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a b s t r a c t

In this paper, an HIV-1 infectionmodel with distributed intracellular delays is investigated,
where the intracellular delays account for the time the target cells are contacted by the
virus particles and the time the contacted cells become actively infected meaning that the
contacting virions enter cells and the time the virus has penetrated into a cell and the time
the new virions are created within the cell and are released from the cell, respectively. By
analyzing the characteristic equations, the local stability of an infection-free equilibrium
and a chronic-infection equilibrium of themodel is established. By using suitable Lyapunov
functionals and LaSalle’s invariance principle, it is proved that if the basic reproduction ratio
is less than unity, the infection-free equilibrium is globally asymptotically stable; and if the
basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally
asymptotically stable.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling combined with experimental measurements has yielded important insights into HIV-1
pathogenesis and has enhanced progress in the understanding of HIV-1 infection (see, for example, [1–7]). Models used
to study HIV-1 infection have involved the concentrations of uninfected target cells, x, infected cells that are producing
virus, y, and virus, v. After protease inhibitors are given, virus is classified as either infectious, vI , i.e., not influenced by the
protease inhibitor, or as non-infectious, vNI , due to the action of the protease inhibitor which prevents virion maturation
into infectious particles. A basic mathematical model describing HIV-1 infection dynamics that has been studied in [3,6,8]
is of the form

ẋ(t) = λ − dx(t) − β̄x(t)v(t),

ẏ(t) = β̄x(t)v(t) − ay(t),

v̇(t) = k̄y(t) − uv(t),

(1.1)

where uninfected, susceptible cells are produced at a rate, λ, uninfected cells die at rate d, and become infected at rate β̄xv,
where β̄ is the rate constant describing the infection process; infected cells are produced at rate β̄xv and die at rate ay; free
virions are produced from infected cells at rate k̄y and are removed at rate uv.

The binding of a viral particle to a receptor on a target cell initiates a cascade of events that ultimately lead to the target
cell becoming productively infected, i.e. producing new virus.We note that inmodel (1.1) this processwas assumed to occur
instantaneously: as soon as virus contacts a target cell the cell begins producing virus. However, in the real situation, there
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may be a lag between the time the target cells are contacted by the virus particles and the time the contacted cells become
actively infected meaning that the contacting virions enter cells. This can be explained by the initial (or eclipse) phase of
the virus life cycle, which include all stages from viral attachment until the time that the host cell contains the infectious
viral particles in its cytoplasm. In addition to the above time delay, there may be also a period between the time the virus
has penetrated into a cell and the time the new virions are created within the cell and are released from the cell. This is
because the virus production process within a cell consists of several stages as well: (i) uncoating of viral RNA, (ii) reverse
transcription of viral RNA into DNA, (iii) transport of the newly made DNA into the nucleus, (vi) integration of the viral
DNA into the chromosome, (v) production of viral RNA and protein and finally (vi) creation of new virus from these newly
synthesized RNA molecules and proteins (see, for example, [9]). There has been some work on the effect of intracellular
delays on the dynamics of virus infection (see, for example, [9–19]).

In [15], Nelson and Perelson further generalized the model in [14] by including two delays modeling the ‘‘two periods’’
mentioned above. The general model in [15] is given by the following system of delay differential equations

ẋ(t) = λ − dx(t) − (1 − nrt)β̄x(t)v(t),

ẏ(t) = (1 − nrt)β̄

∫
∞

0
f1(τ )e−mτ x(t − τ)v(t − τ)dτ − ay(t),

v̇(t) = (1 − np)k̄
∫

∞

0
f2(τ )y(t − τ)dτ − uv(t).

