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INTRODUCTION 

In the fall of 1980 the authors attended Professor Tits’ course at Yale 
University in which he gave an account of Gromov’s beautiful proof that 
every finitely generated group of polynomial growth has a nilpotent 
subgroup of finite index. 

An essential part of Gromov’s argument consists of constructing for each 
group of polynomial growth a locally compact metric space and an action of 
a subgroup of finite index on that space. The intuitive motivation underlying 
this construction is fairly clear but it required an elaborate theory of “limits” 
of metric spaces to be carried out. 

It occurred to us to give a simple nonstandard definition of a space which 
has all the nice properties needed in the rest of Gromov’s argument. Besides 
shortening proofs our construction works for arbitrary finitely generated 
groups, not only for those of polynomial growth, and it has functorial 
properties. This enables us to state some of Gromov’s lemmas without the 
restriction of polynomial growth, e.g., (4.2) and (5.5). 

We also found a new proof of local compactness of the space, see 
Section 6, under an a priori weaker hypothesis than polynomial growth, and 
this led to a slight extension of Gromov’s theorem: 

If‘ the group r with finite generating set X has growth function G, with 
G,(n) < c . nd for infinitely many n and positive constants c, d, then r has a 
nilpotent subgroup of jinite index. (Gromov’s hypothesis is that 
G,(n) < c . nd for afl n > 0.) 
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350 VAN DEN DRIES AND WILKIE 

We have tried to make this paper reasonably self-contained: For the 
reader’s convenience we give all the basic definitions and repeat arguments 
which occur in the literature. 

Sections 1 and 2 contain a proof of the main theorem just quoted, 
Theorem (1. lo), module a demonstration of the basic properties of the space 
attached to any finitely generated group. (These properties are only 
summarized in Section 2.) In Section 3 we define nonstandard extensions and 
describe its properties, concentrating on those we need later. (This section 
may seem a bit long, but we are confident that together with the rest of the 
paper, it will help readers not versed in the subject to acquire an 
understanding of how nonstandard extensions are actually used in various 
situations.) In Section 4 we give our (nonstandard) space construction, and 
in Sections 5 and 6 we derive the properties of the space we had used before 
in Section 2 in the proof of the main theorem. 

In Section 7 we show how another simple application of logic gives an 
algorithm, based on trial and error, to compute bounds related to Gromov’s 
theorem, where previously only the existence of bounds was known. 

For other accounts of Gromov’s theorem and geometric applications we 
refer the reader to the original paper [5] and to Tits’ Bourbaki seminar 
lecture [ 141. 

The authors would like to thank Professors Macintyre, Mostow and Tits 
for stimulating discussions, and the referee and Professor Kreisel for their 
suggestions on the presentation of the material. 

1. PRELIMINARIES AND PREVIOUS RESULTS 

(1.1) Let r be a group generated by a finite subset X. 
The length function 1 ( = ( Ix: T-r N is defined as follows: 

Igl=lengthof h t t s or es word in X U X- ’ representing g. 

Properties 

(i) I g( = 0 o g = e (the empty word represents the identity e). 

(ii) Ig/=lg-‘I. 
(iii> I ghl <I gl + IhI. 

The norm-like properties of I I give rise to a metric d = dx : r X r+ N, 
defined by d(g, h) = 1 g-‘hi. Note that d is invariant under left 
multiplication: d(ag, ah) = d( g, h). 

(1.2) We define the growth function 

G=G,:N+N of (r,X) 
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by: 

G(n) = #B,(n) = number of group elements representable as 
words in X U X-i of length < n. 

Here and in the following, B,(r) denotes the closed ball of raldius r and 
center p in a given metric space. 

(1.3) EXAMPLES (from [5]). 

(a) r= Z @ L, X= {(l,O), (0, l)}. Then G(n) = 2n2 + 2n t 1. 

(b) r= free group on X = {a, b}, a # b. Then G(n) = 2 . 3” - 1. 

(1.4) The two examples illustrate two different ways in which a group 
can grow. This is formalized in the notions (1) (2) below due to Milnor, 
who introduced them in connection with problems in differential geometry. 

(1.5) D EFINITIONS. (1) r is of growth degree <d (d E N) if there is 
c > 0 such that G(n) < c . nd for n = 1, 2, 3 ,.... 

r is of polynomial growth if r is of growth degree <d, for some d. 

(2) r is of exponential growth if there is c > 1 such that G(n) > cn for 
n = 1, 2,... . 

For our strengthening of Gromov’s theorem we also define: 

(3) r is of near growth degree <d (d E N) if there is c > 0 such that 
G(n) < c . nd for infinitely many It. r is of near polynomial growth if there is 
d such that r is of near growth degree <d. 

(1.6) Remarks. (i) Let us first check that these notions are 
independent of the finite generating set X. Indeed, let X’ also be a finite set 
of generators for r. Put b = max{lx’ Ix: x’ E X’}. Then clearly 
G,,(n) ,< G,(bn), and reversing the roles of X and X’ gives a similar 
inequality. This shows that being of (near) growth degree <d does not 
depend on the choice of X. To prove this for the notion of exponential 
growth, suppose that G,,(n) > (c’)” for some c’ > 1 and all n > 1. Then 
G,(n) > %~Ol~l) > Cc > ’ tnlbl > c” for some c > 1 and all n > 1. 

(ii) Let H be a finitely generated (f.g. for short) subgroup of r. 
Taking X so that X n H generates H we get GXnH < G,. Hence, if r is of 
(near) growth degree <d, so is H; similarly, if H is of exponential growth, so 
is r. 

(iii) Let H be a subgroup of finite index in r. Take a finite set Y of 
generators for H and adjoin to it a set of coset representatives of T/H to 
obtain a generating set X for r. Then, see [ 141, there is a positive integer b 
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such that G,(n) < #(X) - G,(bn) for n = 1, 2, 3,.... Hence, H has (near) 
growth degree <d (resp. exponential growth) if and only if r has. 

(1.7) The easy fact that f.g. abelian groups are of polynomial growth 
was generalized by Wolf as follows: 

A Jg. nilpotent group has polynomial growth. 

(The precise growth degree was given by Bass; see [ 141.) 

(1.8) Milnor and Wolf also proved [ II] : 

If r is solvable, then r is either of exponential growth or has a 
nilpotnent subgroup of finite index. 

(1.9) These theorems characterize the groups of polynomial growth 
among the f.g. solvable groups. Gromov managed to remove the hypothesis 
of solvability, cf. [5]. 

If r is of polynomial growth, it has a nilpotent subgroup ofjinite 
index. 

We will slightly weaken the hypothesis of Gromov’s theorem and prove: 

(1.10) If r is of near polynomial growth, it has a nilpotent subgroup of 
finite index. 

(1.11) A rough sketch of Gromov’s remarkable proof is as follows: 
Consider the sequence of discrete metric spaces (r,(l/n) d). (As n increases 
one moves, so to speak, away from the space (r, d) so that its points seem to 
get closer together.) In case r is of polynomial growth Gromov shows that 
some subsequence (r, (l/n,) d) “converges” to a metric space Y with the 
following properties: 

(i) Y is homogeneous (for any two points there is an isometry 
carrying one to the other). 

(ii) Y is connected and locally connected. 

(iii) Y is complete. 

(iv) Y is locally compact and finite dimensional. 

