation i, j, k, t ∈ {1, . . . ,m}, and we choose a local
Darboux frame {ei, ν}. Let R,Ricc, s (resp R,Ricc, s) be the curvature tensor, the Ricci tensor
and the scalar curvature of M (resp. N ), denote with II = (hij ) the second fundamental form
of the immersion, with |II|2 the square of its Hilbert–Schmidt norm and with H = m−1hiiν the
mean curvature vector. Tracing twice the Gauss equations

Rijkt = Rijkt + hikhjt − hithjk (5.5)
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we get

s = s − 2Ricc(ν, ν) + m2|H |2 − |II|2. (5.6)

Moreover, we recall the Codazzi–Mainardi equation

hijk − hikj = Rm+1
ijk , (5.7)

where (hijk) are the components of the covariant derivative ∇II. A minimal immersion ϕ is
characterized by H ≡ 0, which implies that ϕ is a stationary point for the volume functional on
every relatively compact domain with smooth boundary in M . It is known that if, for example,
N = Rm+1, a minimal hypersurface cannot be compact and, by (5.6), s(x) = −|II|2 � 0.

We say that ϕ is stable if it locally minimizes the volume functional up to second order, and
unstable otherwise. Analytically the condition of stability is expressed by∫

M

|∇ψ |2 − (|II|2 + Ricc(ν, ν)
)
ψ2 � 0 ∀ψ ∈ C∞

0 (M),

and it is equivalent to the fact that the Schrödinger operator L = � + |II|2 + Ricc(ν, ν) satisfies
λL

1 (M) � 0. Observe that, if N is Ricci flat (for example, N = Rm+1), using (5.6) we get

L = � + |II|2 = � − s(x).

The strategy of the proof of Theorem 1.9 is to proceed by contradiction. First we prove that, if
(1.27) fails, M is stable at infinity, i.e. λL

1 (M \ Ω) � 0 for the chosen compact domain Ω ; then,
we contradict this fact using Theorem 1.4 under assumptions (1.23) or (1.24), (1.25), (1.26).

Proof of Theorem 1.9. We reason by contradiction and, without loss of generality, we can as-
sume that the origin o of Rm+1 belongs to

Rm+1
∖ ⋃

x∈M\Ω
TxM.

Consider on M \Ω a local normal unit vector field ν and define the local vector field X = 〈ϕ, ν〉ν,
where 〈,〉 denotes the canonical metric on Rm+1. For every point x in the domain of X we have
Xx �≡ 0 since otherwise ϕ(x) would be orthogonal to ν(x) and thus TxM would contain the ori-
gin o. Moreover, under a change of Darboux frame the value of X does not change, hence it
provides a globally defined, nowhere vanishing normal vector field, proving that M \ Ω is ori-
entable. Define u(x) = 〈ϕ(x), ν(x)〉 �= 0, u ∈ C∞(M \ Ω). Possibly inverting the orientation on
connected components, we can suppose u > 0 on M \Ω . A simple computation using minimality
of ϕ and Codazzi equation (5.7) for N = Rm+1 shows that u is a positive solution of

�u − s(x)u = 0 on M \ Ω.

By the result of Fisher-Colbrie and Schoen [1] it follows that L = � − s(x) has non-negative
spectral radius λL(M \ Ω), hence M is stable at infinity.
1
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To contradict this latter result, we choose A(r) = −S(r) and we use Theorem 1.4, case (ii).
A contradiction is immediate in case of (1.23), while if we assume (Vol(∂Br))

−1 ∈ L1(+∞)

we can apply Proposition 2.5(iv): indeed, under assumptions (1.24), (1.25) and (1.26), observing
that

d

ds

(−s1−α exp
{−sα

})
� C̃ exp

{−sα
}

for s � 1,

for some C̃ > 0, there exist positive constants D and H such that

lim inf
r→+∞

∫ r

R

√
A(s) ds

− 1
2 log

∫ +∞
r

ds
Vol(∂Bs)

� lim inf
r→+∞

∫ r

R

√
Cs−μ/2 ds

− 1
2 log

∫ +∞
r

exp{−sα}
Λ

ds

� lim inf
r→+∞

(
Dr1− μ

2 −α log−H r
)= +∞.