(1.2)

Here, the parameters a, d, k̄, u, λ, β̄ and the variables x(t), v(t) are defined as those in (1.1), y(t) now represents the density
of cells with ‘‘integrated’’ HIV-1 DNA. The new parameters np and nrt measure the efficacies of the protease inhibitor and
the reverse transcriptase inhibitor, respectively. It is assumed in (1.2) that cells, which are infected by virus at time t , begin
producing virus, i.e., become productively infected, τ time units later, where τ is distributed according to a probability
distribution f1(τ ). The recruitment of virus-producing cells at time t is given by the number of cells that were newly
infected at time t − τ and are still alive at time t . Here, m is assumed to be a constant death rate for infected but not
yet virus-producing cells. Thus, the probability of surviving the time period from t − τ to t is e−mτ . On the other hand, it is
assumed in (1.2) that the virus penetrated into a cell at time t , τ time units later, the new virions are created within the cell
and are released from the cell, where τ is distributed according to a probability distribution f2(τ ). With the assumptions
f1(τ ) = δ(τ − τ1), f2(τ ) = δ(τ ) and f1(τ ) = δ(τ ), f2(τ ) = δ(τ − τ2), respectively, where δ(·) is the Dirac delta function,
by analyzing the corresponding characteristic equations, the local stability of feasible equilibria was discussed in [15]. By
assuming f1(τ ) = δ(τ − τ1), f2(τ ) = δ(τ ) and by using suitable Lyapunov functionals and LaSalle’s invariance principle,
the global stability of the infection-free and the chronic-infection equilibrium has been established in [19].

Motivated by the work of Nelson and Perelson [15], in this paper, we further consider the effect of intracellular delays on
the global dynamics of model (1.2). To this end, we consider the following more general delay differential equation model

ẋ(t) = λ − dx(t) − βx(t)v(t),

ẏ(t) = β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − ay(t),

v̇(t) = k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ − uv(t)

(1.3)

where β = (1 − nrt)β̄, k = (1 − np)k̄, the term e−m2τ is incorporated in the third equation to describe the death rate
factors. In (1.3), the delay kernel, fi : [0, ∞) → [0, ∞), is assumed to be piecewise continuous and to satisfy the following
properties:∫

∞

0
fi(τ )dτ = 1,

∫
∞

0
τ fi(τ )dτ < ∞, i = 1, 2.

The initial conditions for system (1.3) take the form

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ),

φi(θ) ≥ 0, θ ∈ (−∞, 0), φi(0) > 0 (i = 1, 2, 3),
(1.4)

where (φ1(θ), φ2(θ), φ3(θ)) ∈ C((−∞, 0], R3
+0), the space of continuous functionsmapping the interval (−∞, 0] intoR3

+0,
where R3

+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.
In this paper, our primary goal is to carry out a complete mathematical analysis of system (1.3) and establish its global

dynamics. It is well known by the fundamental theory of functional differential equations [20], system (1.3) admits a unique
solution (x(t), y(t), v(t)) satisfying the initial conditions (1.4). It is easy to show that all solutions of system (1.3) with initial
conditions (1.4) are defined on [0, +∞) and remain positive for all t ≥ 0.

The organization of this paper is as follows. In the next section, by analyzing the corresponding characteristic equations,
we study the local asymptotic stability of an infection-free equilibrium and a chronic-infection equilibrium of system (1.3).
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In Section 3, we discuss the global stability of the infection-free equilibrium and the chronic-infection equilibrium bymeans
of suitable Lyapunov functionals and LaSalle’s invariance principle, respectively. The global stability of the chronic-infection
equilibrium rules out any possibility for the existence of Hopf bifurcations and sustained oscillations in system (1.3). A brief
remark is given in Section 4 to conclude this work.

2. Equilibria and local stability

In this section, we study the local stability of each of feasible equilibria of model (1.3).
Clearly, system (1.3) always has an infection-free equilibrium E1(λ/d, 0, 0). Denote

R0 =
kλβ


∞

0 f1(τ )e−m1τdτ


∞

0 f2(τ )e−m2τdτ
adu

. (2.1)

Here, R0 is called the basic reproduction ratio of model (1.3). R0 denotes the average number of secondary virus produced
from a single virus for system (1.3). Noting that


∞

0 fi(τ )dτ = 1, we have


∞

0 fi(τ )e−miτdτ < 1 formi > 0 (i = 1, 2). Hence,
biologically, the delay representing the time for a viral particle to go through the eclipse phase (or latent period) and/or the
delay representing the time between the entry of a virion into a cell and the creation and release of new virions from this
cell may decrease the basic reproduction ratio R0.

