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INTRODUCTION 

The singular differential equation 

2 Y z $+(a,+a,z)y=h(z), (1) 

where h(z) = X2=1 hnzn-’ is analytic in some neighbourhood of zero, was 
the subject of several investigations and generalizations [ 11. A basic result is 
a necessary and sufficient condition for Eq. (1) to have analytic solutions in 
some neighbourhood of zero. This condition is the following: 

h(O)=0 for aO=O and a,+-k Pa) 

2 (+I-1 a;-l &I =O for a,# 0. 
n=l * r(a, + II - 1) 

In this paper we are interested in solutions of Eq. (1) which belong to the 
Hardy-Lebesgue space, i.e., the Hilbert space of functions y(z) = 
c:=p=, y,z”-’ which are analytic in A = {z: )z 1 < 1 } and satisfy the condition 
C,“, ly,12 < ~0 0 SUP~<~<~ J?” Iy(reie)12 de < 00. 

* Part of the present work was submitted by one of us (P.D.S.) to the University of Patras 
to fulfill part of the requirements for a Ph.D. degree. 
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It is not difficult to find functions h(z) which satisfy the condition (2a) 
such that the solutions of (1) do not belong to the space H,(d). The equation 
z*y’ + zy = h(z) with h(z) = z/(1 - z)* provides such an example. This 
shows that condition (2a) fails in general to hold for solutions of Eq. (1) in 
H,(d). A basic result of this paper is that under the assumption that h(z) 
belongs to H,(d) the condition (2) is necessary and sufficient for Eq. (1) to 
have solutions in H,(d). Moreover we observe that the solutions of Eq. (1) 
belong to the class of functions y(z) = Cz& y,z”-’ in H,(d) which satisfy 
the condition C,“=i n* ] y,]* < co. This result can be easily generalized for a 
class of differential equations: 

z* J$ + a(z) p(z) = b(z) (3) 

which can be transformed to Eq. (1). 
We observe that for a, = -p/2, a, = ,u + 1 and 

the left-hand side of Eq. (2p) is the ordinary Bessel function J,@). Thus it 
follows from the above result that p # 0 is a zero of the Bessel function J,(z) 
if and only if the equation 

z’y’(z) + ( - $+tjJ+ 1)z y(z)=-$-exp -5.~ , 
i ( 1 

Y(O) = 1 

has a solution in H,(d). On the other hand we know [3] that the study of 
Eq. (1) in H,(d) is equivalent to the study of an operator equation in an 
abstract Hilbert space H with an orthonormal basis { e,}F= i . This equation 
has the form (V + K)f= h, h E H, where V is the shift operator 
(~en=en+,9 n = 1,2,...) and K is compact. In the case of Bessel functions 
the above equation can be transformed to an eigenvalue equation of the form 
A, g = (2/p) g, g E H, where A, is a compact operator on H. This result 
leads us to an operator approach in an abstract separable Hilbert space for 
the study of the zeros of the Bessel functions J,(z). In case P > -1 the 
operator A,, is similar to a self-adjoint compact operator S,. Using some 
properties of the operators A,, and S, we are led easily to some alternative 
proofs of well-known properties of Bessel functions and some results which 
are not presented as new although we were unable to find them in the 
literature. 
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1. THE SOLVABILITY OF EQ. (1) IN THE SPACE H,(d) 

We write the differential equation (3) as 

da, 
22x+ [aO+a,z+z2(a2+a3z+.~.)]~(z)=b(z) (4) 

and set q(z) = eep(‘) . v(z), wherep(z) = a2z + a,(z2/2) + a,(z3/3) + a.., and 
Eq. (3) is thus transformed to Eq. (1) where h(z) = eP(‘)b(z). We assume that 

h(z)= f h,z”-’ 
??=I 

belongs to the space H,(d). Then (see Ref. [3]) Eq. (1) has a solution in 
H,(d) if and only if the operator equation 

(VT, V” + a,z + CT1 v)f= h (6) 

has a solution f in an abstract separable Hilbert space H with an 
orthonormal basis e,, e, ,..., e, ,... . Here h = CF==1 h-,e,, V is the shift 
operator on H(Ve, = e ,+r), V* its adjoint, C, is the diagonal operator 
C,e, = ne, , n = 1,2 ,..., and bars denote complex conjugation. The operator 
C, is densely defined in H with a compact inverse B: 

B: Be, = (l/n)e,, n = 1, 2,... (7) 

(see Proposition 2 in Ref. [3]). Taking into account the relations V’C, V* = 
V(C, -I) and VC,, - C, V= -V, Eq. (6) can be written as 

(C, v t a,z + (El - 2) v-y= h c-4) 

and since C, is invertible we have 

(V t K)f= Bh, (82) 

where 

K=E,Bt(~,-2)BV. (9) 

The function y(z) E H,(d) and the element fE H are connected by the 
representation y(z) = (f,,f), wheref, = X:=1 z”-le,[3], Jz] ( 1. 