Proposition 2.5(iv) implies (1.11), so that Theorem 1.4 case (ii) contradicts the stability at infinity
of L. �
Remark 5.3. Obviously, when Ω = ∅ there is a version of the above theorem in finite form,
which is based on case (i) of Theorem 1.4. We have preferred not to make the proposition too
cumbersome, in order to better appreciate the result itself. Nevertheless, even this case seems
interesting: inequality (1.9) implies that a strongly negative scalar curvature on a compact set
spreads the tangent hyperplanes everywhere on Rm+1, independently of the behavior of the cur-
vature outside the compact.

5.4. The Gauss map: proof of Theorem 1.10

The proof follows the same lines of Theorem 1.9, and we maintain the same notations. We fix
an equator E and we reason by contradiction: assume that there exist a sufficiently large geodesic
ball BR such that, outside BR , ν does not meet E. In other words ν(M \ BR) is contained in the
open spherical cups determined by E. Indicating with w ∈ Sm one of the two focal points of E,
we can say that 〈w,ν(x)〉 �= 0 for every x ∈ M \ BR , where 〈,〉 stands for the scalar product
of unit vectors in Sm ⊂ Rm+1. Then, the normal vector field X = 〈w,ν〉ν is globally defined
and nowhere vanishing on M \ BR , proving that M \ BR is orientable. Therefore, the Gauss
map is globally defined on M \ BR . Let C be one of the (finitely many) connected components
of M \ BR ; then, ν(C) is contained in only one of the open spherical caps determined by E. Up
to replacing w with −w, we can suppose u = 〈w,ν〉 > 0 on C . Proceeding in the same way for
every connected component, we can construct a positive function u on M \ BR . By a standard
calculation u satisfies

�u = −hikk〈ei,w〉 − |II|2u on M \ BR. (5.8)

Using Schwarz symmetry, Codazzi equation (5.7) and minimality we deduce

hikk = hkik = hkki = 0,
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hence �u + |II|2u = 0. From (5.6) we get

�u − s(x)u = 0. (5.9)

In particular, (5.9) implies λL
1 (M \ BR) � 0, where L = � + s(x). Observe that since s(x) =

−|II|2 � 0, its spherical mean S(r) is non-positive. As in the proof of Theorem 1.9, the assump-
tions imply case (ii) of Theorem 1.4, and this contradicts λL

1 (M \ BR) � 0.

5.5. The Yamabe problem: proof of Theorem 1.13

Applying Theorem 1.4 to the operator L = � − 1
cm

s(x) we obtain λL
1 (M) < 0. Hence, the

conclusion follows from Theorems 2.4 and 2.1 of [4], with the observation after Theorem 2.3
therein.

Remark 5.6. We can state an alternative version at infinity of condition (1.31) via Proposi-
tion 2.5(iv). This reads as follows. Suppose that

S(r) � − H

rβ
for r � 1 and some H > 0, β � 2.

Then, condition

√
H

m − 2

m − 1
>

⎧⎨⎩ lim infr→+∞
( β

2 −1
r−β/2+1 log

∫ +∞
r

ds
Vol(∂Bs)

)
if β < 2,

lim infr→+∞
(− 1

log r
log

∫ +∞
r

ds
Vol(∂Bs)

)
if β = 2,

(5.10)

implies the existence of the desired conformal deformation.

5.7. Minimal surfaces: proof of Theorems 1.11 and 1.12

We will obtain both the results as easy consequences of the next two lemmas, the first of which
is a somewhat modified version of a result of Colding and Minicozzi [7]. We adopt the notations
of Theorems 1.9 and 1.10.

Lemma 5.8. Let ϕ : M2 → N3 be a simply connected, minimally immersed surface in an ambient
3-manifold. Assume that the Ricci tensor of N satisfies

Ricc � 0. (5.11)

Suppose that M has a pole o, and let L be the stability operator. If λL
1 (M \ Ω) � 0 for some

compact set Ω , then there exists a constant C > 0 such that

Vol(BR) � CR2 ∀R � 0.