It is easy to show that if R0 > 1, system (1.3) admits a unique chronic-infection equilibrium E∗(x∗, y∗, v∗), where

x∗
=

au
kβ


∞

0 f1(τ )e−m1τdτ


∞

0 f2(τ )e−m2τdτ
,

y∗
=

du
kβ


∞

0 f2(τ )e−m2τdτ
(R0 − 1), v∗

=
d
β

(R0 − 1).
(2.2)

The characteristic equation of system (1.3) at the infection-free equilibrium E1 is of the form

(s + d)
[
s2 + (a + u)s + au − kβ

λ

d
F1(s)F2(s)

]
= 0, (2.3)

where

Fi(s) =

∫
∞

0
fi(τ )e−miτ e−sτdτ , i = 1, 2. (2.4)

Clearly, Eq. (2.3) always has a negative real root s1 = −d. Other roots of (2.3) are determined by the following equation

s2 + (a + u)s + au − kβ
λ

d
F1(s)F2(s) = 0, (2.5)

where Fi(s) (i = 1, 2) are defined in (2.4).
Let

f (s) = s2 + (a + u)s + au − kβ
λ

d
F1(s)F2(s).

Note that |Fi(s)| ≤ 1 (i = 1, 2). If R0 > 1, it is easy to show that, for s real,

f (0) = au(1 − R0) < 0, lim
s→+∞

f (s) = +∞.

Hence, f (s) = 0 has at least one positive real root. Therefore, if R0 > 1, the infection-free equilibrium E1 is unstable.
If R0 < 1, we prove that the equilibrium E1 is locally asymptotically stable.
When fi(τ ) = δ(τ ), the Dirac delta function, we have Fi(s) = 1 (i = 1, 2). In this case, (2.5) becomes

s2 + (a + u)s + au(1 − R0) = 0. (2.6)

Hence, if R0 < 1, Eq. (2.6) has two negative real roots. Accordingly, the equilibrium E1 is locally asymptotically stable when
fi(τ ) = δ(τ ) (i = 1, 2).

If iω(ω > 0) is a solution of Eq. (2.5), it follows that

− ω2
+ (a + u)ωi + au − kβ

λ

d
F1(iω)F2(iω) = 0, (2.7)

which yields

ω4
+ (a2 + u2)ω2

+ (au)2 −


kβ

λ

d

2

|F1(iω)|2|F2(iω)|2 = 0. (2.8)
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We note that, for i = 1, 2,

|Fi(iω)| =

∫ ∞

0
fi(τ )e−miτ (cosωτ − i sinωτ)dτ

 ≤

∫
∞

0
fi(τ )e−miτdτ . (2.9)

Hence, we have that

(au)2 −


kβ

λ

d

2

|F1(iω)|2|F2(iω)|2 ≥ (au)2(1 − R2
0).

Therefore, if R0 < 1, Eq. (2.8) has no positive roots. Noting that the equilibrium E1 is locally asymptotically stable when
fi(τ ) = δ(τ ) (i = 1, 2), by the general theory on characteristic equations of delay differential equations from [21]
(Theorem 3.4.1), we see that if R0 < 1, E1 is always locally asymptotically stable.

The characteristic equation of system (1.3) at the chronic-infection equilibrium E∗ takes the form

s3 + p2s2 + p1s + p0 + (q1s + q0)F1(s)F2(s) = 0, (2.10)

where

p0 = au(d + βv∗),

p1 = (a + u)(d + βv∗) + au,
p2 = a + u + d + βv∗,

q0 = −dkβx∗,

q1 = −kβx∗.