From the solution of Hilbert’s fifth problem, it then follows that the 
isometry group of Y is a Lie group. Now one can let a subgroup of finite 
index of r act on Y in such a way that, using that Isom(Y) is a Lie group 
and theorems of Jordan and Tits on linear groups, one obtains a 
homomorphism of this subgroup onto Z (assuming r is infinite). It then 
follows that the kernel is of polynomial growth of lower degree. An inductive 
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assumption allows us to conclude that r has a solvable subgroup of finite 
index so that an application of the theorem of Milnor-Wolf finishes the 
proof. 

(1.12) Our proof of (1.10) follows the same lines. The difference is 
mainly in the construction of the space Y, which we obtain in Section 4 by a 
very simple and general nonstandard argument. 

The next section, Section 2, just assembles the relevant properties of the 
space Y and shows how (1.10) follows. 

2. PROOF OF GROMOV'S THEOREM ASSUMING PROPERTIES OF THE SPACE Y 

r continues to denote a finitely generated group (with finite generating set 
X). The following algebraic lemma is essentially due to Milnor. 

(2.1) LEMMA. Let 1 -+ K + T-+h Z -t 0 be exact and r not of exponential 
growth. Then K is Jinitely generated. 

Moreover: 

(1) If r has near growth degree <d + 1, then K has near growth 
degree <d; 

(2) if K has a solvable subgroup of finite index, then T has one, too. 

Proof: Take y E r with h(y) = 1, and take e,,..., ek E K such that 
r = (Y, e, ,..., ek). Define ym,i = y”eiy-” for m E Z, i = l,..., k. Then one 
easily checks that K is generated by the Y~,~. Fix an i in (I,..., k}. For m > 0 
consider the elements of r of the form yzi .a. yz,,, si = 0 or 1. There are 
2mt’ words on {y,e 1 ,..., ek} here, each of length <2m. The assumption of 
nonexponential growth implies that for some m > 0 two of those words 
represent the same element, say y& ..a y,“,i = yipi .*. ~2~ and E, # 6,. Then 
Ym,i E (Y o,i,..., y,,- I,i). Conjugating this relation by y we see that ym+ I,i E 
(Y~,~ ,..., y,,,) c (yO,i ,..., Y,,-~,~) and by induction we obtain 

Yp,i E (YO,i~ae.~ Ym-1.i) for all p > 0. 

A similar argument for negative m gives us that K is generated by a finite set 

{Ym,i: 1 <i<k,ImIGW, ME fN. 

To prove (l), let c > 0 and S c N infinite such that G,(n) < c . ndfl for all 
n E S. Without loss of generality, see (1.6)(i), we may assume that 
X = YU (y), where Y generates K. Let n E S and let g,, i = l,..., GY([n/2]) 
be the distinct elements in K of Y-length <[n/2]. Then the n . G,([n/2]) 
elements giy’, i = l,..., GY( [n/2]), -[n/2] <j < [n/2] are distinct and of X- 
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length 0. So n - G,([n/2]) < gX(n) < c . nd+‘, i.e., G,( [n/2]) < c . nd < 
c’ . [n/21d for a suitable constant c’ > 0 independent of n E S. This shows 
that K has near growth degree <d. 

For (2) suppose that K has a solvable subgroup of finite index. Taking 
the intersection of all subgroups of that index we even obtain a characteristic 
solvable subgroup K’ of finite index in K. Let r’ = (K’, y). As K’ is normal 
in Z-’ we see that the kernel of h ] r’ is K’, in other words K n T’ = K’. Also 
K . r’ = r, so [r: r’] = [K: K’] < 00. Moreover r’ is solvable because 
1 -t K’ + r’ + Z + 0 is exact, and K’ is solvable. 

(2.2) This lemma suggests that one should try to construct a morphism 
of r (or of a subgroup of finite index in r) onto Z. Gromov succedes in this 
through the intermediary of the isometry group of a certain metric space Y 
attached to r (if r is of polynomial growth). 

(2.3) DEFINITION. Given a metric space Y with metric d and 
distinguished point e we make its isometry group Isom(Y) into a topological 
group by taking the U,,, k E PJ >O, E > 0, as a basis of neighborhoods of the 
identity l,,, where U,,,= {a E Isom(Y): d(uy,y) < E for all y with 
W, e) < kl. 

Note. If Y is locally compact and homogeneous then the topology on 
Isom(Y) coincides with the so called compact-open topology, cf. [ 1 ]. 

(2.4) In Sections 4, 5, 6 we will prove the following basic result. 

To each finitely generated group I one can associate a metric 
space Y = Y(I) and a homomorphism 1: I+ Isom(Y) with the 
following properties: 

(I) Y is homogeneous (for any two points there is an isometry 
carrying one to the other). 

(II) Y is connected and locally connected. 

(III) Y is complete. 

(IV) In case l(I) is jinite and I has no abelian subgroup of finite 
index, the group r’ = kernel(l) has for each neighborhood U of 1, a 
homomorphic image in Isom(Y) intersecting U\{ 1 y}. 

(V) If I is of near polynomial growth, then Y is locally compact and 
finite dimensional. 

(VI) If I is of exponential growth, then Y is not locally compact. 

In this section, we will simply assume (I)-(VI) and derive our version 
(1.10) of Gromov’s theorem from it. First an intermediate result. 
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(2.5) THEOREM. Suppose Y = Y(r) is locally compact and jinite dimen- 
sional, and T is infinite. Then P has a subgroup ofjkite index which has Z 
as a homomorphic image. 

Prooj If r has an abelian subgroup of finite index, the conclusion is 
immediate and from now on we assume that we are not in this case. The 
hypothesis of the theorem, together with (I), (II), (III) above, allows us to 
use the deep results of Gleason-Mongomery-Zippin on Hilbert’s fifth 
problem. In fact, we use [ 12, 6.31 and [ 1, p. 6061 to conclude: ’ 

Isom(Y) is a Lie group with finitely many connected components. (*) 

Let L be the connected component of the identity. So L is a connected Lie 
group of finite index in Isom(Y). We claim: 

r contains a subgroup A offinite index which has arbitrarily 
large homomorphic images in L. (**> 

(“arbitrarily large”: for each n E N there is one of cardinality >n). The 
claim holds trivially if l(r) c Isom(Y) is infinite. (Take A = Z-‘(L) nr.) So 
from now on we suppose that I(T) is finite. In particular, r’ = kernel(Z) is of 
finite index in K As r has no abelian subgroup of finite index, we can use 
property (IV), which implies that r’ has homomorphic images in Isom(Y) 
containing elements fly arbitrarily close to 1 y. Now, as a Lie group, 
Isom(Y) has the property that for each n > 0 a suitable neighborhood of 1, 
contains no elements # 1 ,, of order <n. (The “no small subgroups” property.) 
It follows that r’ has arbitrarily large homomorphic images in Isom(Y). 
Now there are only finitely many subgroups of r’ of any given index, so at 
least one of the subgroups of r’ of index < [Isom(Y): L], say A, has 
arbitrarily large homomorphic images in L. Claim (**) is proved. 

Let C be the center of L. So L/C embeds into GL,(C), where n = dim(L) 
(by a fundamental property of connected Lie groups). 

Consider the morphisms A -+ L/C obtained by composing the morphisms 
A -+ L with the natural map L + L/C. If all of these have images of order 
bounded by q, say, then their kernels are subgroups of A of index <q which 
have arbitrarily large images in C, and so the intersection of those kernels is 
a subgroup A’ of finite index in A with arbitrarily large abelian 
homomorphic images. Hence the commutator subgroup of A’ has infinite 
index in A’, and it follows that A’ which is of finite index in I- and therefore 
finitely generated, has L as a homomorphic image, so the conclusion of the 
theorem holds. 