Proof. Let K be the sectional curvature of M . Since for surfaces s(x) = 2K , using (5.11) in
(5.6) yields
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2K = Ricc(e1, e1) + Ricc(e2, e2) − Ricc(ν, ν) − |II|2

� −Ricc(ν, ν) − |II|2

hence the Rayleigh quotient for the stability operator do not exceed that for L = � − 2K . It
follows that, for every subset D ⊂ M , we have inequality

λL
1 (D) � λL

1 (D), (5.12)

thus by the assumptions λL
1 (M \ BR0) � 0 for some R0 sufficiently large that Ω ⊂ BR0 .

Since M is simply connected and has a pole, the geodesic spheres centered at o are smooth
and the geodesic balls are diffeomorphic to Euclidean ones. By Gauss–Bonnet theorem together
with the first variation formula, we have∫

Br

K = 2π − l′(r), (5.13)

where l(r) is the length of ∂Br (another way to derive this formula can be found in [5, p. 238]).
Denote with K(r) = ∫

Br
K , and observe that, by the coarea formula K ′(r) = ∫

∂Br
K .

By the stability of L, for every ψ ∈ Lip0(M \ BR0) we have∫
M\BR0

|∇ψ |2 + 2
∫

M\BR0

Kψ2 � 0. (5.14)

Fix R > R0 + 2 and choose ψ(x) = f (r(x)), where

f (t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t � R0,

t − R0 if t ∈ [R0,R0 + 1],
R−t

R−R0−1 if t ∈ [R0 + 1,R],
0 if t � R.

Then, using (5.13) into (5.14) and integrating by parts, by the properties of f we have

0 �
R∫

R0

(
f ′(r)

)2
l(r) dr + 2

R∫
R0

l′(r)
(
f 2(r)

)′
dr.

Inserting the explicit expression of f we obtain

0 � Vol(BR0+1) − Vol(BR0) + Vol(BR) − Vol(BR0+1)

(R − R0 − 1)2
+ 4l(R0 + 1)

− 4
(
Vol(BR0+1) − Vol(BR0)

)+ 4l(R0 + 1) − 4(Vol(BR) − Vol(BR0+1))

2
.

R − R0 − 1 (R − R0 − 1)
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Therefore, there exists a constant C = C(R0) depending on the geometry of BR0+1 such that, for
every R > R0 + 2,

3(Vol(BR) − Vol(BR0+1))

(R − R0 − 1)2
� C(R0)

hence,

Vol(BR) � Vol(BR0+1) + C(R0)

3
(R − R0 − 1)2 � C̃(R0)R

2.

Since near o the geometry of M is “nearly” Euclidean, up to enlarging the constant the same
estimate holds on all of M , and this concludes the proof. �
Remark 5.9. Note that, in case Ω = ∅ and N = R3, we recover Colding and Minicozzi theorem,
for which the simply-connectedness assumption is unnecessary: in fact, we can pass to the Rie-
mannian universal covering M̃ of M . Indeed, by Fisher-Colbrie and Schoen result [1] stability is
equivalent to the existence of a positive solution u of Lu = 0 on M ; u can be lifted up by com-
position with the covering projection, which is a local isometry, yielding a positive solution of
the same equation on M̃ . Moreover, in this case the existence of a pole is automatically satisfied
since by (5.5) M has non-positive sectional curvature.

The next lemma is a calculus exercise (see [11]).

Lemma 5.10.

If
r

Vol(Br)
/∈ L1(+∞), then

1

Vol(∂Br)
/∈ L1(+∞).

Now we are ready to prove Theorem 1.11 and Corollary 1.12.

Proof of Theorem 1.11. By assumption there exists a relatively compact set Ω such that M \Ω

is stable, that is, λL
1 (M \ Ω) � 0. Moreover, by Gauss equation (5.5) we get 2K = −|II|2 � 0,

so that every point of M is a pole. Lemma 5.8 implies that Vol(Br) � Cr2, hence

r

Vol(Br)
/∈ L1(+∞).

From Lemma 5.10 we obtain (Vol(∂Br))
−1 /∈ L1(+∞), and by a classical result M is parabolic.

Suppose now that (1.30) is false, that is, ∫
M

|K| = ∞.