(2.11)

When fi(τ ) = δ(τ ), we have Fi(s) = 1 (i = 1, 2). In this case, Eq. (2.10) becomes

s3 + p2s2 + (p1 + q1)s + p0 + q0 = 0. (2.12)

It is easy to show that, if R0 > 1,

p0 + q0 = adu(R0 − 1) > 0, p1 + q1 =
kλβ(a + u)

au
> 0,

p2(p1 + q1) − (p0 + q0) =
1
au

{kλβ[a2 + u2
+ au + (a + u)(d + βv∗)] + d(au)2} > 0.

By Routh–Hurwitz criterion, we see that all roots of Eq. (2.12) have negative real parts. Hence, the equilibrium E∗ is locally
asymptotically stable when fi(τ ) = δ(τ ) (i = 1, 2).

If iω(ω > 0) is a solution of Eq. (2.10), it follows that

− ω3i − p2ω2
+ p1ωi + p0 + (q1ωi + q0)F1(iω)F2(iω) = 0, (2.13)

which yields

ω6
+ (p22 − 2p1)ω4

+ (p21 − 2p0p2)ω2
+ p20 − (q20 + q21ω

2)|F1(iω)|2|F2(iω)|2 = 0. (2.14)

Noting the fact in (2.9), by calculation, we have that

p22 − 2p1 = a2 + u2
+ (d + βv∗)2 > 0,

p21 − 2p0p2 − q21|F1(iω)|2|F2(iω)|2 = (a2 + u2)(d + βv∗)2 + a2u2
− (kβx∗)2|F1(iω)|2|F2(iω)|2

≥ (a2 + u2)(d + βv∗)2,

p20 − q20|F1(iω)|2|F2(iω)|2 = [au(d + βv∗)]2 − (dkβx∗)2|F1(iω)|2|F2(iω)|2

≥ auβv∗
[au(d + βv∗) + dkβx∗

|F1(iω)||F2(iω)|].

Hence, if R0 > 1, Eq. (2.14) has no positive roots. Noting that the equilibrium E∗ is locally asymptotically stable when
fi(τ ) = δ(τ ) (i = 1, 2), by the general theory on characteristic equations of delay differential equations from [21]
(Theorem 3.4.1), we see that if R0 > 1, the chronic-infection equilibrium E∗ is locally asymptotically stable.

From what has been discussed above, we have the following result.

Theorem 2.1. For system (1.3), if R0 < 1, the infection-free equilibrium E1(λ/d, 0, 0) is locally asymptotically stable; if R0 > 1,
E1(λ/d, 0, 0) is unstable and the chronic-infection equilibrium E∗(x∗, y∗, v∗) exists and is locally asymptotically stable.

3. Global stability

In this section, we study the global stability of each of feasible equilibria of system (1.3). The strategy of proofs is to use
suitable Lyapunov functionals and LaSalle’s invariance principle.
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We first state and prove our result on the global stability of the infection-free equilibrium E1(λ/d, 0, 0).

Theorem 3.1. The disease-free equilibrium E1(λ/d, 0, 0) of system (1.3) is globally asymptotically stable if R0 < 1.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.3) with initial conditions (1.4). Denote x0 = λ/d
Define

V11(t) = x − x0 − x0 ln
x
x0

+ k1y + k2v, (3.1)

where

k1 =
1

∞

0 f1(τ )e−m1τdτ
, k2 =

a
k


∞

0 f1(τ )e−m1τdτ


∞

0 f2(τ )e−m2τdτ
. (3.2)

Calculating the derivative of V11(t) along positive solutions of system (1.3), it follows that

d
dt

V11(t) =


1 −

x0
x


[λ − dx(t) − βx(t)v(t)] + k1

[
β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − ay(t)

]
+ k2

[
k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ − uv(t)

]
. (3.3)