’ It is useful to have some familiarity with the subject treated in [ 121 to see that the 
theorems we refer to apply. 
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So from now on we assume that the morphisms d + L/Cc GL,(C) 
referred to above have arbitrarily large images. We distinguish two cases: 

(a) the morphisms A + GL,(C) have arbitrarily large finite images. 

(b) there is a morphism A -P GL,(C) with an infinite’ image d. 

In case (a), Theorem (2.5) follows by very similar arguments as above 
using the following theorem of Jordan [3, 36.131: 

There is an integer q = q(n) such that each finite subgroup of 
GL,((c) has an abelian subgroup of index <q. 

Case (b) is handled by a deep result of J. Tits, cf. [ 131: 

A finitely generated subgroup of GL,(C) has either a free 
subgroup of rank 2 or has a solvable subgroup offinite index. 

If d has a free subgroup of rank 2, then 2, hence A and r are of 
exponential growth, which is excluded by the hypothesis of the theorem and 
property (VI) of (2.4). So d has a solvable subgroup of finite index, and 
replacing, if necessary, A by a suitable subgroup of finite index, we may as 
well assume that d is solvable, and that its commutator subgroup has infinite 
index. Then d, hence A, has Z as a homomorphic image. The proof of the 
theorem is finished. 

(2.6) Proof of (1.10). Given that r has near growth degree <d for some 
d E R\l, we have to show that r has a nilpotent subgroup of finite index. The 
proof is by induction on d. 

If d = 0, then r is finite, and we are done. 
Suppose r is of near growth degree <d + 1, and r is infinite. Now we use 

property (V) of (2.4), and apply Theorem (2.5) and (1.6)(iii) to reduce to the 
case that there is a surjective morphism h: r+ Z. Let K = kernel(h). By 
(2.1)( 1) and the induction hypothesis K has a nilpotent, hence solvable, 
subgroup of finite index. By (2.1)(2) r has a solvable subgroup of finite 
index. An application of the Milnor-Wolf theorem, cf. (1.8), to this subgroup 
complete the proof. 1 

3. SOME INTRODUCTORY REMARKS ON NONSTANDARD EXTENSIONS' 

(3.1) As already remarked in the introduction we are going to use the 
theory of nonstandard extensions to construct a space Y having the 

2 The reader already familiar with nonstandard methods can skip this section, although we 
shall occasionally refer to results described here, and use notation introduced here, in the 
sequel. 
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properties listed in (2.4). While we cannot give a full account of the foun- 
dations of this theory here, we hope that the following remarks will give an 
adequate idea of the principal novelty in nonstandard analysis compared to 
such similar sounding subjects as nonarchimedean analysis. 

(3.2) The general idea then is to uniformly extend all structures under 
consideration (in our application these will be just N, R and the group Z) in 
such a way that (a) enough properties of the original structures which are 
relevant to the problem at hand, are preserved in the larger structures, but 
(b) certain iterated limit constructions performable on the original structures 
can be succinctly replaced by use of a single element of the larger structure 
which “codes” an infinite amount of information.3 Because of its algebraic 
flavour we have chosen to describe how the ultrapower method achieves 
these aims. 

(3.3) Let I be a countably infinite (index) set. Fix a nonprincipal 
ultrafilter D on I. That is, D is a collection of subsets of I having the 
following properties: 

(i) D contains no finite sets. 

(ii) AED andBED*AnBED. 

(iii) AED andAcBcI-BED. 

(iv) For all A c I, either A E D or Z\A E D. 

(Note that the collection of cofinite subsets of I satisfies (i)--(iii). Further, 
given (i)-(iii), (iv) is easily seen to be equvalent to: (iv)’ D is maximal with 
properties (i)--(iii). Hence nonprincipal ultrafilters exist by Zorn’s lemma.) 

These properties readily imply that (for n E IA) A, U ..a U A, = 
I * A i E D for some i, and so D can be thought of as a {0, 1 }-valued, finitely 
additive measure defined on all subsets of I. We thus say that a property 
. . . j . . . of elements of I holds p.p.i. (“for almost all i”) or just “almost 
everywhere” if {i E I: . . . i . . . } E D. 

(3.4) Now suppose S is any set (or, more precisely, any structure, i.e., 
with functions and relations, that may be defined on S presently). Let S’ 
denote the set of all functions from I to S, and identify two functions 
f, g E S’ if they agree almost eveywhere, i.e., iff(i) = g(i) p.p.i. By (3.3) (ii), 
(iii) this identification is an equivalence relation, and we define S* = S/D = 
(f/D:fE S’} = th e set of equivalence classes. For s E S, define s^ E S’ by 
i(i) = s (i E I). Then the map V: S+ S*: s t+ f/D is l-l (by 3.3(i)). We 
identify S with its image under v from now on, so that S c S*. The set S* is 
called the nonstandard extension of S (by D) and elements of S* \S are 

3 We are indebted to the referee for this concise remark. 
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called nonstandard elements. We also sometimes refer to the elements of S 
as standard elements in this context. We leave the reader to verify: 

(3.5) S=S* iff S is finite. 

It is not literally true that 

(3.6) TcS*T”cS” 

since if h E T’ (so h E Sr) then h/D evaluated in T* is in general a proper 
subset of h/D evaluated in S*. However, identifying these two equivalence 
classes is completely harmless (since any fuction in the first class is equal, 
almost everywhere, to any function in the second class) and we shall do it, 
so that (3.6) holds. This also implies (together with the identification of S 
and v(S)) that 

(3.7) TcS*T*nS=T. 

(3.8) We can generalize (3.7) as follows. Given sets S,,..., S, and 
vc s, x *-. X S, define V* = {(f,/D ,..., f,/D) E Sf X ..+ x Sz : (h(i) ,..., 

f,(i)) E K p.p.i.). 
Then V*cSf x . . . X Sz and it is easy to check that 

(3.9) V*n(S,X~~*XS,)=V. 

Further, if V happens to be a function S, x .e. x S,,-, + S, (so we write 

W 1 ,***, x,- 1 ) =x, for (xi ,..., x,) E V), then we also have 

(3.10) 

V* isafunctionS:XV..~S~-,+S~ and V*rS,X...XS,-,=V. 

In fact, V*(f,/D ,..., f,-,/D) = V(fi ,..., f,-,)/D, where V(fi ,..., f,) E S: is of 
course defined by V(fi ,..., f,_ I)(i) = V(fi(i) ,..., f,- I(i)). 

Note that (3.9) and (3.10) tell us that S is a sub-structure of S* (more 
precisely, v is an embedding) with respect to all functions and relations 
defined on S. This partially justifies remark(a) of (3.2) but we need 
something much stronger. (For example, we shall need to know that if 0 is a 
group operation on S, then (S*, 0 *) is also a group.) To this end we define 
a subset W of S:x... x S,* to be internal if membership to W can be 
computed co-ordinatewise almost everywhere, i.e., if there exists for each 
i E I, a subset Wi of S, x ... X S, such that for all f, E Si ,...,f, E SL: 

(3.11) (f,/D ,..., f,lD) E Wu (fi(i) ,..., f,(i)) E Wi p.p.i. 

We refer to ( Wi)iel as a family of components for W. We leave the reader to 
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check that (3.11) is a well-defined equivalence, and that if ( Wl)i,, is another 
family of components for W, then Wi = Wi p.p.i. 

