
Science of Computer Programming 55 (2005) 185–208

www.elsevier.com/locate/scico

How the design of JML accommodates both runtime
assertion checking and formal verification

Gary T. Leavensa,∗, Yoonsik Cheonb, Curtis Cliftona,
Clyde Rubya, DavidR. Cokc

aDepartment of Computer Science, Iowa State University, Ames, IA, USA
bDepartment of Computer Science, University of Texas at El Paso, El Paso, TX, USA

cEastman Kodak Company, Research and Development Laboratories, Rochester, NY, USA

Received 31 August 2003; received in revised form 15 April 2004; accepted 30 May 2004
Available online 30 October 2004

Abstract

Specifications that are used in detailed design and in the documentation of existing code are
primarily written and read by programmers. However, most formal specification languages either
make heavy use of symbolic mathematical operators, which discourages use by programmers, or
limit assertions to expressions of the underlying programming language, which makes it difficult
to write exact specifications. Moreover, using assertions that are expressions in the underlying
programming language can cause problems both in runtime assertion checking and in formal
verification, because such expressions can potentially contain side effects. The Java Modeling
Language, JML, avoids these problems. It uses a side-effect free subset of Java’s expressions to
which are added a few mathematicaloperators (such as the quantifiers\forall and\exists). JML
also hides mathematical abstractions, such as sets and sequences, within a library of Java classes. The
goal is to allow JMLto serve as a common notation for both formal verification and runtime assertion
checking; this gives users the benefit of several tools without the cost of changing notations.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Specification languages; Runtime assertion checking; Formal methods; Program verification;
Programming by contract; Java language; JML language

∗ Corresponding author.
E-mail address:leavens@cs.iastate.edu (G.T. Leavens).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.05.015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82511183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico

186 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

1. Introduction

The Java Modeling Language, JML [65,66], is the result of a cooperative, international
effort aimed at providing a common notation and semantics for the specification of
Java code at the detailed-design level [67]. JML is being designed cooperatively so that
many different tools can use a common notation for Hoare-style behavioral interface
specifications. In this paper we explain the features of JML’s design that make its assertions
easily understandable by programmers and suitable for both runtime assertion checking
and formal verification.

1.1. Background

By aHoare-stylespecification we mean one that uses preconditions and postconditions
to specify the behavior of methods [36,46–48]. A behavioral interface specification
language(BISL) is a specification language that specifies both the syntactic interface
of a module and its behavior [35,52,56,91]. JML, the interface specification languages
in the Larch family [35,52,56,91] and RESOLVE/C++ [24,79] are BISLs.Most design
by contract languages and tools, such as Eiffel [74,75] and APP [82], are also BISLs,
because they place specifications inside programming language code. By contrast, neither
Z [85,84,92] nor VDM [7,29,46,41] is a BISL; they have no way to specify interface
details for a particular programming language. OCL [87,88] is a BISL for the UML, but the
UML itself is language independent; this poses problems fora Java programmer, because
the UML does not have standard notations for alldetails of Java method signatures. For
example, the UML’s syntax for specifying the signatures of operations has no standard
notation for declaring that a Java method isstrictfp or for declaring the exceptions
that a methodmay throw [8, pp. 128–129] [53, p. 516].1 Also the OCL has no standard
constraints that correspond to JML’s exceptional postconditions. Because BISLs like JML
specify both interface and behavior, they are good at specifying detailed designs that
include such Java details. This makes JML well suited to the taskof documenting reusable
components, libraries, and frameworks written in Java.

1.2. Tool support

Because BISLs are easily integrated with code, they lend themselves to tool support
for activities related to detailed design, coding, testing, and maintenance. An important
goal of JML is to enable a wide spectrum of such tools. Besides tools that enforce JML’s
semantics (e.g., type checking), the most important JML tools help with the following
tasks.

Runtime checking and testing. The Iowa State group provides
(via http://www.jmlspecs.org):

1 Larman notes that the UML has some non-standard ways to specify the exceptions that a method may throw,
by either using Java’s own syntax directly or by using a “property string”.

http://www.jmlspecs.org

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 187

• thejmlc runtime assertion checking compiler [14], which generates class files
from JML-annotated Java sources,2 and

• the jmlunit tool [15], which uses the runtime assertion checker to generate
test oracle code for JUnit tests.

Documentation. David Cok provides the jmldoc tool, also available through
http://www.jmlspecs.org, which generates HTML documentation similar to that
produced by Javadoc [31], but containing specifications as well. The generated
documentation is useful for browsing specifications or publishing on the web.

Static analysis and verification. The following tools are prepared by our partners at
Compaqand the University of Nijmegen:
• The ESC/Java tool [30,69,70] statically checks Java code for likely errors.

ESC/Java understands a subset of JML annotations.
• The ESC/Java2 tool [19] extends ESC/Java to understand all of JML and to

check most of it.
• The LOOP tool [39,40,44,45] assists in the formalverification of the

correctness of implementations from JML specifications, using the theorem
prover PVS.

In addition, the Daikon dynamic invariant detector [25,78] outputs invariants for Java
programs in a subset of JML, and the Korat automated testing tool [9] uses thejmlunit
tool to exercise the test data it derives.

In this paper, we discuss how JML meets the needs of tools for runtime assertion
checking, documentation, static analysis, and verification. We focus on runtime assertion
checking and formal verification, which we consider to be the extremes of the spectrum
of tools that a BISL might support. The tasks of runtime assertion checking and formal
verification have widely differing needs:

• Runtime assertion checking places a high premium on executability. Many specification
languages intended for runtime assertion checking, such as Eiffel [74,75] and APP [82],
only allow assertions that are completely executable. This is sensible for a language that
is intended only to support runtime assertion checking and not formal verification.

• On the other hand, formal theorem proving and reasoning place a high premium on the
use of standard mathematical notations. Thus, most specification languages intended for
formal reasoning or verification, such as VDM, the members of the Larch family, and
especially Z, feature a variety of symbolicmathematical notations. Many expressive
mathematical notations, such as quantifiers, are impossible, in general, to execute at
runtime. Again, including such notations is sensible for a language intended only to
support formal theorem proving and reasoning and not runtime assertion checking.

1.3. Problems

We begin by describing some problems that arise when addressing the needs of the
range of tools exemplified by runtime assertion checking and formal verification. Like the

2 Besides this runtime assertion checking work at Iowa State, which relies on adding instrumentation to
compiled code, Steven Edwards’s group at Virginia Tech isworking on a wrapper-class-based approach to runtime
assertion checking that will allow instrumentation of programs for which source code is not available.

http://www.jmlspecs.org

188 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

tools, the problems encompass a broad range, including issues of notation, logic, and
expressiveness.

1.3.1. Notational problem
It is often said that syntax does not matter; however, our experience with

Larch/Smalltalk [12] and Larch/C++ [13,54,55,58,59] showed that programmers object
to learning a specialized mathematical notation (the Larch Shared Language). This
is similar to the problems found by Finney [28], who did a preliminary experiment
demonstrating that the symbolic notation in Z specifications may make them hard to read.
Conversely, in executable languages like Eiffel and APP, programmers feel comfortable
with the useof the programming language’s expressions in assertions. Such an assertion
language is therefore more appealing for purposes of documentation than highly symbolic
mathematical notations.

To summarize, the first problem that we address in this paper is how to provide a good
syntax for specification expressions.Specification expressionsare the syntactic forms that
are used to denote values in assertions. By agoodsyntax we mean one that is close enough
to programming language expressions that programmers feel comfortable with it and yet
has all of the features necessary to support both runtime assertion checking and formal
verification.

1.3.2. Undefinedness problem
Expressions in a programming language may abruptly terminate (e.g., throw exceptions)

and may go into infinite loops; consequently, they may have undefined values from a
strictly mathematical point of view. Programming languages typically provide features
to control what subexpressions must be evaluated, which can be used to avoid such
undefinedness. For example, Java provides short-circuit versions of boolean operators
(such as&& and||) that allow programmers to suppress evaluation of some subexpressions.

We wantboth programmers and mathematicians to use JML’s notations; hence, JML’s
specification expressions should not only look like Java’s expressions and use Java’s
semantics, but should also validate the standard laws of logic. However, because of a
potential for undefinedness, Java expressions do not satisfy all the standard rules of logic;
for example, in Java the conjunctionE1 && E2 is not equal toE2 && E1, although in logic
they would be equal. To resolve this conflict, we are willing to accept a slightly different
semantics for assertion evaluation as longas programmers are not too surprised by it.