On substituting λ = dx0 into (3.3), we obtain that

d
dt

V11(t) =


1 −

x0
x


[−d(x(t) − x0) − βx(t)v(t)] + k1

[
β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − ay(t)

]
+ k2

[
k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ − uv(t)

]
= −d

(x(t) − x0)2

x
− βx(t)v(t) + k1β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − k1ay(t)

+ k2k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ + k2u(R0 − 1)v(t). (3.4)

Define

V1(t) = V11(t) + k1β
∫

∞

0
f1(τ )e−m1τ

∫ t

t−τ

x(s)v(s)dsdτ + k2k
∫

∞

0
f2(τ )e−m2τ

∫ t

t−τ

y(s)dsdτ . (3.5)

We derive from (3.4) and (3.5) that

d
dt

V1(t) = −d
(x − x0)2

x
+

au(R0 − 1)v(t)
k


∞

0 f1(τ )e−m1τdτ


∞

0 f2(τ )e−m2τdτ
. (3.6)

If R0 < 1, it follows from (3.6) that V ′

1(t) ≤ 0. By Theorem 5.3.1 in [20], solutions limit to M, the largest invariant subset
of {V ′

1(t) = 0}. Clearly, it follows from (3.6) that V ′

1(t) = 0 if and only if x = x0, v = 0. Noting that M is invariant, for each
element in M, we have v = 0, v′(t) = 0. We therefore derive from the third equation of system (1.3) that

0 = v′(t) = k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ .

This yields y = 0. Hence, V ′

1(t) = 0 if and only if (x, y, v) = (x0, 0, 0). Accordingly, the global asymptotic stability of E1
follows from LaSalle’s invariance principle. This completes the proof. �

We now study the global stability of the chronic-infection equilibrium E∗ of system (1.3).

Theorem 3.2. If R0 > 1, then the chronic-infection equilibrium E∗(x∗, y∗, v∗) of system (1.3) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.3) with initial conditions (1.4).
Define

V21(t) = x − x∗
− x∗ ln

x
x∗

+ k1


y − y∗

− y∗ ln
y
y∗


+ k2


v − v∗

− v∗ ln
v

v∗


,

where k1 and k2 are defined as in (3.2).
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Calculating the derivative of V21(t) along positive solutions of system (1.3) we derive that

d
dt

V21(t) =


1 −

x∗

x


[λ − dx(t) − βx(t)v(t)] + k1


1 −

y∗

y

 [
β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − ay(t)

]
+ k2


1 −

v∗

v

 [
k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ − uv(t)

]
. (3.7)

On substituting λ = dx∗
+ βx∗v∗ into (3.7), it follows that

d
dt

V21(t) =


1 −

x∗

x


[−d(x(t) − x∗) − βx(t)v(t) + βx∗v∗

]

+ k1


1 −

y∗

y

 [
β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − ay(t)

]
+ k2


1 −

v∗

v

 [
k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ − uv(t)

]
= −d

(x(t) − x∗)2

x
− βx(t)v(t) + βx∗v∗


1 −

x∗

x


+ k1β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − k1ay(t)

− k1
βy∗

y(t)

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ + βx∗v∗

+ k2k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ

− k2k
v∗

v(t)

∫
∞

0
f2(τ )e−m2τy(t − τ)dτ + βx∗v∗. (3.8)

Define

V2(t) = V21(t) + k1β
∫

∞

0
f1(τ )e−m1τ

∫ t

t−τ

[
x(s)v(s) − x∗v∗

− x∗v∗ ln
x(s)v(s)
x∗v∗

]
dsdτ

+ k2k
∫

∞

0
f2(τ )e−m2τ

∫ t

t−τ

[
y(s) − y∗

− y∗ ln
y(s)
y∗

]
dsdτ . (3.9)

We derive from (3.8) and (3.9) that

d
dt

V2(t) = −d
(x(t) − x∗)2

x
− βx(t)v(t) + βx∗v∗


1 −

x∗

x


+ k1β

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ − k1ay(t)

− k1
βy∗

y(t)