(3.12) It is also immediate that if we are given any family ( Wi)ir, of 
subsets of S, x ... x S,, then (3.11) uniquely defines a (necessarily internal) 
subset of ST x ... x S,$ with components Wi. 

Note that if V c S, x ... X S,, then V* is an internal subset of 
ST x ‘** x Sx (take all the components to be I’), but in general not all 
internal sets are of this form. 

The definition of internal function can be obtained from (3.11) (as (3.10) 
was from (3.9)) and turns out to be equivalent to: 

(3.13) F: ST x ... x S,*-, -+ S,* is internal iff there exists for each i E I a 
function Fi : S, x ... x S,- i --t S, such that for all f, E S{ ,..., f, _, E SL I 
F(f,/D,.-,f,/D) = (i + Fi(fi(i),***,fn- I(i>>>/D. 

We shall need the following lemmas later; they are examples of remark (b) 
of (3.2). 

(3.14) LEMMA. (i) Suppose W is an internal subset of S*, with 
components Wi, and n E n\i and # Wi ,< n p.p.i. Then #W,< n. 

(ii) No infinite subset of S is an internal subset of S*. 

ProoJ We leave the proof of (i) to the reader. For (ii) suppose A c S, A 
infinite and internal. Let (Ai)ier be a family of components for A. Suppose 
a,, a2 ,..., a, ,... are distinct elements of A, and say Z = {i, , i, ,..., i, ,... } (recall 
that Z is countable). Define f E S’ by f (i,) = uj, wherej is maximal such that 
aj E Ai,, if j exists, a,,j otherwise, where j is minimal such that a, +j E A in ; 
since f (i) E Ai for all i E Z, we have f/D EA. Therefore f/D = a, for some 
m E R\i, i.e., f/D =6,/D, i.e., f(i) = a,,, p.p.i. However, this clearly implies 
a ,,,+, E Ai p.p.i., so 6,+,/D 6? A, i.e., a,,, &A-contradiction. [ 

(3.15) LEMMA. Suppose g, E S* for n E N. Then there is an internal 
function F: R\l * -+ S* such that F(n) = g, for all % E R\i. (We make no claim 
here for the values of F(n) when n is nonstandard, except of course that they 
lie in S’.) 

Proof Say g, =f,/D, where f,, E S’, for n E N. For each i E Z define the 
function Fi : N -+ S by Fi(n) = f,(i) (n E N). Let F be the function N * + S* 
(necessarily internal-see (3.2)) with components {Fi: i E I}. Then for 
n E N, 

F(i,D) = i ++ Fi(fi(i>) 
D (by 3.13), 

i t-+ Fi(n) 
D 

(by definition of n^), 
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i eMi> 
D 

(by definition of FJ. 

=.f,lD = g,,, which gives us the required result, by 
the identification of filD with n. I 

(3.15) There comes a time in any exposition of nonstandard analysis 
when one cannot avoid some simple logical distinctions. In our approach, the 
force of remark (a) of (3.2) is contained in LOS’S theorem, which states that 
any property of a structure, that can be expressed in the language of 
elements and sets, is preserved (when suitably reconstrued) to the 
nonstandard extension of that structure.4 To (roughly) explain this let us fix 
sets S, ,..., S, in whose structure we are interested. Suppose W,,..., W, are 
internal sets (i.e., each Wj is an internal subset of some finite Cartesian 
product of the S,*‘s) and fi/D,...,fk/D are each an element of some S,$ . 
Suppose @ is some property of Wii,..., W,i,fi(i),...,fi(i) (the ith 
components), which can be expressed over the S,‘s in the language of sets 
and elements. That is @ can be expressed using the set quantifiers “3X c n,” 
"VX c Ii”’ (where 17 is some finite Cartesian product of the Sk’s), the quan- 
tifiers “3x E II,” “V/x E 17,” equality “=” membership “E,” and the usual 
Boolean operations “A” (and), “V” (or), “-” (not), “+” (implies). If the set 
quantifiers are not needed to express Cp, then @ is called elementary. 

(3.16) EXAMPLES. (i) Suppose S, = R, and W, = <*, (< denotes the 
usual ordering of R-regarded as a subset of R x R, but we write “x < y” 
for “(x, y) E <“- and <* denotes its nonstandard extension as given by 
(3.8)) so we take each component, Wli, of <* to be just <. Let @, be the 
property “< is a total ordering.” Then @r is elementary, since it may be 
expressed as: VxCiR VyER((x<yAy<x)+x=y) A VxER VyEiR 
VZEIR ((x~yAy~z)+x<z)AVxER VyiyElR (x<yVy<x). 

(ii) Consider now the property, Q2, of <, which says “< is 
complete,” i.e., “every nonempty subset of R with an upper bound, has a 
supremum.” This can be written as: VXciR[(3xER(xEX)A3yEIR 
VXER (xEX+x<y))-t3zER (VXER (xEX+x<z)AVtER 
((t<z A ?t =z)+ 3u E R (U E XA t < u)))], which shows Q2 to be 
expressible in the language of elements and sets. 

(iii) We leave the reader to write out in the language of elements and 
sets, the property of < and N (QJ, say) which expresses “every nonempty 
subset of N has a least element.” 

(3.17) Let @*, the “nonstandard interpretation of @“, be that property 

4 ~05’s theorem is also true for higher order languages, but we shall not need this fact in 
our proof of Gromov’s theorem, so we do not discuss it here. 
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of w, )...) W,, f, /D ,..., fi/D which results from 0 by changing “3x E Sk”, 
“Vx E Sk” to “3x E Sk*,” “V/x E Sk*,” respectively, and “3X c Z7,” “VX c Ill” 
to “there is an internal subset of lZ*...” and “for all internal subsets of 
n*...,” respectively; here, if IZ is, say S, x S,, then ZI* is S: x S:. (For 
example, let us see what @,*, @f, and @T (of (3.16)) say. Q;” asserts that 
the relation <* totally orders R *; @f asserts that every nonempty internal 
subset of R * which is (<* -) bounded above has a (<* -) supremum; @F 
asserts that every nonempty internal subset of N * has a (<* -) least 
element.) Then Los’s theorem states: 

(3.18) w,..., W,, filD ,..., f,/D have property @* lyf WIi ,..., Wmi, 
f,(i),...,fi(i) have property @ p.p.i. In particular, Qi holds of (the standard 
sets and elements) V, ,..., V,, s, ,..., sI zg @* holds of Vf ,..., V,* S, ,..., s,. 

A full discussion of Los’s theorem (in the elementary case) may be found 
in [2]; see also [9, Chap. 11. However, the proof of (3.18) for some 
particular Q’s conveys the flavour of the general result. 

Since @, (of (3.16)) holds of <, we must show @r holds of <*, i.e., we 
must show <* totally orders R *. So suppose x, y E R *, x <* y and y <* x. 
Say x =f/D, y = g/D. Then f(i) <g(i) p.p.i. and g(i) <f(i) p.p.i. (by 
definition of <*). Hence by (3.3)(ii), (iii), f(i) = g(i) p.p.i., so x = y. We 
leave the proof of the other two conjuncts in @$ (the third requires (3.3)(iv)) 
to the reader. 

Let us now show that @F (of 3.16)) holds of <*. Let Xc R * be internal 
and assume f/D E R * is an (<* -) upper bound for X. Let (Xi)iE, be a 
family of components for X. We claim that Xi is bounded above (in R) p.p.i. 
For otherwise Xi would be unbounded above p.p.i. (by (3.3)(iv)) and so we 
could choose, for each i E (i E I: Xi unbounded above} an element g(i) E Xi 
such that f(i) < g(i). Setting g(i) = 0 (say) if Xi is bounded above, gives 
f(i) < g(i) p.p.i., and g(i) E Xi p.p.i., and hence f/D < * g/D and g/D E X, 
which contradicts the assumption that f/D is an <* - upper bound for X. 