Thus, the second problem we address in this paper is how to find a semantics for
expressions used in assertions that validates standard laws of logic and yet does not surprise
programmers and is still useful for runtime assertion checking.

1.3.3. Side effects problem
Another important semantic issue is that expressions in a programming language like

Java (and mostothers, including Eiffel) can contain side effects. Side effects have a
very practical problem related to runtime assertion checking. It is generally assumed that
assertions may be evaluated or skipped with no change in the outcome of a computation,
but an assertion with side effects has the potential to alter the computation’s outcome.
For example, an assertion with side effects might mask the presence of a bug that would

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 189

otherwise be revealed or cause bugs thatare not otherwise present. Because one of
the principal uses of runtime assertion checking is debugging and isolating bugs, it is
unacceptable for side effects from assertion checking to alter the outcome of a computation.

Thus, the third problem that we address in this paper is how to prevent side effects in
assertions while still retaining as much of the syntax of normal programming language
expressions as possible.

1.3.4. Mathematical library problem
Most specification languages come with a library of mathematical concepts such as

sets and sequences. Such concepts are especially helpful in specifying collection types.
For example, to specify a Stack type, one would use a mathematical sequence to
describe, abstractly, the states that a stack object may take [37]. VDM, OCL, Z, and the
interface specification languages of the Larch family all have libraries of such mathematical
concepts. They also are standard in theorem provers such as PVS.

However, as discussed inSection 1.3.1, we want to limit the barriers that Java
programmers must overcome to use JML. Thus, the fourth problem that we address in
this paper is how to provide a library of mathematical concepts in a way that does not
overwhelmprogrammers, and yet is useful for formal verification.

1.4. Other goals of JML

In addition to providing solutions to the preceding four problems, the design of JML
is guided and constrained by several other goals. One of the most important of these
goalsis to allow users to write specifications that document detailed designs of existing
code. This motivates the choice of making JML a BISL, as described above. Moreover, we
would like JML to be useful for documenting code regardless of whether it was designed
according to any particular design method or discipline. This is important because the cost
of specification is high enough that it is not always justified until one knows that the design
and the code have stabilized enough to make the documentation potentially useful to other
people.

In general, JML’s design adheres to the goal of being able to document existing designs;
however, there is one significant aspect of JML’s design that departs from this goal—
JML imposes the specifications of supertypes on subtypes, a property termedspecification
inheritance, in order toachieve behavioral subtyping [21].

JML’s use of specification inheritance is justified by another of our goals: we want JML
to supportmodular reasoning, that is, reasoning about the behavior of a compilation unit
using just the specifications of the compilation units that it references (as opposed to the
details of their implementations). Modularreasoning is important because without it, the
difficulty of understanding an object-oriented program increases much more rapidly than
the size of the program, and thus the benefits of the abstraction mechanisms in object-
oriented languages are lost. Consequently, modular reasoning is also important for formal
verification, because then the scope ofthe verification problem is limited.

Specification inheritance, and the resulting behavioral subtyping, allows modular
reasoning to be sound, by allowing one to reason based on the static types of references.
Subsumption in Java allows a reference to a subtype object to be substituted for a supertype

190 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

reference. The requirements of behavioral subtyping [21,2,3,60,61,57,73] guarantee that
all such substituted objects will obey the specifications inherited from the static type of the
Refs. [21,62,63].

Because modular reasoning provides benefits to programmers and verifiers, we favor
specification inheritance over the conflicting goal of being able to document existing
designs that do not follow behavioral subtyping. In any case, it is possible to work around
the requirements of behavioral subtyping for cases in which a subtype does not obey
the inherited specifications of its supertype(s). One simply underspecifies each supertype
enough to allow all of the subtypes that are desired [57,73]. Note that this work-around
does not involve changing the code or the design, but only the specification, so it does not
interfere with the goal of documenting existing code.

1.5. Outline

The remainder of this paper is organized as follows. The next section discusses our
solution to the notational problem described above. Having described the notation in
general terms,Section 3provides more background on JML. The subsequent three sections
treat the remaining problems discussed above. Thepaper ends with a discussion of related
work and some conclusions.

2. Solving the notational problem

To solve thenotational problem described inSection 1.3.1, JML generally follows
Eiffel, basing the syntax of specification expressions on Java’s expression syntax. However,
because side effects are not desired in specification expressions, JML’s specification
expressions do not include Java expressions that can cause obvious side effects, i.e.,
assignment expressions and Java’s increment and decrement operators (++ and--).

Furthermore, to make JML suitable for formalverification efforts, JML includes a
number of operators that are not present in Java [66, Section 3]. The syntax of these
operators comes in two flavors: those that are symbolic and those that are textual.

We did not want to introduce excess notation that would cause difficulties for
programmers when reading specifications, so JML adds just five symbolic operators.
Four of these are logical operators: forward and reverse implication, written==> and
<==, respectively, and logical equivalence and inequivalence, written<==> and <=!=>,
respectively. The inclusion of symbols for logical operators is inspired by the calculational
approach to formal methods [18,22,33]. The other symbolic operator is<:, which is used
to compare types to see whether they are in a subtype relationship [69].

All the other operators added to Java and available in JML’s specification expressions
use a textual notation consisting of a backslash (\) followed by an English word orphrase.
For example, the logical quantifiers in JML are written as\forall and\exists [66].

Besides these quantifiers, JML also has several other operators using this backslash
syntax. One of the most important is\old(), which is used in method postconditions
to indicate an expression whose value is computed in the pre-state of a method call. For
example,\old(i-1) denotes the value ofi-1 evaluated in the pre-state of a method call.
This notation is borrowed from theold operator in Eiffel. Other JML expressions using

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 191

the backslash syntax include\fresh(o), which says thato wasnot allocatedin the pre-
state of a method call, but is allocated (and not null) in the post-state, and\result, which
denotes the normal result returned by a method.

The backslashes in the syntax of these operators serve a very important purpose—they
prevent the rest of the operator’s name from being interpreted as a Java identifier. This
allows JML to avoid reserving Java identifiers in specification expressions. For example,
result can be used as a program variable and is distinguished from\result. This trick is
useful in allowing JML to specify arbitrary Java programs. Indeed, because a goal of JML
is to document existing code, it cannot add new reserved words to Java.

3. Background on JML

In this section we provide additional background on JML that will be useful in
understanding our solutions to the remaining problems.

3.1. Semantics of specification expressions

Just as JML adopts much of Java’s expression syntax, it attempts to keep JML’s
semantics similar to Java’s. In particular, the semantics of specification expressions is a
reference semantics. That is, when the name of a variable or field is used in an expression, it
denotes either a primitive value (such as an integer) or a reference to an object. References
themselves are values in the semantics, which allows one to directly express aliasing or the
lack of it. For example, the expressionarg != fieldVal says thatarg andfieldVal are
not aliased. Java also allows one to compare the states of objects using theequals method.
For example, in the postcondition of aclone method, one might write the following to say
that the result returned byclone is a newly allocated object that has the same state as the
receiver (this):

\fresh(\result) && this.equals(\result);

Note that the exact meaning of theequals method for a given type is left to the designer
of that type, as in Java. Thus, if one only knows thato is anObject, it is hard to conclude
much aboutx from o.equals(x).

Because JML uses this reference semantics,specifiers must show the same care as Java
programmers when choosing between the== andequals equality tests. And like Eiffel, but
unlike Larch-style interface specification languages, JML does not need “state functions”
to be applied to extract the value of an expression from a reference. Values are implicitly
extracted as needed by methods and operators. Besides being easier for programmers, this
lends some succinctness to the notation.

Currently, JML adopts all of the Java semantics for integer arithmetic. Thus types such
asint use two’s complement arithmetic and are finite. Although Java programmers are, in
theory, aware of the nature of integer arithmetic, JML’s adoption of Java’s semantics causes
some misunderstandings; for example, some published JML specifications are inconsistent
because of this semantics [11]. Chalin has suggested adding new primitive value types for
infinite precision arithmetic to JML; in particular, he suggests a type\bigint for infinite
precision integers [10,11]. He is currentlyimplementing and experimenting with this idea.