Then, the function a(x) = −2K satisfies all the assumptions of Theorem 1.4, and case (ii) implies
that � − 2K ≡ � + |II|2 = L is unstable at infinity, which is a contradiction and concludes the
proof. �
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Proof of Corollary 1.12. If M is stable, then there exists a global positive smooth solution u

of Lu = 0. Lifting u to the universal covering M̃ we deduce that M̃ is a stable minimal surface
with non-positive sectional curvature. By Theorem 1.11, M̃ is parabolic, hence u is a positive
constant: indeed,

�u = −|II|2u � 0.

Equality Lu = 0 shows that |II|2 ≡ 0. Alternatively, one can conclude as follows: by Lemma 5.8
we deduce 1/v /∈ L1(+∞), where v is the volume of the geodesic spheres of M̃ ; applying
Theorem 1.4, case (i) we deduce that, if |II|2 �≡ 0, λL

1 (M̃) < 0, contradicting the stability as-
sumption. �
Remark 5.11. Theorems 1.11 and 1.12 can be slightly generalized to the case Ricc � 0, assuming
a-priori that M has a pole. Indeed, with different techniques, by [14] there is no need to require
the existence of the pole. However, this seems to be essential in Lemma 5.8 in order to apply the
Gauss–Bonnet theorem.

5.12. The growth of the spectral radius: proof of Theorem 1.6

We begin with a lemma. In case the volume growth is at most exponential, by a direct appli-
cation of this result we recover Do Carmo and Zhou estimates (1.14) and (1.15).

Lemma 5.13. Suppose that

Vol(∂Br) � f (r) on (R,+∞)

for some R sufficiently large and some f ∈ C0([R0,+∞)). Fix R � 0.

– If M has infinite volume and (Vol(∂Br))
−1 /∈ L1(+∞), then

λ�
1 (M \ BR) = 0. (5.15)

– If (Vol(∂Br))
−1 ∈ L1(+∞), then for every ε > 0 there exists T0 = T0(ε) > R such that

λ�
1 (M \ BR) �

{
inf

t>T0

[
−1

2

log
∫ +∞
t

ds
f (s)

t − T0

]}2

+ ε. (5.16)

Proof. Set v(r) = Vol(∂Br). We begin with the case 1/v ∈ L1(+∞). Let R > 0 be sufficiently
large that

R0 > R,

+∞∫
R0

ds

v(s)
< 1,

and let ε > 0. We define on [R0,+∞)

Aε(r) =
{

inf
t>r

[
−1 log

∫ +∞
t

ds
f (s)

]}2

+ ε.

2 t − r
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Then, Aε(r) � ε, Aε(r) is continuous and non-decreasing. By Remark 1.7, M has infinite vol-
ume, thus we can apply (v) of Proposition 2.5 to obtain that (2.19) (with Aε instead of A) is
oscillatory. Let zε be a locally Lipschitz solution of (2.19), and R0 < T1 < T2 be two consecutive
zeros. Define φ(x) = zε(r(x)) on BT2 \ BT1 . Proceeding as in the proof of Theorem 1.4, by the
domain monotonicity of eigenvalues we have

0 � λ�
1 (M \ BR) < λ�

1 (BT2 \ BT1)

�

∫
BT2 \BT1

|∇φ|2∫
BT2 \BT1

φ2
=
∫ T2
T1

[z′
ε(r)]2v(r)dr∫ T2

T1
zε(r)2v(r)dr

=
∫ T2
T1

Aε(r)zε(r)
2v(r)dr∫ T2

T1
zε(r)2v(r)dr

� Aε(T2)

=
{

inf
t>T2

[
−1

2

log
∫ +∞
t

ds
f (s)

t − T2

]}2

+ ε.

Thus we get (5.16) with T0 = T2 (note that T0 depends on ε since zε(t) does).
In case 1/v /∈ L1(+∞) and M has infinite volume, by Theorem 2.4, Eq. (2.2) is oscillatory

whenever A(r) � ε > 0: indeed

+∞∫
R0

A(s)v(s) ds � ε

+∞∫
R0

v(s) ds = +∞.