Now define 

qER’ by I?(i) = 
SUP Xi if Xi is (4 -) bounded above, 

0 (say) otherwise. 

We leave the reader to check that q/D is the <* - supremum of X. 
As a further example, we recommend the exercise of proving (3.18) for the 

property Q3 of (3.16). 
We hope these examples go some way towards convicing the reader why 

the definition of internal set, and the restriction of set quantifiers to these 
sets, guarantees the truth of (3.18). Of course, in using (3.18) we shall not 
always write out the property @J under consideration in strict logical 
notation, since we hope it will be fairly clear what @* is saying. 
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Indeed, if @ is in fact elementary, then @* expresses the same property of 
the nonstandard extension as @ does of the original structure, although more 
care must be taken if @ is not known to be elementary. For example, it is not 
the case that every subset of R*, which is bounded above, has a supremum 
as we shall see below. 

(3.19) An immediate corollary of (3.18) is that any subset of 
S,” x .*f X Sz which can be defined from internal sets using (our restricted) 
quantifiers and boolean operations is also internal and hence, if it is infinite, 
must contain a nonstandard element (by (3.14)(ii)). This latter phenomenon 
is called overspill. It is crucial in many applications of nonstandard analysis 
because the nonstandard elements that arise in this way often turn out to do 
the coding mentioned in remark (3.2)(b). 

(3.20) We now look more closely at the structure of R* and f * (the 
nonstandard extension of the group r) in the light of (3.16). For convenience 
of giving examples, we take our index set I to be the set of natural numbers. 

(3.18) implies that the nonstandard extension to R*: +*,-*, .*, <*, etc., 
of the usual operations and relations on R, makes R* into an ordered field 
(this is an elementary property). Suppose v E R *. If -r <* n <* r for some 
r E R, n is called finite; otherwise, it is called injhite. For example, 
i t--+ 3 + (l/i + 1)/D is a finite element of R * (which is not in R); i b i/D is 
infinite (by (3.3)(i)). If --r <* q <*r for all positive r E R, q is called 
infinitesimal. Thus i t-+ l/i + l/D is an example of a nonzero infinitesimal. 
Define Rfi” = {n E R*: r] finite}, R” = {q E R*: v infinitesimal}. Warning: 
these sets are not internal subsets of R*. (Proof: They are both bounded 
above (in R*) but neither has a supremum.) Clearly R G R”“. We leave the 
reader to check that IR’” is a subring of R*, that R” is a maximal ideal in 
R”” and that the map p: R + Rfi”/Ro: r t-+ r + R” is a (field) isomorphism. 
Let h: R”” --) R”“/R’ be the natural homomorphism. The homomorphism 

P -’ 0 h: R”” -+ R is called the standard-part map and is usually denoted by 
st. Thus for each n E Rfi”, St(r) is the unique real number “infinitesimally 
close to q”, i.e., it satisfies St(q) - n E R”. 

Let us also note here that N * n R”” = N, so that all nonstandard elements 
of N* are infinite. 

(3.20) We now investigate r*. Let us suppose I- is infinite so that 
r* #I- (by (3.5)). By (3.18) r* is certainly a group under the nonstandard 
extension, 0 *, of the group operation, 0, on r (the reader may like to verify 
this directly from (3.10)) and r is a subgroup of r* by (3.10). Now suppose 
X is a finite generating set for r. By (3.5) X=X*; but now we appear to 
have a conflict with (3.18). While the statement “X generates I”’ is true, the 
statement “X* (i.e., X) generates r*” cannot be literally true (since r f r*). 
The clue is that “X generates r*’ is not an elementary statement about X and 
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r (see the remarks immediately proceeding section (3.19)). It turns out that 
this statement can be adequately expressed in the language of elements and 
sets. In this way, we discover the appropriate nonstandard interpretation. 
The following formulation of “X generates I”’ will do: 

“for each g E r, there is n E N and functions X: {m E N : 
m<m}-+XuX-‘, y:{m~N:m<n}+T such that y(O)=e 
(the identity of r) and for all m < n, y(m + 1) = y(m) 0 x(m), and 
v(n) = g.” (In ordinary notation, y(m) = x(0) x(1) x(2) ..s 
x(m- l),g=y(n)=x(O)x(l)...x(n- l).) 

The nonstandard interpretation of “X generates F’ (which must be true by 
(3.18)) should now be clear. It states that if g E r*, then there is n E N * and 
internal functions x: {m E N*: m <* n) +XLJX-’ and y: {m E bJ*: 
m <* n} +r* such that for all m <* n (m E N*), y(m + l)=y(m) o* x(m) 
and y(n) = g. (Of course, if g E r* \r, then the n here will be in N * \ N, i.e., 
it will be infinite.) 

In other words, every element, g, of r* may be written as an “internal 
word” (the function x ) in the generators, although the length of this word 
may be an “infinite natural number.” (The function y, of course, will 
enumerate the “initial segments” of this word.) Note also that the set of all 
n E N * for which such a word exists (for fixed g E r*) is internal (by the 
remarks at the beginning of (3.19)) so it will have a <* - least element (see 
@F of (3.17)) and this element will of course be 1 gl*, i.e., the value of non- 
standard extension of the length function, 1 I*: r* -+ N *, applied to g (again, 
this follows by a suitable aplication of (3.18)). 

(3.21) The preceding discussion illustrates a principal difference between 
nonstandard extensions and more familiar extensions obtained by forming, 
say, completions, or by identifying “infinitesimal” objects like tangent 
vectors with derivations on a local ring of functions. What the latter do not 
do is to pick out infinite integers which are constantly used in nonstandard 
analysis for “counting,” “coding,” etc. We recognize the importance of the 
“familiar” extensions: they generally give canonical objects. But then it is to 
be noted that these objects can always be interpreted quite intuitively as 
(equivalence classes of) suitably chosen objects in a nonstandard extension. 
In particular, the points of the space we are going to associate in the next 
section to r will be equivalence classes of elements in r*. We shall use 
nonstandard counting in Section 6 to obtain the local compactness of that 
space, if r has near polynomial growth. 

481/89/2-9 
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4. NONSTANDARD CONSTRUCTION OF THE SPACE Y 

(4.1) We now return to the situation of Section 1, so that r is a group 
with finite generating subset X, and length function 1 1: r-, N. Our aim in 
this section is to construct a space Y having the properties listed in (2.4). To 
this end we consider (uniform) non-standard extensions, r*, R*, n\l* etc., of 
r, R, N, as described in Section 3, although we shall now use the same 
symbols to denote the nonstandard extensions of familiar functions and 
relations defined on these sets. (For example, we shall use just 1.1 for I . / *, < 
for <*.) 

Fix a positive infinite hyperreal number R, i.e., R E R* and R > n for all 
n E R\l, and define rtR) as the subgroup { g E r* I / g(/R < c for some c > 0, 
c E R} of r*, and let ,U =,u(~) be the subgroup {g E r* ) I gI/R < c for all 
cm, 00) 0f r (R) The quotient I . I/R defines a map rCR) -+ R”” = . 
{xER*:-c<x<c, some c E R }, and clearly Igl/R-IhlIR is 
infinitesimal, whenever gp = hp in the set of left cosets rCR’/,u. So we can 
factor out ,D and apply the standard map st: R”” -+ R to obtain a commuting 
diagram: 

r(R) - 1. I/R p,fin 

I P 
II w II = st(l d/R). 