192 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

3.2. Method and type specifications

To explain JML’s semantics for method specifications, we use the example inFig. 1.
JML uses special comments, calledannotations, tohold the specification of behavior; these
are added to the interface information contained in the Java code. A specifier writes these
annotation comments by inserting an at-sign (@) following the usual characters that signify
the start of a comment. In multi-line annotation comments, at-signsat the beginnings of
lines are ignored.

Fig. 1 starts with a “model import” directive, which says that JML will consider all
types in the named package,org.jmlspecs.models, to be imported for purposes of the
specification. This allows the JML tools to find the typeJMLObjectSequence (see the
third line) in that package.

The typeJMLObjectSequence is used as the type of the model instance field, named
absVal. In this declaration, themodel keyword says that the field is not part of the Java
code, but is used solely for purposes of specification. Theinstance keyword says that the
field is imagined, for purposes of specification, to be a non-static field in every class that
implements this interface.3

Following the declaration of the two model instance fields is an invariant. It says that
the fieldabsVal is never null.

Following the invariant are the declarations and specifications of three methods. In JML,
a method’s specifications are typically written, as they are inFig. 1, before theheader of
the method that they specify. This makes the scope of the formal parameters of a method
a bit strange, because it extends backward intothe method’s specification. However, it
works best with Java tools, which expect comments related to a method, such as Javadoc
comments, to precede the method’s header.

Consider the specification of the first method,push. This shows the general form
of a “normal behavior” specification case. Aspecification caseincludes a precondition,
indicated by the keywordrequires, and someother specification clauses. A specification
case is satisfied if, whenever the precondition is satisfied, the other clauses are also
satisfied. Additionally, in a normal behavior specification case, the method must not
throw an exception when the precondition is satisfied. The specification case given for
push includes, besides therequires clause, a frame axiom, introduced by the keyword
assignable, and anormal postcondition, following the keywordensures.

As with specification languages in the Larch family, a precondition that is
just true can be omitted. In the Larch family, an omitted frame axiom means
“assignable \nothing;”, which is a very strong specification that says that the
method has no side effects. Following a suggestion of Erik Poll, we decided that such
a specification was too strong for a default. So in JML, an omitted frame axiom allows
assignment to all locations. This agrees with most of the defaults for omitted clauses in
JML, which impose no restrictions.

JML also allows specifiers to write “exceptional behavior” specification cases, which
say that, when the precondition is satisfied, the method must not return normally but must

3 Omitting instance makes fields static and final, which is Java’s default for fields declared in interfaces.

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 193

//@ model import org.jmlspecs.models.*;
public interface Stack {

//@ public model instance JMLObjectSequence absVal;

//@ public instance invariant absVal != null;

/*@ public normal_behavior
@ requires true;
@ assignable absVal;
@ ensures absVal.equals(\old(absVal.insertFront(x))); @*/

void push(Object x);

/*@ public normal_behavior
@ requires !absVal.isEmpty();
@ assignable absVal;
@ ensures absVal.equals(\old(absVal.trailer()))
@ && \result == \old(absVal.first());
@ also
@ public exceptional_behavior
@ requires absVal.isEmpty();
@ assignable \nothing;
@ signals (Exception e)
@ e instanceof IllegalStateException; @*/

Object pop();

//@ ensures \result <==> absVal.isEmpty();
/*@ pure @*/ boolean isEmpty();

}

Fig. 1. The specification and code for the interfaceStack.

instead throw an exception. An example appears in the specification of thepop method.
This specification has two specification cases connected withalso. The meaning of the
also is that the method must satisfy both of these specification cases [89,90]. Thus, when
the valueof the model instance fieldabsVal is not empty, a call topop must return
normally and must satisfy the givenensures clause. But when the value of the model
instance fieldabsVal is empty, a call topop must throw anIllegalStateException.
This kind of case analysis can be desugared into a single specification case, which can be
given a semantics in the usual way [40,58,43,81].

The specification cases given forpush and pop are heavyweight specification cases
[66, Section 1]. Such specification cases are useful when one wants to give a relatively
exact specification, especially for purposes offormal verification.For runtime assertion

194 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

checking or documentation, one may want to specify only part of the behavior of
a method. This can be done using JML’s lightweight specification cases, which are
indicated by the absence of a behavior keyword (likenormal_behavior). Fig. 1 gives
an example of a lightweight specification case in the specification of the method
isEmpty.

4. Dealing with undefinedness

As discussed inSection 1.3.2, a fundamental problem in using the underlying language
for specification expressions is dealing with expressions that have undefined values. In
Java, undefinedness in expressions is typicallysignaled by the expression throwing an
exception. For example, when one divides an integer by 0, the expression throws an
ArithmeticException. Exceptions may also be thrown by methods called from within
specification expressions.

Specification languages have adopted several different approaches to dealing with
undefinedness in expressions [5,34]. We wanted a semantics that would not be surprising
to either Java programmers or to those doing formal verification. Typically, a Java
programmer would try to write the specification in a way that “protects” the meaning
of the expression against any source of undefinedness [64]. This can be accomplished
by using the short-circuit boolean operators; for example, a specifier might write
denom > 0 && num/denom > 1 to be sure that the division would be defined whenever
it was carried out.

However, we would like specifications tobe meaningful even if they are not protective.
Hence, the semantics of JML does not rely on the programmer writing protective
specifications but, instead, ensures that every expression has some value. To do this, we
adopted the “underspecified total functions” approach favored in the calculational style of
formal methods [33,34]. That is, an expression that would not have a value in Java is given
an arbitrary, but unspecified, value. For example,num/0 has some integer value, although
this approachdoes not say what the value is, and says only that it must be uniformly
substituted in any surrounding expression.

An advantage of this substitution approach is that it validates the rules for standard
logic. For example, in JML,E1 && E2 is equivalent toE2 && E1. Consider what happens
if E1 throws an exception; in that case, one may chose some unspecified boolean value for
E1, sayb. This means thatE1 && E2 equalsb && E2, which isequal toE2 && b, ascan
be seen by a simple case analysis onE2’s value. The case whereE2 throws an exception
is similar. Furthermore, if programmers writeprotective specifications, they will never be
surprised by the details of this semantics.

The JML assertion checking compiler takes advantage of the semantics of
undefinedness to attempt, as much as possible, to detect possible assertion violations [14].
That is, assertion checking attempts to use a value that will make the overall assertion
false, whenever the undefinedness of some subexpression allows it to do so. In this way,
the assertion checker can both follow the rules of standard logic and detect places where
specifications are not sufficiently protective. This is a good example of how JML caters to
the needs of both runtime assertion checking and formal verification.

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 195

5. Preventing side effects in assertions

As discussed inSection 1.3.3, it is important to prevent side effects in assertions, for
both practical and theoretical reasons.

JML is designed to prevent side effects in assertions statically. It does this using an
effect checking type of system [32,86]. At the heart of the system is thepure modifier.
Only methods and constructors that are declared to bepure can be used in assertions, and
methods and constructors declaredpure must be side-effect free. In this section we first
explain the details of thissemantics, and then discuss its ramifications.

5.1. JML’s purity restrictions

JML’s semantic restrictions on pure methods and constructors are as follows:

• A pure methodimplicitly has a specification that includes the following specification
case [66, Section 2.3.1]:

assignable \nothing;

This ensures that a correct implementation of the method has no side effects.
• “A pure constructorimplicitly has a specification that only allows it to assign to the

instance fields of the class in which it appears” (including inherited instance fields) [66,
Section 2.3.1]. This ensures that, if the constructor is correctly implemented, then anew
expression thatcalls it has no side effects.

To explain the first restriction, it helps to first explain the semantics of JML’s assignable
clause [66, Section 2.1.3.1]. The assignable clause of a methodm describes the set of
existing, non-local storage locations that may be assigned bym’s execution. Local variables
in a method, such asm’s formal parameters and variables declared inm’s body, can be
assigned regardless ofm’s assignable clause. Similarly, fields of objects allocated bym
itself, and thus not existing inm’s pre-state, can be freely assigned during them’s execution
regardless of its assignable clause. Other locations, which exist in the pre-state, and which
are not local tom, can only be assigned if they are mentioned inm’s assignable clause
(perhaps implicitly via a data group).

Therefore, the first restriction implies that a pure method may not perform any input or
output, nor may it assign to existing, non-local storage. Similarly, by the second restriction,
a pure constructor may not do any I/O and may not assign to non-local storage other
than the instance fields of the object the constructor is initializing. A pure constructor
is allowed to assign to the instance fields of the object being constructed, because in an
expression such asnew T(), thenewly created object does not exist in that expression’s
pre-state.