Thus, choosing Aε(r) = ε the above reasoning shows that λ�
1 (M \ BR) � ε, and the validity of

(5.15) follows at once. �
Lemma 5.14. In case 1/v ∈ L1(+∞), the previous lemma yields in particular the weaker esti-
mate

λ�
1 (M \ BR) �

{
lim inf
t→+∞

[
−1

2

log
∫ +∞
t

ds
f (s)

t

]}2

∀R > 0. (5.17)

Proof. This follows immediately from the next observation: if we substitute in (5.16) “inf” with
the greater “liminf,” we observe that this does not depend on T0(ε). We can thus fix a particular
T0(ε), compute the “liminf” and then let ε → 0. �
Proof of Theorem 1.6. First, we apply Lemma 5.14 to estimate λ�

1 (M \BR) in case the volume
growth is at most exponential. Towards this aim suppose that (Vol(∂Br))

−1 ∈ L1(+∞) and that

Vol(∂Br) � f (r) = Λ exp
{
arα

}
0 < α � 1, Λ,a > 0. (5.18)

Due to our choice of α we easily see that

−1 log
∫ +∞
t

ds
f (s) ∼ a

tα−1 as t → ∞.

2 t 2
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Because of this we can apply Lemma 5.14. Hence, for every R � 0

λ�
1 (M \ BR) �

{
0 if 0 < α < 1,

a2/4 if α = 1.
(5.19)

In this way we recover Do Carmo and Zhou results quoted in the Introduction, and we also show
that the estimate in Lemma 5.13 is sharp. The above observations work also in case Vol(∂Br) �
Λ exp{arα logβ r}), with α < 1, β � 0, since it is enough to note that

exp
{
arα logβ r

}= O
(
exp

{
arα

})
for every α > α,

and to choose α such that α < α < 1.
We are left with the case α � 1, β � 0. For c > 1 and r > R we define

A(r) =
[
c

(
aα

2

)
rα−1 logβ r

]2

.

Note that A(r) is monotone increasing. Moreover, Remark 4.2 ensures that (2.19) is oscillatory.
Hence, proceeding as in Lemma 5.13 we have for R � R0

λ�
1 (M \ BR) � A(T2),

where T2(R) is the second zero of the solution z of (2.19) after R. By Theorem 4.1, for every
ε > 0 there exists R1(ε) such that, for every R � R1,

T2(R) �
[(

c + 1

c − 1

) 2
α

(1 + ε)

]
R.

Therefore, from the monotonicity of A(r) we get

λ�
1 (M \ BR) � A

([(
c + 1

c − 1

) 2
α

(1 + ε)

]
R

)
∀R � R1(ε).

Inserting the value of A(r), up to choosing ε small enough and R2 � R1 large enough we deduce
that, for every fixed c > 1,

λ�
1 (M \ BR) � a2α2

4
R2(α−1) log2β R

[
c2
(

c + 1

c − 1

) 4(α−1)
α

]
(1 + 2ε) ∀R � R2(ε).

Thus, letting first R → +∞ and then ε → 0, and minimizing over all c ∈ (1,+∞) we finally
have

lim sup
R→+∞

(
λ�

1 (M \ BR)

R2(α−1) log2β R

)
� a2α2

4
inf

c∈(1,+∞)

{
c2
(

c + 1

c − 1

) 4(α−1)
α

}
. (5.20)

This concludes the proof of the theorem. �
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Remark 5.15. The infimum of the function

c2
(

c + 1

c − 1

) 4(α−1)
α

is attained by the unique positive solution c of α(c + 1)(c − 1) = 4(α − 1)c, which can be
computed, although its explicit expression is not so neat.

Remark 5.16. It is worth to point out that an application of (5.20) in case α = 1 and β = 0 gives
λ�

1 (M \ BR) � a2/4, hence estimate (5.20) is sharp with respect to the constant appearing in
the RHS.

Remark 5.17. Proceeding as in the Introduction, one can study a model manifold whose function
h(r) is of the following type:

h(r) =
{

r, r ∈ [0,1],
exp

{
arα

m−1 logβ r
}
, r ∈ [2,+∞),

for which the volume growth of geodesic spheres is

exp
{
arα logβ r

}
.