(Note that the construction here is rather similar to the discussion of R 
in (3.20).) 

From the definitions it follows that II gp /I = 0 o g E ,u, so by putting 
&x hp) = II g-‘WI, we obtain a metric space (rCR)/p, d) which we denote 
by YCR’, or simply by Y if no confusion results. The reader can easily verify 
that example (1.3)(a) leads to the space Y = (R*, N.Y.-distance). 

(4.2) PROPOSITION. The metric space Y has the following properties. 

(a) Y is homogeneous; 

(b) for each two points p, q E Y with d(p, q) = r there is an isometry 
of [0, r] into Y sending 0 to p and r to q; so Y is connected and locally 
connected; 

(c) Y is complete. 

Proof. (a) i-CR) acts on Y on the left by isometries: 

d(ag~,ah~)=Ih~‘a-‘ag~l=Ih-‘g~l=d(g~,h~), 

and clearly this action is transitive. 
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(b) For simplicity we assume that p= ep, q=m and 
d(p, q) = st(/ g]/R) = 1 (the general case is very similar). Replacing if 
necessary g by another member of gp, we may assume that / g] = [RI, [ ] 
denoting the integral part operator defined on IR * (with values in Z *). So g 
has a shortest representation as a (nonstandard) word g, ... gtR,, where all 
gi E XUX-‘. (See the discussion in (3.20).) We define f: [0, 1] + Y by 

f@-> = g, “’ g[rR]. A straightforward computation shows that f is the 
required isometry. 

(4 Let k4nEN be a Cauchy sequence in Y. For simplicity we 
assume 11 g,,pl/ < 1 for all n. As in (b), there is no loss of generality in further 
assuming that 1 g,l <R. Extend (g,),, N to an internal sequence (g,),, N*, 
this being possible by Lemma (3.15). For each k E N >O, take M(k) E N such 
that j g;‘g,l < R/k for all (standard) integers m, n > M(k). By “overspill” 
this remains true for all m, n E N * greater than M(k) but less than some 
infinite N(k) E N *. (See (3.19). We are applying the remark there to the 
internal set {tEN*:VmEN*VnEN*(M(k)<m,k<t-+~g~’g,~~ 
R/k)}.) By a similar argument using (3.15) and (3.19) there is o E N * 
greater than all M(k) and less than all N(k), k E N >O. Clearly we have 
limg,p =g,p in Y. I 

(4.3) Remarks. (1) We have to keep in mind that the metric space Y 
depends not only on the hyperreal number R but also on the generating set 
X, so let us (temporarily) write Yx and its metric as d,. Take another finite 
generating set X’ (but keep the same R). Then, with 

we have (for Z-f {e}): 

c-‘Iglx4&~cl& for all g E r, hence for all g E I’*. 

So rcR’ does not change, nor does piR), and the metric spaces Yx and Y,, 
have the same underlying set rcR)/p, and their metrics are related by: 
c-‘d,<(5,,<c& 

(2) The functoriality mentioned in the introduction amounts to the 
following: Let o: (r,, X,) + (r,, X,) be a morphism of groups with 
distinguished finite generating sets X, , X,, i.e., o(X,) c X, . Clearly 
( gl > ]rp( g)i for all g E r, (the norms are taken w.r.t. the generating sets X, 
and X,, respectively). So a, induces naturally a group morphism r, + ry) 
sending ,u y’ into ,u, . (R) Hence p induces a map @: Y, -+ Y,, where Y, , Y, are 
the spaces attached to (I-,, X,, R) and (r,, X,, R), respectively. Clearly we 
have II 41 > IlP(w>ll = II(w>,4, g E rl”‘. So the as$wmnts (r,X)+ K 
cp -+ U, define a functor, still depending on R, from the category of groups 
with distinguished finite generating sets to the category of metric spaces with 
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distance decreasing maps. Note also that if 9(X,) = X,, then rp: Y, + Y, is 
surjective. 

(3) It would be nice to know more about the spaces Y. It seems 
plausible that Y is homeomorphic with some R” if r is nilpotent. If r is free 
on X, then the space Y is “tree-like”: for any two points p, q there is essen- 
tially only one way to go from p to q; more precisely, Y contains no 
subspace homeomorphic with a circle. 

Question. Do there exist finitely generated groups r for which Y is not 
simply connected? 

5. ACTIONS OF SUBGROUPS OF EON Y 

(5.1) The purpose of this section is to establish property (IV) of 
Section 2. As we saw in the proof of (4.2)(a) the group rCR) acts 
isometrically by left multiplication on Y = rtR)/p, and this action naturally 
induces a morphism rCR) + Isom(Y), which we shall write as y t--, 1,. Unfor- 
tunately, many y E r may act trivially on Y: the kernel of 1 is the largest 
normal subgroup of rCR) contained in ,L For instance, if r is abelian, this 
kernel is p itself, so contains r. 

However, under the hypotheses of property (IV) in Section 2 the kernel r’ 
of 11 r (of finite index in r) has a conjugate p- ‘P/3, /I E r*, which is 
contained in rCR) and acts “usefully” on Y. As r’ ” p ‘P/I, the action of 
,L-‘P/3 can be transported to an action of r’ on Y. 

(5.2) In the rest of this section we assume that l(r) c Isom(Y) is finite 
(one of the assumptions in (IV), Section 2), and we put r’ = kernel(l 1 r’). So 
r’ is of finite index in r, and we fix a finite generating set S of r’ such that 
s-l c s. 

(5.3) LEMMA. If r has no abelian subgroup ofJinite index, then the set 
of lengths 1 y-‘syl (y E r’, s E S) is unbounded. 

Proof. Otherwise each s E S has only finitely many P-conjugates, in 
other words, the r’-centralizer of s has finite index in r’. Therefore the 
center of r’, being the intersection of the centralizers of the s E S, has finite 
index in r’, hence in r. fl 

(5.4) Before we state the next proposition which is a precise version of 
property (IV) of Section 2, we remind the reader that the group Isom(Y) is 
topologized by taking the U,,,, k E M ‘O, 0 < E E IF?, as basic (closed) 
neighborhoods of l,, cf. (2.3). 
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(5.5) PROPOSITION. Suppose r has no abelian subgroups offinite index. 
Then for each neighborhood U of 1 y there are /I E (r’)* and s E S such that 
,&‘r’p c rcR) and lBmlsB E U\ { ly}. 

Proof. ForyE~*andO<rER*weputB(y,r)=max(d(ya,a):lal<r} 

( maximum “displacement” effected by y among the points of B,(r)). We 
claim: 

Q-‘x, 4 <W, r> + 2 I gl (gEr*)* (1) 
Let I a I < r. Then 4 g- ‘yga, a> = d(yga, ga) < d(y, l g l + r) < 6(y, r) + 2 1 g/. 
The last inequality follows by writing an element of B,(l gl + r) as bc with 
lb/Gr, Icl<lgl;then 

d(ybc, bc) < d(ybc, yb) + d(yb, b) + d(b, bc) 

= d(yb, 6) + 2d(bc, b) < 6(y, r) + 2 1 gl. 

inequality (1) is established. 
FIX a neighborhood U = U,,,, k E N >O, E > 0. A nonstandard translation 

of Lemma (5.3) gives us s E S and g E (P)* such that: 

1 g-‘sgl > ER. (2) 

Write g=s, . ..s.,~~ES,t~N*.ForO<i<tweput: 

gi=s, “‘Si and Mi = max{b(gIT1sgi, kR): s E S}. 