Note that, in JML, saying that a method may not assign to existing, non-local storage
means precisely that—even benevolent side effects are prohibited [66, Section 2.1.3.1].
A benevolent side effectis a change in the internal state of an existing object in a way
that is not externally visible [36]. Prohibiting even benevolent side effects is necessary for
sound modular reasoning about method implementations [68]. It is also a useful restriction
for reasoning about supertypes from their specifications [83] and for reasoning about
concurrent programs.

196 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

In the current version of JML, the purity restrictions described above are enforced
conservatively. The most conservative aspect of purity checking is that pure methods and
pure constructors may only invoke other methods and constructors that are pure. This is
somewhat overly conservative, but is simple to implement. A less conservative rule would
allow assignments to fields in objects that are created after the start of a pure method’s
execution, as such assignments are not covered by the assignable clause. In any case, the
purity of a methodm can be checked modularly by using the assignable clauses of the
methods thatm calls.

The type system of JML is an important advance over languages like Eiffel, which trust
programmers to avoid side effects in assertions rather than statically checking this property.
However, as we will see in the following subsection, JML’s purity restrictions give rise to
some practical problems.

Many of these practical problems arise from the interaction between purity checking and
specification inheritance. Because a pure methodhas an implicit specification that prohibits
side effects during its execution, all methods and constructors that override a pure method
or constructor must also be pure. That is, in JML, purity is inherited. This inheritance of
purity is necessary to make purity checking (and reasoning) modular in the presence of
subtyping and dynamic dispatch.

An important consequence of inheritance ofpurity is that a method cannot be correctly
specified as pure if any overriding method has side effects. In particular, a method in
Object can be specified as pure only if every override of that method, in every Java class,
obeys JML’s purity restrictions.

5.2. Practical problems with JML’s purity restrictions

An initial practical problem is how to decidewhich methods in Java’s libraries should
be specified aspure. One way to startto answer this question is to use a static analysis to
conservatively estimate which methods in Java’s libraries have side effects. A conservative
analysis could count a method as having side effects if it assigns to non-local storage or
calls native methods (which may do I/O), either directly or indirectly. All other methods can
safely be specified aspure, provided they are not overridden by methods that the analysis
says have side effects. Researchers from Purdue have provided a list of such methods to
us, using their tools from the Open Virtual Machine project.4 We plan tointegrate this
technology into the JML tools eventually.

Declaring a method to bepure entails a very strong specification, namely that the
method and all possible overriding methods have no side effects. Thus, finding that a
method, and all known methods that override it, obey JML’s purity restrictions is not the
same as deciding that the methodshouldbe specified as pure. Such a decision affects not
justall existing overrides of the method, but all future implementations and overrides. How
is one to make such a decision?

This problem is particularly vexing becausethere are many methods that are intuitively
side-effect free, but that do not obey JML’s purity restrictions. Methods with benevolent

4 Seehttp://www.ovmj.org/.

http://www.ovmj.org/

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 197

side effects are common examples. Two examples from the protocol ofObject will
illustrate the importance of this problem.

First, consider computing a hash code for an instance of a class. Because this may be
computationally costly, an implementation may desire to compute the hash code the first
time it is asked for and then cache the result in a private field of the object. When the hash
code is requested on subsequent occasions, the cached result is returned without further
computation. For example, this is done in thehashCode method of Java’sString class.
However, in JML, storing the computed hashcode into the cache is considered to be a side
effect. SoString’s hashCode method cannot be specified as pure.

Second, consider computing object equality. In some implementations, an object’s fields
might be lazily initialized or computed only on first access. If theequals method happens
to be the first such method to be called on such an object, it will trigger the delayed
computation. We found such an example in our work on the MultiJava compiler [16,17];
in this compiler, the classCClassType has such delayed computations, and its override of
Object’s equals method can trigger a previously delayed computation with side effects. It
seems very difficult to rewrite this method to be side-effect free, because to do so one would
probably need to change the compiler’s architecture. (Similar kinds of lazy initialization
of fields occur in implementations of the Singleton pattern, although these usually do not
affect theequals method.)

We have shown two cases where methods in the protocol ofObject areoverridden by
methods that cannot be pure. By purity and specification inheritance, these examples imply
that neitherhashCode norequals can be specified as pure inObject. Object is typically
used in Java as the type ofthe elements in a collection. Hence, in the specification of a col-
lection type, such as a hash table, one cannot use thehashCode or equals methods on el-
ements. Without changes, this would make JML unsuitable for specifying collection types.

(This problem is mostly a problem for collection types, because one can specify many
subclasses ofObject with purehashCode andequals methods. Specifications operating
on instances of such subclasses can use these methods without violating JML’s type
system.)

5.3. Solving the problems

The desire to use intuitively side-effect free methods in specifications, even if they are
not pure according to JML’s semantics, is strong enough that we considered changing the
semantics of theassignable clause in order to allow benevolent side effects. However,
we do not know how to do that and still retain sound modular reasoning [68]. In any case,
the use of such methods in runtime assertion checking would still beproblematic because
of the side effects they might cause. In addition, we would like to prevent problems when
a programmer wrongly believes that side effects are benevolent; it is not clear whether an
automatic static analysis could prevent such problems, and even if so, whether such a tool
could be modular.

Thus far, the only viable solution we have identified is to refactor specifications by
adding puremodel(i.e., specification-only) methods that are to be used in specifications in
place of program methods that cannot be pure. That is, whenever one has an intuitively
side-effect free program method,m, that is not pure according to JML’s semantics,

198 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

one creates a pure model methodm′, which returns the same result asm but without its
side effects. Then one replaces calls tom by calls to m′ in assertions.

We are currently experimenting with this solution. The most important part of this
experiment is to replace uses ofObject’s equals method, which cannot be pure, with
calls to a new pure model method inObject, calledisEqualTo. The specifications of
these methods are shown inFig. 2. The assignable clause in the specification of the
equals method permits benevolent side effects; it is also specified to return the same
result as would a call toisEqualTo. Thus, whenever someone overridesequals, they
should also override theisEqualTo method. When an override ofequals is specified
as pure, then an override ofisEqualTo in the same class can be specified in terms of this
pureequals method, and the implementation of the modelisEqualTo method can simply
call equals as well. However, an implementation ofequals can never callisEqualTo,
because program code cannot call model methods (since model methods can only be used
in specifications). Therefore,to avoid code duplication whenequals is not declared to be
pure but the two methods share some common implementation code, one can introduce a
(non-model) pure, private method that bothequals andisEqualTo can call.

We have alsoapplied this refactoring to all the collection classes injava.util (and
in other packages) that we had previously specified, in order to check that the solution is
viable. So far the results seem satisfactory. However, as of March 2004, this restructuring
is not part of the JML release, because the JML tools are not yet able to handle some of
the details of this approach. In particular, the runtime assertion checker is not yet able to
compile the model methods added toObject without having all ofObject’s source code
available. (And we cannot legally ship Sun’s source code forObject in the JML release.)
However, we are working on solutions to this problem that will allow us to obtain more
experience with this approach and to do more case studies.

5.4. Future work on synchronized methods and purity

JML currently permits synchronized methods to be declaredpure if they meet all the
criteria described inSection 5.1. Given that obtaining a lock is a side effect that can affect
control flow in a program, does allowing synchronized methods to be pure violate the intent
of JML’s purity restrictions? That is the question we investigate in this section.

5.4.1. Background
Java has language-level support for mutual exclusion [4, Section 10.3]. A method may

be declaredsynchronized, which means that the thread making a call to that method must
first obtain a lock on the method’s receiver object. The receiver object for a method call
o.m(e) is o, and for a static method call of the form C.g(e) is the class object for the class
in which the method is located, namelyC.class. A thread that is attempting to obtain a
lock will wait until no other thread holds it; however, if the thread already holds the lock, it
will proceed without interruption and withoutchanging any storage. That is, if the thread
holds the lock already, it can enter a synchronized method without any side effects.

Java has various ways to test whether a thread holds a lock. The most explicit of these
is the side-effect free methodThread.holdsLock. Thus even a sequential program can
observe side effects from locking.