Performing the same computations of the Introduction, one obtains for R sufficiently large

λ�
1 (M \ BR) � KR2(α−1) log2β R

for some K > 0. This shows that the estimate of Theorem 1.6 is sharp even with respect to the
power of the logarithm.
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Appendix A

This appendix is devoted to showing existence for the Cauchy problem (2.2) under general
assumptions on v(t), A(t). Moreover, we prove that the zeros of such solutions, if any, are at iso-
lated points, and we stress a Sturm type comparison result. In this respect, we fix R ∈ (0,+∞]
(note that +∞ is allowed), and we assume that v(t),A(t) satisfy the following set of assump-
tions:

(A1) 0 � A(t) ∈ L∞
loc([0,R)), A �≡ 0 in L∞

loc sense;

(V1) 0 � v(t) ∈ L∞
loc([0,R)),

1

v(t)
∈ L∞

loc((0,R)), lim
t→0+ v(t) = 0;

(V3) there exists a ∈ (0,R) such that v is strictly increasing on (0, a).
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Proposition A.1. Under assumptions (A1), (V1), (V3) there exists a locally Lipschitz function
z ∈ Liploc([0,R)) such that{(

v(t)z′(t)
)′ + A(t)v(t)z(t) = 0 almost everywhere on (0,R),

z(0+) = z0 > 0.
(A.1)

Moreover, up to a zero-measure set Ω ,

lim
t→0+
t /∈Ω

z′(t) = 0.

If in addiction A(t), v(t) are continuous on [0,R), then z ∈ C1([0,R)) and z′(0+) = 0.

Proof. First, fix a sequence Tj ↑ R. We can suppose that a ∈ (0, Tj ) for every j , where a is as
in (V3), and A �≡ 0 on [0, Tj ]: the case A ≡ 0 is easier and can be treated similarly. Fix ε ∈ (0, a),
and define

vε(t) =
{

v(ε) on (0, ε],
v(t) on [ε,R).

Then,

kε(t, s) = −A(s)vε(s)

t∫
s

dx

vε(x)
(A.2)

belongs to L∞
loc([0,R) × [0,R)). Thus, by standard theory (one can consult Chapter IX of [20]),

Volterra integral equation of the second type

w(t) = z0 +
t∫

0

kε(t, s)w(s) ds, (A.3)

restricted to every interval [0, Tj ] (where the kernel kε(t, s) is bounded), admits a unique solu-
tion zε,j ∈ L2((0, Tj )). From (A.2), using integration by parts applied to the integrable function
−A(s)vε(s)zε,j (s) and to the absolutely continuous one

t∫
s

dx

vε(x)
.

We see that zε,j satisfies

zε,j (t) = z0 −
t∫

1

vε(s)

{ s∫
A(x)vε(x)zε,j (x) dx

}
ds (A.4)
0 0
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on [0, Tj ]. This shows that zε,j (t), being an integral function, is absolutely continuous on [0, Tj ]
(hence, almost everywhere differentiable), and its derivative is almost everywhere

1

vε(t)

t∫
0

A(x)vε(x)zε,j (x) dx ∈ L∞([0, Tj ]).

Therefore, zε,j (t) is a Lipschitz function on [0, Tj ]. By the uniqueness of solutions of (A.3), we
deduce that, when j < k, zε,k restricted to [0, Tj ] coincides with zε,j . Hence, we can construct a
locally Lipschitz solution zε(t) defined on the whole [0,R). What we want to prove is that, for
every Tj , the family {zε}ε∈(0,a) is equibounded and equi-Lipschitz in C0([0, Tj ]). For the ease of
notation, from now on we omit the subscript j and we consider the problem on [0, T ] ⊂ [0,R).
We observe that, because of (V3) and (A1), for 0 � s � t � a we have∣∣kε(t, s)

∣∣� ‖A‖(t − s) � ‖A‖a, (A.5)

where ‖A‖ = ‖A‖L∞([0,T ]). Next, we consider the case 0 � s � a < t � T . Because of (V1), on
[a,T ] v−1 is bounded. We indicate with ‖v−1‖ the L∞-norm of v−1(t) on [a,T ], and with ‖v‖
the L∞-norm of v(t) on the whole [0, T ]. It follows that

∣∣kε(t, s)
∣∣= A(s)vε(s)

{ a∫
s

dx

vε(x)
+

t∫
a

dx

vε(x)

}
� ‖A‖(a + vε(s)

∥∥v−1
∥∥T )

� ‖A‖(a + ‖v‖∥∥v−1
∥∥T ).