Further we let C = max{lsI: s E S}, so C E N. Then we have: 

M, < ER (because r’ acts trivially on Y), (3) 

M, > ER (by (211, (4) 

IM,+,-MiI<2C for 0 < i < t - 1 (by 1)). (5) 

From (3), (4) and (5) we derive the existence of an i E {O,..., t} with: 

IM,-ERI<~C. (‘5) 

ForthisiwedefineP=gi,sopE(r’)*.NotethatifyEr’,thenP~‘YPisa 
finite product of elements of the form p-‘s/3, s E S, each of which is in rcR) 
by (6), so: 

p-‘z-‘p c rcR). (7) 

From (6) we also obtain the existence of s E S such that S@-‘sjI, kR) differs 
from ER by at most 2C. For u = I,- ,S4 this means that u # 1,. Moreover, for 
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(a ) 4 kR: d(o(a,u), up) = st(d( au, a)/R) < E, by (6), so u E U. The propo- 
sition is proved. 1 

6. FURTHER PROPERTIES OF YRESULTING FROM 

GROWTH RESTRICTIONS ON r 

(6.1) The properties of the space Y = Y (R’ discussed in Sections 4 and 5 
hold for any finitely generated group r, and any positive infinite R E IR*. 

We now show that if r has near polynomial growth, then R can be chosen 
so that YcR) is locally compact and of tinite dimension. The proof of the 
following lemma contains the crucial argument. 

(6.2) LEMMA. Let R, be positive infinite and suppose G(R,) < c . Rf 
where 0 < c E IR, d E N. Then there is a positive infinite S < R,, such that 
for every i E N, i > 4, the following property Pi(S) holds: 

P,(S): if g, ,..., g, E B&S/4), t E N *, and B,,(S/i) ,..., B,,(S/i) are 
pairwise disjoint, then t < id+ ‘. 

ProoJ Suppose the lemma is false. Thus, for all S E R* with 
log R, < S <R, there is some i E N, i > 4, such that Pi(S) fails. In fact, 
clearly the function mapping S to the least i such that P,(S) fails 
(log R, < S <R,), is internal, so its range must be internal; since this range 
is a subset of N, it is bounded by some K E N (by (3.14)(ii)). Hence we may 
define internally, by induction, natural numbers i, ,..., i,, u E N * to be 
chosen below, and elements g(l, j) E I’*, for 1 < I < U, 1 <j < t,, where 
t, = [if”] + 1, such that for I= l,..., u: 

4<i,<K, (1) 

g(Lj) E Be (4i, “Pi,-I) 
for 1 <j,< t,, (2) 

for 1 <j<j’<t,. (3) 

(As 1 goes from 1 to u, the radii R,/i, .a- i,-, represent decreasing values of 
S.) Clearly the obvious inductive definition of the i,‘s and g(l,j)‘s may 
proceed as long as the condition PI(R,/i, . . . i[-,) fails, and this will be 
guaranteed if we choose u to satisfy 
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(4) 

Now let T= {(sl ,..., s,): sI E (N, 1 < sI < c,, for 1= l,..., u}, and for 
s = (s * )...) SJ E T define g, = g( 1, s,) g(2, s2) ... g(u, sU). Note that 

(by (2)), 

Hence: 

( g, : s E Tl = B,(R,). 

Suppose s, s’ E T and s # s’. We shall show that: 

(5) 

g, f ii!,,. (6) 

For if g, =gS,, then g(u, SJ ... g(u, s,) = g(v, ~6) v.1 g(u, s;) for some u < U, 
with s, # s:,. Hence: 

g(v, s:>-’ g(v, $1 =g(fJ + 1, s:>+ I> ... g(u, sI>g(u, s,)-’ 
... g(v + 1, s,+,)-‘. (7) 

But 

Ro Y G I g(b s:> - ’ db S”)l 1, ‘*a 1” 

< 2 f R,/4i, ... i,-, 
/=ot I 

(by (3)), 

(by (2)), using (7)), 

< &I 
2i, a.. i, t 1+ i 47) /=utz 4 - - 

(by (111, 

43 CT. 
1, *-. 1” 

This contradiction establishes (6), which clearly implies 

#{g,:sE T}=#T> fi if+’ (by definition of T), 
I=1 

> (RJog R,)“+’ (by (4)), 

>c.R; (since R, is infinite). 
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Together with (5) this contradicts G(R,) < c - Rf, and this establishes the 
lemma. I 

(6.3) PROPOSITION. Let r be of near growth degree <d, d E N. (See 
(1.5)(3).) Then there exists positive infinite R E IR* such that the metric 
space YCR) is locally compact of dimension <d f 1. 

Proof. By “overspill” there is a positive infinite R, E R * such that 
G(R,) < c + Rff. Let S E R * be positive infinite such that the property P,(S) 
of (6.2) holds for all i E n\l, i > 4. Set R = S/4. We shall show that YcR) 
satisfies the conditions. Let k E N >O. From (6.2) we conclude: if 
g, ,..., g, E B,(R), t E N*, and the balls B,,(R/k) ,..., B,,(R/k) are pairwise 
disjoint, then t < (4k)d+ ‘, in particular t is finite. Taking t maximal, the balls 
BJ2 . R/k) necessarily cover B,(R): if g were not in their union then 
B&R/k) would be disjoint from all Bgi(R/k). Applying the coset map 
rcR) + YcR) we see that the closed ball of radius 1 and center ep in YcR) is 
covered by at most (4k) dtl balls of radius 2/k, for any k E N >‘. As YcR) is 
complete and homogeneous this immediately implies that all closed balls of 
radius 1 are compact and of Hausdorff dimension <d + 1. (See [8, Chap. 71 
for the notion of Hausdorff dimension and its connections with topological 
dimension.) Hence YcR) is locally compact and of dimension <d + 1. m 

(6.4) Remarks. (1) In the arguments of (6.2) and (6.3) the term d + 1 
can actually be replaced by d + E, where E is an arbitrary positive real. 
Hence the space YcR) in (6.3) can in fact be taken to be of dimension <d. 
Note that we have now established property (V) of (2.4) for the space 
Y= YcR’, where R is as in (6.3). 

(2) It is an easy exercise to show that if YcR) is locally compact, R 
positive infinite, then every closed bounded subset of YcR) is compact. 
(Assuming that closed balls of radius r > 0 in Y are compact, use (4.2) to 
show that closed balls of radius (3/2) . r are covered by finitely many balls 
of radius r.) 

(3) It seems plausible (and would be nice to prove) that, conversely, 
local compactness of Y (R) for some positive infinite R, implies that r is of 
polynomial growth. Let us show here only the following fact which we stated 
in (2.4) as property (VI) of the space Y, putting Y = YcR). 

(6.5) If r is of exponential growth, then for no positive infinite R is the 
space YcR’ locally compact. 

By an observation of Milnor [ 10, p. 21 lim G(n)“” exists, and it is > 1 iff r 
is of exponential growth. So if 1” is of exponential growth there is a real 
number r > 1 such that for any positive infinite R we have: 
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st(G(R)‘lR) = st(G(2R)1’2R) = r, so st((G(2R)/G(R))‘IR) = r, which implies 
that G(2R)/G(R) is infinite: hence B,(2R) cannot be covered by finitely 
many balls B,(R), so that closed balls of radius 2 in YCR) are not compact, 
and therefore YtR) is not locally compact. fl 

(6.6) Concluding Remark. We have finally proved all the properties 
stated in (2.4) for the space Y = YCR), where R is chosen as in (6.3). Hence 
Gromov’s theorem (1.10) has now been established. 