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 199

/*@ public normal_behavior
@ assignable objectState;
@ ensures \result <==> this.isEqualTo(obj);
@*/

public boolean equals(Object obj);

/*@ public normal_behavior
@ requires obj != null;
@ assignable \nothing;
@ ensures (* \result is true iff obj is equal to this *);
@ also
@ public normal_behavior
@ requires obj != null && \typeof(this) == \type(Object);
@ assignable \nothing;
@ ensures \result <==> this == obj;
@ also
@ public normal_behavior
@ requires obj == null;
@ assignable \nothing;
@ ensures \result <==> false;
public pure model boolean isEqualTo(Object obj) {

return this == obj;
}
@*/

Fig. 2. The refactored specification forObject’s equals method and the pure model methodisEqualTo. The
text between(* and*) in the first specification case ofisEqualTo’s specification is an “informal description”,
which formally is equivalent to writingtrue [58].

5.4.2. The problem
A synchronized method is not, in general, side-effect free. The locking used in

synchronization is a modification of the state of a program execution, and can alter control
flow in concurrently executing threads. Thus it would seem that synchronized methods
violate the intent of JML’s purity restrictions, because calling them can, in general, cause
side effects.

On the other hand, if we followed this observation to its logical conclusion and
prohibited synchronized methods from being declared to be pure, JML would have
several problems. The first problem is that prohibiting pure synchronized methods
would be inconvenient, violating the ease-of-use requirement. For example, the class
java.util.Vector is commonly used and has many synchronized methods that could
otherwise be pure, such asfirstElement and elementAt; such methods, or similar
model methods, are necessary to access the state of avector in assertions. A more important

200 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

problem is that during runtime assertion checking, assertions need to be evaluated in a
thread-consistent state. In a multi-threaded program, an object that is shared by several
threads can only be guaranteed tobe in a consistent state when it is locked. If assertions,
such as preconditions and postconditions and the methods called within them, are evaluated
without locking the shared objects involved, then other threads may modify the internal
state of the object during assertion evaluation, leading to nonsensical or inconsistent
results.

Hence we have a dilemma: obtaining a lock is a side effect, but methods called during
assertion checking must, in general, be guarded by a lock if they are to return meaningful
and consistent results.

5.4.3. Possible approaches
The only way out of the dilemma appears to be to consider special cases in which

either obtaining a lock does not cause side effects or in which the side effects due to
locking cannot be observed. The key observation is that a thread that calls a synchronized
method does not obtain locks it already holds. That is, a synchronized method will act
in a pure manner if it is invoked by a thread that already owns a lock on the method’s
receiver. In particular, no side effects occur during a call,o.m(e) to a pure synchronized
method that originates from within another synchronized method whose receiver iso,
because the other method already holdso’s lock. It follows that synchronized methods
will not have side effects if they are called during assertion checking on behalf of another
synchronized method on the same object. This condition could be enforced statically, and
might be useful for model methods, which cannot be called directly by Java program
methods.

However, checking whether a thread holds a lock is not, in general, statically decidable.
So one possible semantics for JML is to require that all pure synchronized methods
(implicitly) satisfy the following specification:

requires Thread.holdsLock(this);

The runtime assertion checker could check this precondition and raise an assertion
violation error if the calling thread does not hold the receiver’s lock. This check could be
done before the calling thread attempt to obtain the receiver’s lock, for example by calling
the synchronized method from a non-synchronized method that performs this check first.
This approach would guarantee that the synchronized method would not have the side
effect of obtaining the receiver’s lock.

Unfortunately, the above precondition is still too strong for concurrent data abstractions,
because having the receiver’s lock does not, in general, imply having the locks of its
component objects that might be exposed to outside inspection or manipulation. We need
a way to state and enforce constraints on aliasing. For this, we are considering a variant of
the Universe type system [76,77], which would allow us to enforce such alias constraints
statically in JML. The idea is to statically guarantee that all paths to an object pass through
a single “owner” object. With this kind of type system, we could weaken the above
precondition to state that the current thread must either hold the lock on the receiver’s
ownerobject, or on the object itself.

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 201

6. Mathematical libraries

As described inSection 1.3.4, we need to provide a library ofmathematical concepts
with JML in a way thatdoes not overwhelm programmers, and yet is useful for formal
verification.

6.1. Hiding the mathematics

It is sometimes convenient to use mathematical concepts such as sets and sequences in
specification, particularly for collection classes [38,72,91]. For example, the specification
of Stack in Fig. 1 uses the typeJMLObjectSequence, which is part of JML’s
org.jmlspecs.models package. This package contains types that are intended for such
mathematical modeling. Besides sequences, these include sets, bags, relations, and maps,
and a few other convenience types.

Most types in theorg.jmlspecs.models package have only pure methods and
constructors.5 For example,JMLObjectSequence’s insertFront method returns a
sequence object that is like the receiver, but with its argument placed at the front; the
receiver is not changed in any way.JMLObjectSequence’s trailer method similarly
returns a sequence containingall but the first element of the receiver, without changing
the receiver. Because such methods are pure,they can be used during runtime assertion
checking without changing the underlying computation.

JML gains two advantages from having these mathematical modeling types in a Java
package, as opposed to having them be purely mathematical concepts. First, these types
all have Java implementations and thus can be used during runtime assertion checking.
Second, using these types in assertions avoids the introduction of special mathematical
notation; instead, normal Java expressions (method calls) are used to do things like
concatenating sequences or intersecting sets. This is an advantage for our main audience,
which consistsof programmers and not mathematicians.

6.2. Use by theorem provers

The second part of the mathematical libraries problem described inSection 1.3.4is that
the library of mathematical modeling types should be useful for formal verification. The
types in theorg.jmlspecs.models package are intended to correspond (loosely) to the
libraries of mathematical concepts found in theorem provers, such as PVS. As we gain
experience, we can add additional methods to these types to improve their correspondence
to these mathematical concepts. It is also possible to add new packages of such types
tailored to specific theorem proversor to other notations, such as OCL.

When translating specification expressions into theorem prover input, the LOOP tool
currently treats all methods in the same way—it does not make a special case for pure
methods in theorg.jmlspecs.models package. This makes the resulting proof obliga-
tions more complex than is desirable. Sincethe types in the models package are known,

5 Theorg.jmlspecs.models package does have some types that have non-pure methods. These are various
kinds of iterators and enumerators. The methods of theseiterators and enumerators that have side effects cannot
be used in specification expressions.

202 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

one should be able, as a special case, to replace the general semantics of such a method
call with a call to some specific function from thetheorem prover’s library of mathematical
concepts. To facilitate this, it may be thatthese model types should all be declared to be
final, which is currently not the case.

7. Related work

We have already discussed how JML differs from conventional formal specification
languages, such as Z [85,84,92], VDM [7,29,46,41], the Larch family [35,52,56,91],
and RESOLVE [24,79]. To summarize, the main difference is that JML’s specification
expressions are based on a subset of the Java programming language, a design that is more
congenial to Java programmers.

The Alloy Annotation Language (AAL) offers a syntax similar to JML for annotating
Java programs [50]. AAL supports extensive compile-time checking based on static
analysis techniques. Unlike similar static analysis tools such as ESC/Java [20], AAL also
supports method calls and relational expressions in assertions. However, AAL’s assertion
language is based on a simple first-order logic with relational operators [42] and not on
a subset of Java expressions. We believe that a Java-based syntax is more likely to gain
acceptance among Java programmers. However, JML could adopt some of AAL’s features
for specifying sets of objects using regular expressions. These would be helpful in using
JML’s frame axioms, where they would allow JML to more precisely describe locations
that can be assigned to in the method. (Another option that would have similar benefits
would be to use the approach taken in DemeterJ [71].)

We have also discussed how JML differs from design by contract languages, such as
Eiffel [74,75], and tools, such as APP [82]. Summarizing, JML provides better support for
more exact specifications and formal verification by

• extending the set of specification expressions with more expressive mathematical
constructs, such as quantifiers,

• ensuring that specification expressions do not contain side effects, and
• providing a library of types corresponding to mathematical concepts.

JML’s specification-only (model) declarationsand frame axioms also contribute to its
ability to specify types more precisely than is easily done with design by contract
tools.