It remains to consider the case 0 < a � s � t � T . In this case we obtain∣∣kε(t, s)
∣∣� A(s)vε(s)

∥∥v−1
∥∥T � ‖A‖‖v‖∥∥v−1

∥∥T .

Therefore, there exists L = L(T ,a) > 0 such that

sup
ε∈(0,a)

(
sup

0�s�t�T

∣∣kε(t, s)
∣∣)� L. (A.6)

Using (A.6) into (A.3) we have

∣∣zε(t)
∣∣� z0 + L

t∫
0

∣∣zε(s)
∣∣ds ∀t ∈ [0, T ].

So that, applying Gronwall lemma on the continuous function |zε(t)|, we conclude∣∣zε(t)
∣∣� z0eLt � z0eLT on [0, T ]. (A.7)
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This shows equiboundedness of the family {zε}ε∈(0,a). To show equicontinuity we differentiate
(A.4) to obtain

z′
ε(t) = − 1

vε(t)

t∫
0

A(x)vε(x)zε(x) dx almost everywhere on [0, T ]. (A.8)

We set

H(ε, t) = 1

vε(t)
max

s∈[0,t]
A(s)vε(s).

If 0 � t � a, because of (A1) and (V3) we have

H(ε, t) � ‖A‖.

If a < t � T , since ε ∈ (0, a), vε(t) = v(t) and therefore

H(ε, t) � ‖A‖‖vε‖L∞([0,t])
v(t)

� ‖A‖∥∥v−1
∥∥‖vε‖L∞([0,t]) � ‖A‖∥∥v−1

∥∥‖v‖,

where the last inequality is an immediate consequence of (V3) and the definition of vε(t). Sum-
marizing, there exists M = M(T,a) > 0 such that

sup
ε∈(0,a)

H(ε, t) � M a.e. on [0, T ].

From (A.8) it follows that

∣∣z′
ε(t)

∣∣� M

t∫
0

∣∣zε(x)
∣∣dx a.e. on [0, T ]

and thus, from (A.7), ∣∣z′
ε(t)

∣∣� z0MT eLT a.e. on [0, T ]. (A.9)

This shows that {zε}ε∈(0,a) is equi-Lipschitz on every compact subset [0, T ] ⊂ [0,R). By the
Ascoli–Arzelá theorem, the set {zε}ε∈(0,a) is relatively compact in C0([0, T ]). Therefore, there
exists a sequence εn → 0 such that zεn converges uniformly to a Lipschitz function z on [0, T ].
A Cantor diagonal argument on the exhaustion [0, Tj ] ↑ [0,R) yields a sequence zεn which
converges locally uniformly to a locally Lipschitz function z on [0,R).

Clearly, vεn → v in L∞([0,R)). If we set

rε(t) = 1

vε(t)

t∫
A(s)vε(s)zε(s) ds
0
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using (A.8) and (A.9) we see that rεn is locally a bounded sequence of L∞
loc-functions converging

pointwise to

r(t) = 1

v(t)

t∫
0

A(s)v(s)z(s) ds a.e. on [0,R).

By the dominated convergence theorem rεn → r in L1((0, t]) ∀t ∈ (0,R). Hence, for every
t ∈ [0,R),

lim
n→+∞

t∫
0

ds

vεn(s)

{ s∫
0

A(x)vεn(x)zεn(x) dx

}
=

t∫
0

ds

v(s)

{ s∫
0

A(x)v(x)z(x) dx

}
.