7. EFFECTIVE BOUNDS 

Gromov proved also a finite version of his theorem by means of a 
topological compactness argument: 

(7.1) THEOREM. Let positive integers d and k be given. Then there are 
positive M, i, N such that for any group r with finite generating set X we 
have: 

if G,(n) < k . nd for n = l,..., M, then 

G,(n) < k . nd for all n, and r has a subgroup of 
index <i and nilpotency class ,a. 

(7.2) We will give a new proof of this theorem by means of a model 
theoretic finiteness argument which moreover shows how M, i, N can be 
effectively computed from d and k (in the sense of recursion theory; we do 
not claim efficiency of the algorithm). 

(7.3) Proof of (7.1). Let T be the first order theory of groups with k 
distinguished elements xi ,..., xk, not necessarily distinct. For each positive 
integer M, let uM be a sentence in the language of T saying (for each model 
of T) that G,(n) < k. nd for n = I,... , M in the subgroup r generated by 
x = {x1 )...) xk} in the model. It is clear how to construct such a sentence for 
given d, k and M. 

Similarly, let ri,+, be the sentence in the language of T saying (for each 
model of T) that subgroup generated by xi ,..., xk has a subgroup of index at 
most i and nilpotency class at most N. 

To see that such a sentence ri,N exists and can be effectively constructed 
from k, d, i, N we use the following two facts: 

(*) A group generated by r elements y I ,..., y, is nilpotent of class N 
iff all commutators [ yil ,..., y,,] (1 < ij < r) equal the identity. See [ 7, 10.2.31. 

(**) If r is generated by {x,,..., xk} then there are at most A(i, k) 
subgroups of index at most i (and exactly A(i, k) such subgroups if r is free 



372 VAN DEN DRIES AND WILKIE 

on the k-element set {xi,...,~~}); here A: N x (N -+ N is effectively 
computable, and for all i, k one can effectively specify A(& k) finite sets of 
generators for these subgroups, each generator given as a word on 

it:a:*T 

x,, x; I,..., XL’}, where the letter Xi is to be interpreted as xi. 
viously, we only have to do this for the case that r is free on the k 

elements x, ,..., xk, and for that case one may consult [6]; in general we 
allow the possibility that several of the A(& k) finite sets define the same 
subgroup of r). 

Now Gromov’s theorem (in its “infinite” form) says: 

T+ A ‘M +b V ‘i,N’ 
M>l i>l,N>l 

By the compactness theorem of model theory (see [4, pp. 148-1491 for the 
version used here) it follows that there are M, i, N 2 1 such that 

By Giidel’s completeness theorem we will eventually find such M, i, N 
by systematically checking proofs from T until we find one of 
T ~ (TM cs Zi,N. I 

(7.4) Remark. Note that (7.1) is a finite version of Gromov’s original 
theorem. The method of (7.3) also gives a finite version of our improvement 
(1.10) of Gromov’s theorem: 

There is a (recursive) functional which to any triple (a, d, k), with 
a:iN+N andd,kEN>O, assigns positive integers M, i, N such that for any 
group T with finite generating set X we have: 

if G,(a(n)) < k. (a(n))d for n = I,..., M, and a(1) < e.. < a(M), 
then there is d’ E R\i such that G,(n) Q k . nd’ for all n > 0, and T 
has a subgroup of index <i and nilpotency class QV. 

(7.5) One of the most interesting unsolved problems concerning the 
growth of finitely generated groups is to determine whether or not every such 
group has either polynomial or exponential gr0wth.j In the last result of this 
paper we use (7.1) to construct an effectively computable function growing 
faster than any polynomial and such that every growth function majorized 
by it is of polynomial growth. 

(7.6) THEOREM. There is an eflectively computable, nondecreasing 

’ We have been told that R. GrigorEuk, in Moscow, has recently constructed finitely 
generated groups whose growth is neither polynomial nor exponential. 
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function g: N -+ n\i, such that g(n) --$ CO as n + co, with the following 
property: 

if r is any group with finite generating set X, and the growth 
function G, of r satisfies G,(n) & k . ng(*’ for n = 1,2,..., where k 
is a constant, then r has polynomial growth. 

Proof Define g(n) = (4). #{d E N: d > 1 and d + max,,,,,,,M(s, u) 
< n}, where the function M = M(k, d) is given by (7.1). 

Clearly g is nondecreasing, g(n) -+ CO as n -+ co and g is effectively 
computable (because A4 is). 

Now let r be any group with finite generating set X, and suppose k E N, 
k > 1 is such that G,(n) < k . ng(“) for n = 1, 2,... . 

Let d=max{2e#X+ 1,2k}. 
Then nd > k . nd12 for n = 2, 3,... . However, from the definition of g we see 

that g(n) < d/2 for n ,< maxIGs,u$d M(s, u), thus, in particular, we obtain 

nd > k . ngCn’ for n = 2, 3 ,..., M(2 . #X + 1, d), 

so that 

nd > G,(n) for n = 2, 3,..., M(2 . #X + 1, d). 

Since G,(l) < 2 a #X + 1 we deduce that 

G,(n)<(2.#X+1).nd for n = 1, 2 ,..., M(2 . #X t 1, d) 

and so, by (7.1), r has polynomial growth, as required. 1 

REFERENCES 

1. R. ARENS, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610. 
2. J. BELL AND A. SLOMSON, “Models and Ultraproducts,” North-Holland, Amsterdam, 

1969. 
3. C. CURTIS AND I. REINER, “Representation theory of finite groups and associative 

algebras,” Wiley-Interscience, New York. 
4. L. VAN DEN DRIES, Algorithms and bounds for polynomial rings, in “Logic Colloquium 

78” (M. Boffa, D. van Dalen, K. McAloon, (Eds.)), pp. 147-157, North-Holland, 
Amsterdam, 1979. 

5. M. GROMOV, Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 
(1981), 53-78. 

6. M. HALL, Subgroups of finite index in free groups, Canad. J. Math. 1 (1949), 187-190. 
7. M. HALL, “The Theory of groups,” Chelsea, New York, 1959. 
8. W. HUREWICZ AND H. WALLMAN, “Dimension Theory,” Princeton Univ. Press, Prin- 

ceton, N.J., 1948. 
9. J. KEISLER, “Foundations of Infinitesimal Calculus,” Prindel-Weber-Schmitt, Boston, 

1976. 



374 VAN DEN DRIES AND WILKIE 

10. J. MILNOR, A note on curvature and fundamental group, J. DifJerential Geometry 2 

(1968), 1-7. 
11. J. MILNOR, Growth of finitely generated solvable groups, /. Dlfirential Geometry 2 

(1968), 447-449. 
12. D. MONTGOMERY AND L. ZIPPIN, “Topological Transformation Groups,” Wiley- 

Interscience, New York, 1955. 
13. J. TITS, Free subgroups in linear groups, J. Algebra 20 (1974), 25CL270. 
14. J. TITS, “Groupes g croissance polynomiale,” Sirminaire Bourbaki, 33e annte 1980/1981, 

no 572; Lecture Notes in Math. No. 901, pp. 176-188, Springer-Verlag, Berlin/New 
York/Heidelberg, 198 1. 