We know of several other design by contract tools for Java [6,23,26,49,51,80]. The
approaches vary from a simple assertion mechanism similar to theassert macros of
C and C++ to fully fledged contract enforcement capabilities. Jass [6], iContract [51],
and JContract [80] focus on the practical use of design by contract in Java. Handshake
and jContractor focus on implementation techniques such as library-based on-the-fly
instrumentation of contracts [23,49]. Contract Java focuses on properly blaming contract
violations [26,27]. These notations and tools suffer from the same problems as Eiffel. That
is, none of them guarantee the lack of side effects in assertions, handle undefinedness
in a way that would facilitate formal verification and reasoning, support more expressive
mathematical notations such as quantifiers, or provide a set of immutable types designed

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 203

for use in specifications. In sum, they all focus on runtime checking, and thus it is difficult
to write exact specifications for formal verification and reasoning.

8. Conclusion

JML synthesizes the best from the worlds of design by contract and more mathematical
specification languages. Because of its expressivemathematical notations, its specification-
only (model) declarations, and library of mathematical modeling types, one can more easily
write more exact specifications in JML than in a design by contract language, such as
Eiffel. These more detailed specifications, along with JML’s purity checking, allow JML
to beuseful for formal verification. Thus, JML’s synthesis of features allows it to serve
many roles in the Java formal methods community.

Our experience so far is that this approach has had a modest impact. Release 4.1 of
JML has been downloaded over 400 times. JML has been used in at least five universities
for teaching some aspects of formal methods. It is used somewhat extensively in the Java
Smart Card industry and has been used in at least one company outside of that industry
(Fulcrum).

In the future, we would like to extend the range of tools that JML supports to include
tools for model checking and specification of concurrent Java programs [1]. We invite
others to join us in this effort to furnish Java programmers with a single notation that can
be used by many tools.

Acknowledgments

The work of Leavens, Cheon, Clifton, and Ruby was supported in part by the US
National Science Foundation, under grantsCCR-0097907 andCCR-0113181.

Thanks to Robyn Lutz, Sharon Ryan, and Janet Leavens for comments on earlier
drafts of this paper. Thanks to all who have contributed to the design and implementation
of JML including Al Baker, Erik Poll, Bart Jacobs, Joe Kiniry, Rustan Leino, Raymie
Stata, Michael Ernst, Gary Daugherty, Arnd Poetzsch-Heffter, Peter Müller, Alexandru
D. Salcianu, and others acknowledged in [66]. “Design by Contract” is a trademark of
Interactive Software Engineering.

References

[1] E. Abraham-Mumm, F. de Boer, W. de Roever, M. Steffen, A tool-supported proof system for multithreaded
Java, in: F. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever (Eds.), FMCO 2002: Formal Methods for
Component Objects, Proceedings, Lecture Notesin Computer Science, Springer-Verlag, 2003.

[2] P. America, Inheritance and subtyping in a parallelobject-oriented language, in: J. Bezivin et al. (Eds.),
European Conference on Object-Oriented Programming, ECOOP’87, Paris, France, Lecture Notes in
Computer Science, vol. 276, Springer-Verlag, New York, NY, 1987, pp. 234–242.

[3] P. America, Designing an object-oriented programming language withbehavioural subtyping,
in: J.W. de Bakker, W.P. de Roever, G. Rozenberg(Eds.), Foundations of Object-Oriented Languages,
REX School/Workshop, May–June 1990, Noordwijkerhout, The Netherlands, Lecture Notes in Computer
Science, vol. 489, Springer-Verlag, New York, NY, 1991, pp. 60–90.

[4] K. Arnold, J. Gosling, D. Holmes, The Java Programming Language Third Edition, 3rd edition, Addison-
Wesley, Reading, MA, 2000.

204 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

[5] H. Barringer, J.H. Cheng, C.B. Jones, A logic covering undefinedness inprogram proofs, Acta Informatica
21 (3) (1984) 251–269.

[6] D. Bartetzko, C. Fischer, M. Moller, H. Wehrheim, Jass—Java with assertions, K. Havelund, G. Rosu (Eds.),
Workshop on Runtime Verification held in conjunction with the 13th Conference on Computer Aided
Verification, CAV’01, 2001, Electronic Notes in Theoretical Computer Science 55 (2) (2001). Available
from http://www.elsevier.nl.

[7] J. Bicarregui, J.S. Fitgerald, P.A. Lindsay, R. Moore, B. Ritchie, Proof in VDM: A Practitioner’s Guide,
Springer-Verlag, New York, NY, 1994.

[8] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Object Technology
Series, Addison Wesley Longman, Reading, MA, 1999.

[9] C. Boyapati, S. Khurshid, D. Marinov, Korat: automated testing based on Java predicates, in: Proceedings
International Symposium on Software Testing and Analysis, ISSTA, ACM, 2002, pp. 123–133.

[10] P. Chalin, Back to basics: language support and semantics of basic infinite integer types in JML and Larch,
Technical Report CU-CS 2002-003.1, Computer Science Department, Concordia University, October 2002.
URL http://www.cs.concordia.ca/∼ faculty/chalin/papers/TR-CU-CS-2002-003.1.pdf.

[11] P. Chalin, Improving JML: for a safer and more effective language, TechnicalReport 2003-001.1, Computer
Science Department, Concordia University, March 2003.

[12] Y. Cheon, G.T. Leavens, The Larch/Smalltalk interface specification language, ACM Transactions on
Software Engineering and Methodology 3 (3) (1994) 221–253.

[13] Y. Cheon, G.T. Leavens, A quick overview of Larch/C++, Journal of Object-Oriented Programming 7 (6)
(1994) 39–49.

[14] Y. Cheon, G.T. Leavens, A runtime assertion checker for the Java Modeling Language (JML),
in: H.R. Arabnia, Y. Mun (Eds.), Proceedings of the International Conference on Software Engineering
Research and Practice, SERP’02, 24–27 June, 2002, Las Vegas, NV, USA, CSREA Press, 2002,
pp. 322–328. URLftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf.

[15] Y. Cheon, G.T. Leavens, A simple and practical approach to unit testing: the JML and JUnit way,
in: B. Magnusson (Ed.), ECOOP 2002—Object-Oriented Programming, 16th European Conference,
Máalaga, Spain, Proceedings, Lecture Notes in Computer Science, vol. 2374, Springer-Verlag, Berlin, 2002,
pp. 231–255.

[16] C. Clifton, MultiJava: design, implementation, and evaluation of a Java-compatible language supporting
modular open classes and symmetric multiple dispatch, Technical Report 01-10, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011, available fromhttp://www.multijava.org, November
2001. URLftp://ftp.cs.iastate.edu/pub/techreprts/TR01-10/TR.pdf.

[17] C. Clifton, G.T. Leavens, C. Chambers, T. Millstein, MultiJava: modular open classes and symmetric
multiple dispatch for Java, in: OOPSLA 2000 Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM SIGPLAN Notices, vol. 35(10), ACM, New York, 2000, pp. 130–145.

[18] E. Cohen, Programming in the 1990s: An Introduction to the Calculation of Programs, Springer-Verlag,
New York, NY, 1990.

[19] D.R. Cok, J. Kiniry, ESC/Java2: Uniting ESC/Java and JML, Technical Report, University of Nijmegen,
NIII Technical Report NIII-R0413, 2004. URLhttp://www.cs.kun.nl/research/reports.

[20] D.L. Detlefs, K.R.M. Leino, G. Nelson, J.B. Saxe, Extended static checking, SRC Research Report 159,
Compaq Systems Research Center, 130 Lytton Ave., Palo Alto, December 1998.

[21] K.K. Dhara, G.T. Leavens, Forcing behavioral subtyping through specification inheritance, in: Proceedings
of the 18th International Conference on Software Engineering, Berlin, Germany, IEEE Computer Society
Press, 1996, pp. 258–267. A corrected version is Iowa State University, Department of Computer Science
TR #95-20c.

[22] E.W. Dijkstra, C.S. Scholten, Predicate Calculus and program semantics, Springer-Verlag, NY, 1990.
[23] A. Duncan, U. Holzle, Adding contracts to Java with Handshake, Technical Report TRCS98-32, Department

of Computer Science, University of California, Santa Barbara, CA, December 1998.
[24] S.H. Edwards, W.D. Heym, T.J. Long, M. Sitaraman, B.W. Weide, Part II: specifying components in

RESOLVE, ACM SIGSOFT Software Engineering Notes 19 (4) (1994) 29–39.
[25] M. Ernst, J. Cockrell, W.G. Griswold, D. Notkin,Dynamically discovering likely program invariants to

support program evolution, IEEE Transactions on Software Engineering 27 (2) (2001) 1–25.

http://www.elsevier.nl
http://www.cs.concordia.ca/~faculty/chalin/papers/TR-CU-CS-2002-003.1.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf
http://www.multijava.org
ftp://ftp.cs.iastate.edu/pub/techreprts/TR01-10/TR.pdf
http://www.cs.kun.nl/research/reports

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 205

[26] R.B. Findler, M. Felleisen, Contract soundness forobject-oriented languages,in: OOPSLA’01 Conference
Proceedings, Object-Oriented Programming, Systems,Languages, and Applications, 14–18 October 2001,
Tampa Bay, Florida, USA, 2001, pp. 1–15.