Because of (A.4) it follows that z satisfies the integral equation

z(t) = z0 −
t∫

0

1

v(s)

{ s∫
0

A(x)v(x)z(x) dx

}
ds, (A.10)

hence the Cauchy problem (A.1). Note that, in case v(t),A(t) are also continuous, from (A.10)
we deduce that z(t) ∈ C1((0,R)). Because of (V3), for t ∈ (0, a] we have

∣∣z′(t)
∣∣= ∣∣∣∣∣ 1

v(t)

{ t∫
0

A(s)v(s)z(s) ds

}∣∣∣∣∣�
t∫

0

A(s)
∣∣z(s)∣∣ds almost everywhere

so that, up to a zero-measure set Ω , z′(t) → 0 as t → 0+, t /∈ Ω . In case v(t), A(t) are continu-
ous, the above inequality is everywhere valid and shows that z(t) ∈ C1([0,R)) with z′(0+) = 0.
This concludes the proof. �
Remark A.2. With the same technique (but a simpler proof) we can provide existence of a locally
Lipschitz solution of problem (2.19) when (A1), (V1) are met on [t0,R), for some t0 > 0. Note
that 1/v is required to be bounded also in a neighborhood of t0.

Proposition A.3. Assume (A1) and (V1). Then, the zeros of every locally Lipschitz solution z(t)

of (A.1), if any, are at isolated points of [0,R).

Proof. Let

y(t) = −v(t)z′(t)
z(t)

.

Since z ∈ Liploc([0,R)), y(t) is at least locally Lipschitz on compact sets of [0,R)\{t : z(t) = 0}.
This follows since (vz′)′ = −Avz ∈ L∞

loc([0,R)), hence vz′ is locally Lipschitz. Differentiating
and using (A.1) we get

y′(t) = A(t)v(t) + y2(t)
almost everywhere,
v(t)
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hence y(t) is increasing on its domain. Assume that t0 ∈ (0,R) is a zero of z(t) (note that z0 > 0).
First, we prove that

lim
t→t±0

y(t) = ∓∞. (A.11)

Indeed, both limits exist by monotonicity. Indicating with L± the two limits, if by contradiction
L− < +∞ (analogously for L+ > −∞) then necessarily

v(t0)z
′(t0) = lim

t→t0
v(t)z′(t) = lim

t→t−0
v(t)z′(t) = −z(t0)L

− = 0.

Therefore, z(t) should solve{(
v(t)z′)′ + A(t)v(t)z = 0 almost everywhere on (0,R),

z(t0) = 0, v(t0)z
′(t0) = 0.

(A.12)

In other words, z(t) should be a locally Lipschitz solution of Volterra integral problem

z(t) = −
t∫

t0

1

v(s)

{ s∫
t0

A(x)v(x)z(x) dx

}
ds = −

t∫
t0

[
A(s)v(s)

t∫
s

dx

v(x)

]
z(s) ds, (A.13)

where the last inequality follows integrating by parts. Since v(t) is bounded away from zero on
compact sets of (0,R), the kernel of Volterra operator is locally bounded. Therefore, (A.13) has
a unique local solution, which is necessarily z ≡ 0 on every [T1, T2] ⊂ (0,R). This contradicts
z(0+) = z0 > 0 and proves (A.11). Now, if there exists {tk} such that z(tk) = 0 and tk → t0,
every neighborhood of t0 should contain points tk such that limt→t±k

y(t) = ∓∞, and this clearly
contradicts the fact that y(t) has both left and right limits in t0. �
Proposition A.4. Assume (V1), and let A1,A2 satisfy (A1) and A1 � A2 a.e. on [0,R). Suppose
that zi(t), i ∈ {1,2}, is a locally Lipschitz solution of (A.1) with A(t) = Ai(t). Fix T � R such
that z1(t), z2(t) > 0 on [0, T ). Then z2(t) � z1(t) on [0, T ).

Proof. We consider the locally Lipschitz function F = (vz′
1)z2 − (vz′

2)z1. Differentiating we
obtain

F ′ = (
vz′

1z2 − vz′
2z1

)′ = z2(−A1vz1) − z1(−A2vz2) = (A2 − A1)vz1z2 � 0

almost everywhere on [0, T ). This shows that F is non-increasing. From F(0+) = 0 we argue
F � 0 and therefore vz′

1z2 � vz′
2z1. By (V1) we deduce that v is essentially bounded from below

with a positive constant on compact sets of (0, T ), thus z′
1z2 � z′

2z1 almost everywhere. Hence(
z1

z2

)′
= z′

1z2 − z′
2z1

z2
2

� 0 almost everywhere on (0, T ).

Since z1(0)/z2(0) = 1 we conclude z1(t) � z2(t) on [0, T ). �
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