∫
∞

0
f1(τ )e−m1τ x(t − τ)v(t − τ)dτ + βx∗v∗

+ k2k
∫

∞

0
f2(τ )e−m2τy(t − τ)dτ

− k2k
v∗

v(t)

∫
∞

0
f2(τ )e−m2τy(t − τ)dτ + βx∗v∗

+ k1β
∫

∞

0
f1(τ )e−m1τ

[
x(t)v(t) − x(t − τ)v(t − τ) + x∗v∗ ln

x(t − τ)v(t − τ)

x(t)v(t)

]
dτ

+ k2k
∫

∞

0
f2(τ )e−m2τ

[
y(t) − y(t − τ) + y∗ ln

y(t − τ)

y(t)

]
dτ

= −d
(x(t) − x∗)2

x
+ βx∗v∗


1 −

x∗

x


− k1βx∗v∗

∫
∞

0
f1(τ )e−m1τ

y∗x(t − τ)v(t − τ)

x∗v∗y(t)
dτ + βx∗v∗

− k2ky∗

∫
∞

0
f2(τ )e−m2τ

v∗y(t − τ)

y∗v(t)
dτ + βx∗v∗

+ k1βx∗v∗

∫
∞

0
f1(τ )e−m1τ ln

x(t − τ)v(t − τ)

x(t)v(t)
dτ

+ k2ky∗

∫
∞

0
f2(τ )e−m2τ ln

y(t − τ)

y(t)
dτ

= −d
(x(t) − x∗)2

x
+ βx∗v∗


1 −

x∗

x
− ln

x∗

x


− k1βx∗v∗

∫
∞

0
f1(τ )e−m1τ

[
y∗x(t − τ)v(t − τ)

x∗v∗y(t)
− 1 − ln

y∗x(t − τ)v(t − τ)

x∗v∗y(t)

]
dτ

− k2ky∗

∫
∞

0
f2(τ )e−m2τ

[
v∗y(t − τ)

y∗v(t)
− 1 − ln

v∗y(t − τ)

y∗v(t)

]
dτ . (3.10)
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Noting that x∗, y∗, v∗ > 0, we have that V ′

2(t) ≤ 0. By Theorem 5.3.1 in [20], solutions limit to M, the largest invariant
subset of {V ′

2(t) = 0}. It is readily seen from (3.10) that V ′

2(t) = 0 if and only if x = x∗,
y∗x(t−τ)v(t−τ)

x∗v∗y(t) =
v∗y(t−τ)

y∗v(t) = 1. Using
a similar argument as that in the proof of Theorem 3.1 and by LaSalle’s invariance principle, the global asymptotic stability
of E∗ follows. This completes the proof. �

4. Concluding remark

In this paper, we have studied the global dynamics of an HIV-1 infection model with distributed intracellular delays
accounting for the time between viral entry into a target cell and the production of new virus particles and the time between
infection of a cell and the emission of viral particle. By analyzing the corresponding characteristic equations, it was shown
that if the basic reproduction ratio R0 is less than unity, the infection-free equilibrium is locally asymptotically stable; if
the basic reproduction ratio R0 is greater than unity, the chronic-infection equilibrium exists and is locally asymptotically
stable. The global stability of the infection-free equilibrium and the chronic-infection equilibrium of system (1.3) has been
completely established by using the Lyapunov–LaSalle type theorem. By Theorem 3.1 we see that if R0 < 1, the infection-
free equilibrium is globally asymptotically stable. In this case, the virus is cleared up. By Theorem 3.2 we see that if R0 > 1,
the chronic-infection equilibrium is globally asymptotically stable. From Theorems 3.1 and 3.2, we see that the intracellular
delays describing the time between viral entry into a target cell and the production of new virus particles and the time
between infection of a cell and the emission of viral particle have no effect on the stability of feasible equilibria and therefore
do not induce periodic oscillations and the possibility of Hopf bifurcations is therefore ruled out.
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