[27] R.B. Findler, M. Latendresse, M. Felleisen, Behavioral contracts and behavioral subtyping, in: Proceedings
of Joint 8th European Software Engineering Conference, ESEC and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, FSE, 10–14 September, 2001, Vienna, Austria,
2001.

[28] K. Finney, Mathematical notation in formal specification: too difficult for the masses?, IEEE Transactions
on Software Engineering 22 (2) (1996) 158–159.

[29] J. Fitzgerald, P.G. Larsen, Modelling Systems: Practical Tools in Software Development, Cambridge,
Cambridge, UK, 1998.

[30] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R. Stata, Extended static checking for
Java, in: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI’02, SIGPLAN, vol. 37(5), ACM Press, New York, 2002, pp. 234–245.

[31] L. Friendly, The design of distributed hyperlinked programming documentation, in: S. Fraïssè,
F. Garzotto, T. Isakowitz, J. Nanard, M. Nanard (Eds.), Proceedings of the International Workshop
on Hypermedia Design, IWHD’95, 1–2 June 1995, Montpellier, France, Springer, 1995, pp. 151–173.
URL http://citeseer.nj.nec.com/friendly95design.html.

[32] D.K. Gifford, J.M. Lucassen, Integrating functional and imperative programming, in: ACM Conference on
LISP and Functional Programming, ACM, 1986, pp. 28–38.

[33] D. Gries, F.B. Schneider, A Logical Approachto Discrete Math, Texts and Monographs in Computer
Science, Springer-Verlag, New York, NY, 1994.

[34] D. Gries, F.B. Schneider, Avoiding the undefined byunderspecification, in: J. van Leeuwen (Ed.), Computer
Science Today: Recent Trends and Developments, Lecture Notes in Computer Science, vol. 1000, Springer-
Verlag, New York, NY, 1995, pp. 366–373.

[35] J.V Guttag, J.J. Horning, S. Garland, K. Jones, A. Modet, J. Wing, Larch: Languages and Tools for Formal
Specification, Springer-Verlag, New York, NY, 1993.

[36] C.A.R. Hoare, An axiomatic basis for computer programming, Communications of the ACM 12 (10) (1969)
576–583.

[37] C.A.R. Hoare, Notes on data structuring, in: O.-J.Dahl, E. Dijkstra, C.A.R. Hoare (Eds.), Structured
Programming, Academic Press, Inc., New York, NY, 1972, pp. 83–174.

[38] C.A.R. Hoare, Proof of correctness of data representations, Acta Informatica 1 (4) (1972) 271–281.
[39] M. Huisman, Reasoning about Java programs in higher order logic with PVS and Isabelle, Ipa dissertation

series, 2001-03, University of Nijmegen, Holland, February 2001.
[40] M. Huisman, B. Jacobs, Java program verification via a Hoare logic with abrupt termination, in: T. Maibaum

(Ed.), Fundamental Approaches to Software Engineering, FASE 2000, LNCS, vol. 1783, Springer-Verlag,
2000, pp. 284–303 (An earlier version is technical report CSI-R9912).

[41] I. S. Organization, Information technology—programming languages,their environments and system
software interfaces—Vienna Development Method—specification language—part 1: Base language,
ISO/IEC 13817-1, December 1996.

[42] D. Jackson, Alloy: a lightweight object modeling notation, ACM Transactions onSoftware Engineering and
Methodology 11 (2) (2002) 256–290.

[43] B. Jacobs, E. Poll, A logic for the Java modeling language JML, in: Fundamental Approaches to Software
Engineering, FASE’2001, Genova, Italy, 2001, Lecture Notes in Computer Science, vol. 2029, Springer-
Verlag, 2001, pp. 284–299.

[44] B. Jacobs, J. Kiniry, M. Warnier, Java program verification challenges, in: F.S. de Boer, M.M. Bonsangue,
S. Graf, W.-P. de Roever (Eds.), FMCO 2002: Formal Methods for Component Objects, Proceedings,
Lecture Notes in Computer Science, vol.2852, Springer-Verlag, Berlin, 2003, pp. 202–219.

[45] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, H. Tews, Reasoning about Java classes
(preliminary report), in: OOPSLA’98 Conference Proceedings, ACM SIGPLAN Notices, vol. 33(10), ACM,
1998, pp. 329–340.

[46] C.B. Jones, Systematic Software Development Using VDM, 2nd edition, International Series in Computer
Science, Prentice Hall, Englewood Cliffs, NJ, 1990.

http://citeseer.nj.nec.com/friendly95design.html

206 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

[47] H.B.M. Jonkers, Upgrading the pre- and postcondition technique, in: S. Prehn, W.J. Toetenel (Eds.),
VDM’91 Formal Software Development Methods4th International Symposium of VDM Europe
Noordwijkerhout, The Netherlands, Volume 1: Conference Contributions, Lecture Notes in Computer
Science, vol. 551, Springer-Verlag, New York, NY, 1991, pp. 428–456.

[48] H.B.M. Jonkers, Ispec: towards practical and soundinterface specifications, in: W. Grieskamp, T. Santen,
B. Stoddart (Eds.), Integrated Formal Methods, Second International Conference, IFM 2000, Dagstuhl
Castle, Germany, 1–3 November 2000, Lecture Notesin Computer Science, vol. 1945, Springer-Verlag,
2000, pp. 116–135.

[49] M. Karaorman, U. Holzle, J. Bruno, jContractor: a reflective Java library to support design by contract,
in: P. Cointe (Ed.), Meta-Level Architectures and Reflection, Second International Conference on
Reflection’99, 19–21 July, 1999, Saint-Malo, France, Lecture Notes in Computer Science, vol. 1616,
Springer-Verlag, 1999, pp. 175–196.

[50] S. Khurshid, D. Marinov, D. Jackson, An analyzable annotation language, in: Proceedings of OOPSLA’02
Conference on Object-Oriented Programming, Languages, Systems, and Applications, SIGPLAN Notices,
vol. 37(11), ACM, New York, NY, 2002, pp. 231–245.

[51] R. Kramer, iContract—the Java design by contract tool, TOOLS 26: Technology of Object-Oriented
Languages and Systems, Los Alamitos, CA, 1998 pp. 295–307.

[52] L. Lamport, A simple approach to specifying concurrent systems, Communications of the ACM 32 (1)
(1989) 32–45.

[53] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, 2nd edition, Prentice Hall PTR, Upper Saddle River, NJ, 2002.

[54] G.T. Leavens, An overview of Larch/C++: behavioral specifications for C++ modules, in: H. Kilov,
W. Harvey(Eds.), Specification of Behavioral Semantics in Object-Oriented Information Modeling, Kluwer
Academic Publishers, Boston, 1996, pp. 121–142 (Chapter 8), An extended version is TR #96-01d,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011.

[55] G.T. Leavens, Larch/C++ Reference Manual, version 5.41. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gzor on the World Wide Web at the
URL http://www.cs.iastate.edu/∼ leavens/larchc++.html, April 1999.

[56] G.T. Leavens, Larch frequently asked questions, Version 1.110. Available in
http://www.cs.iastate.edu/∼ leavens/larch-faq.html, May 2000.

[57] G.T. Leavens, Verifying object-oriented programs that use subtypes, TechnicalReport 439, Massachusetts
Institute of Technology, Laboratory for ComputerScience, The author’s Ph.D. Thesis, February 1989.

[58] G.T. Leavens, A.L. Baker, Enhancing the pre- and postcondition technique for more expressive
specifications, in: J.M. Wing, J. Woodcock, J. Davies(Eds.), FM’99—Formal Methods: World Congress
on Formal Methods in the Development of Computing Systems, September 1999, Toulouse, France,
Proceedings, Lecture Notes in Computer Science, vol. 1709, Springer-Verlag, 1999, pp. 1087–1106.

[59] G.T. Leavens, Y. Cheon, Preliminary design of Larch/C++, in: U. Martin, J. Wing (Eds.), Proceedings of the
First International Workshop on Larch, July 1992, Workshops in Computing, Springer-Verlag, New York,
NY, 1993, pp. 159–184.

[60] G.T. Leavens, K.K. Dhara, Concepts of behavioralsubtyping and a sketch of their extension to component-
based systems, in: G.T. Leavens, M. Sitaraman (Eds.), Foundations of Component-Based Systems,
Cambridge University Press, 2000, pp. 113–135 (Chapter 6).

[61] G.T. Leavens, D. Pigozzi, A complete algebraic characterization of behavioral subtyping, Acta Informatica
36 (2000) 617–663.

[62] G.T. Leavens, W.E. Weihl, Reasoning about object-oriented programs that use subtypes (extended abstract),
in: N. Meyrowitz (Ed.), OOPSLA ECOOP’90 Proceedings, ACM SIGPLAN Notices, vol. 25(10), ACM,
1990, pp. 212–223.

[63] G.T. Leavens, W.E. Weihl, Specification and verification of object-oriented programs using supertype
abstraction, Acta Informatica 32 (8) (1995) 705–778.

[64] G.T. Leavens, J.M. Wing, Protective interface specifications, Formal Aspects of Computing 10 (1998)
59–75.

[65] G.T. Leavens, A.L. Baker, C. Ruby, JML: a notation for detailed design, in: H. Kilov, B. Rumpe,
I. Simmonds (Eds.), Behavioral Specifications of Businesses and Systems, Kluwer Academic Publishers,
Boston, 1999, pp. 175–188.

ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz
http://www.cs.iastate.edu/~leavens/larchc++.html
http://www.cs.iastate.edu/~leavens/larch-faq.html

G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208 207

[66] G.T. Leavens, A.L. Baker, C. Ruby, Preliminary design of JML: a behavioral interface specification
language for Java, Technical Report 98-06v, Department of Computer Science, Iowa State University, see
http://www.jmlspecs.org, May 2003. URLftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz.

[67] G.T. Leavens, K.R.M. Leino, E. Poll, C. Ruby, B. Jacobs, JML: notations and tools supporting
detailed design in Java, in: OOPSLA 2000 Companion, ACM, Minneapolis, MN, 2000, pp. 105–106.
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz.

[68] K.R.M. Leino, A myth in the modular specification of programs, Technical Report KRML 63, Digital
Equipment Corporation, Systems Research Center, 130 Lytton Avenue Palo Alto, CA 94301, Obtain from
the author, at URLleino@microsoft.com, November 1995.

[69] K.R.M. Leino, G. Nelson, J.B. Saxe, ESC/Java user’s manual, Technical Note, Compaq Systems Research
Center, October 2000.

[70] K.R.M. Leino, J.B. Saxe, R. Stata, Checking Java programs via guarded commands, Tech-
nical Note 1999-002, Compaq Systems Research Center, Palo Alto, CA, May 1999.
URL http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1999-002.html.

[71] K. Lieberherr, D. Orleans, J. Ovlinger, Aspect-oriented programming with adaptive methods,
Communications of the ACM 44 (10) (2001) 39–41.

[72] B. Liskov, J. Guttag, Abstraction and Specification in Program Development, The MIT Press, Cambridge,
MA, 1986.

[73] B. Liskov, J. Wing, A behavioral notion of subtyping, ACM Transactions onProgramming Languages and
Systems 16 (6) (1994) 1811–1841.

[74] B. Meyer, Eiffel: The Language, Object-Oriented Series,Prentice-Hall, New York, NY, 1992.
[75] B. Meyer, Object-Oriented Software Construction, 2nd edition, Prentice-Hall, New York, NY, 1997.
[76] P. Müller, Modular specification and verification of object-oriented programs, Lecture Notes in

Computer Science, vol. 2262, Springer-Verlag,2002, The author’s Ph.D. Thesis. Available from
http://www.informatik.fernuni-hagen.de/import/pi5/publications.html.

[77] P. Müller, A. Poetzsch-Heffter, G.T. Leavens, Modular specification of frame properties in JML,
Concurrency, Computation Practice and Experience 15 (2003) 117–154.

[78] J.W. Nimmer, M.D. Ernst, Static verification of dynamically detected program invariants:
integrating Daikon and ESC/Java, in: Proceedings of RV’01, First Workshop on Run-
time Verification, Elsevier, Electronic Notesin Theoretical Computer Science (July 2001).
URL http://people.csail.mit.edu/people/mernst/pubs/invariants-verify-rv2001.pdf.

[79] W.F. Ogden, M. Sitaraman, B.W. Weide, S.H. Zweben, Part I: the RESOLVE framework and discipline—a
research synopsis, ACM SIGSOFT Software Engineering Notes 19 (4) (1994) 23–28.

[80] Parasoft Corporation, Using design by contractTM to automate JavaTM software and component testing,
available from http://www.parasoft.com/jsp/products/tech_papers.jsp?product=Jcontract, as of February
2003.

[81] A.D. Raghavan, G.T. Leavens, Desugaring JML method specifications, Technical Report 00-03c, Iowa State
University, Department of Computer Science, August 2001.
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR00-03/TR.ps.gz.

[82] D.S. Rosenblum, Towards a method of programming with assertions, in: Proceedings of the 14th
International Conference on Software Engineering, 1992, pp. 92–104.

[83] C. Ruby, G.T. Leavens, Safely creating correct subclasses without seeing superclass code, in: Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2000, Minneapolis, MN,
ACM SIGPLAN Notices 35 (10) (2000) 208–228.

[84] J.M. Spivey, The Z Notation: A Reference Manual, International Series in Computer Science, Prentice-Hall,
New York, NY, ISBN: 013983768X, 1989.

[85] J. Spivey, An introduction to Z and formal specifications, Software Engineering Journal 4 (1) (1989) 40–50.
[86] J.-P. Talpin, P. Jouvelot, The type and effect discipline, Information and Computation 111 (2) (1994)

245–296.
[87] J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modeling with UML, Addison Wesley

Longman, Reading, MA, 1999.
[88] J. Warmer, A. Kleppe, OCL: the constraint languageof the UML, Journal of Object-Oriented Programming

12 (1) (1999) 10–13, 28.

http://www.jmlspecs.org
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz
mailto:leino@microsoft.com
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1999-002.html
http://www.informatik.fernuni-hagen.de/import/pi5/publications.html
http://people.csail.mit.edu/people/mernst/pubs/invariants-verify-rv2001.pdf
http://www.parasoft.com/jsp/products/tech%5Fpapers.jsp%3Fproduct%3DJcontract
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-03/TR.ps.gz

208 G.T. Leavens et al. / Science of Computer Programming 55 (2005) 185–208

[89] A. Wills, Capsules and types in Fresco: program validation in Smalltalk, in: P. America (Ed.), ECOOP’91:
European Conference on Object Oriented Programming, Lecture Notes in Computer Science, vol. 512,
Springer-Verlag, New York, NY, 1991, pp. 59–76.

[90] J.M. Wing, A two-tiered approach to specifying programs, Technical Report TR-299, Massachusetts
Institute of Technology, Laboratory for Computer Science, 1983.

[91] J.M. Wing, Writing Larch interface language specifications, ACM Transactions on Programming Languages
and Systems 9 (1) (1987) 1–24.

[92] J. Woodcock, J. Davies, Using Z: Specification, Refinement, and Proof, Prentice Hall International Series in
Computer Science, 1996. URLhttp://www.comlab.ox.ac.uk/usingz.html.

http://www.comlab.ox.ac.uk/usingz.html

	How the design of JML accommodates both runtime assertion checking and formal verification
	Introduction
	Background
	Tool support
	Problems
	Notational problem
	Undefinedness problem
	Side effects problem
	Mathematical library problem

	Other goals of JML
	Outline

	Solving the notational problem
	Background on JML
	Semantics of specification expressions
	Method and type specifications

	Dealing with undefinedness
	Preventing side effects in assertions
	JML's purity restrictions
	Practical problems with JML's purity restrictions
	Solving the problems
	Future work on synchronized methods and purity
	Background
	The problem
	Possible approaches

	Mathematical libraries
	Hiding the mathematics
	Use by theorem provers

	Related work
	Conclusion
	Acknowledgments
	References