Remark 1. The definition domain of the operator C, is the range of the 
operator B[3]. Thus if f is a solution of Eq. (8,) then the element g = Vf= 
-Kf+ Bh = -(E,B + (a, - 2) BV)ft Bh = B[(-E, t (2 -El) V-)ft h] 
belongs to the range of B and therefore to the definition domain of C,. 
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This means that CFE1 n* ((g, e,J(’ < 00. Thus C,“=r n2 I(V*g, e,)f2 = 

CL n* Kg, en+, )I’ < CEl n* Kg, edI < co. But V*g = V* Vf=f and this 
shows that f belongs to the definition domain of C,, i.e., it satisfies the 
condition CF=, n2 I(f, en)12 < co. This is the reason for which Eq. (8,) 
follows from Eq. (82) and therefore Eqs. (8,) and (8,) are equivalent. 

According to the representation y(z) = (f,,f) we obtain the following 
result: Iff is a solution of Eq. (82) then y(z) = C,” I y,,z”-l is a solution of 
Eq. (1) which satisfies the condition C,“=, n2 I y,, I2 < co. Since B is a 
compact operator on H and since V is bounded the operator K is a compact 
operator on H and since V is a Fredholm operator V+ K is also a bounded 
Fredholm operator. Thus Eq. (8J and therefore Eq. (6) has a solution in H if 
and only if Bh is orthonormal to the null space of the operator V* + K*, the 
adjoint of V + K, i.e., 

(S,Bh)=O VfE Ker( V* + K*) (10) 

where 

K* = a,B + (al - 2) V*B. (11) 

We give below some results concerning the dimension of the null space of 
I/* + K*(dim ker( V* + K”)) which we shall use later. 

PROPOSITION 1. If a, ~0, or a, = 0, a, f-k, k=O, 1, 2 ,..., then 
dim ker(V+ K) = 0, dim ker(V* + K*) = 1. Zf a0 = 0, a, = -k then 
dim ker(V+ K) = 1, dim ker(V* + K*) = 2. 

Proof. Let b = X:=1 bnen and c = Cz=i c,e, be two elements belonging 
to the null space of V+ K and V* + K*, respectively, i.e., (V + K) b = 0, 
(V* f K*) c = 0. Multiplying both sides of these equations by e,, e2,... we 
are led to the following conclusions: 

(1) If a0 # 0, then bi = 0, i = 1,2 ,... . Hence b = 0, 
dim ker( V + K) = 0 and all ~1)s are expressed linearly in terms of c, , so the 
space is at most one dimensional. On the other hand if we write V* + K* = 
V*(Z + VK*) then the Fredholm alternative for the compact operator -VK* 
implies that the null space of V* + K* is nontrivial thus 
dim ker(V* f K*) = 1. 

(2) If a,, =O, a, # -k, k= 0, 1, 2 ,,.., then bi=O, i= 1, 2 ,..., hence 
b = 0, dim ker(Vf K) = 0, c, # 0, ci = 0, i= 2,3 ,..., hence c= c,e,, 
dim ker(V* + K*) = 1. 

(3) If aO=O, a1 = -k, k= 0, 1, 2 ,..., then b,=O for if k+ 1, 
b k+l +‘A b =b,c+le,c+l, dim ker(V + K) = 1 and cr f 0, ckt2 f 0, ci = 0, 
i#1,k$2,hencec=c1e,+c,+,e,+,,dimker(V*+K*)=2. 



458 IFANTIS, SIAFARIKAS, AND KOURIS 

Remark 2. Proposition 1 proves the well-known index theorem: 
Index( V + K) = Index V = 1 in a very special case. 

Now from (10) we obtain the following necessary and sufficient condition 
in order that (1) has a solution in H,(d). 

Condition 1. If a,, = 0 then the necessary and sufficient condition for 
Eq. (1) to have a solution in H,(d) is the following: 

h(0) = 0 and 
dk+‘h(z) 

dzk+l 
= htk+ “(0) = 0 (12) 

z=o 

in case a, = -k, k = 0, I,2 ,..., and 

h(0) = 0 (13) 

in case a1 # -k, k = 0, 1,2 ,... . 

Proof: From (10) and the above proposition we have (e,, Bh) = 

cek+2, Bh) = 0 which means h, = hk+* = 0 or 

h(0) = h (k+ “(0) = 0. 

PROPOSITION 2. Let a0 # 0. Then the null space of V* + K* is spanned 
by the element 

fo= 5 at-‘n(-I)“-’ . 1 

n=1 T(a, + n - 1) en (14) 

in case a, # -k, k = 0, 1,2 ,..., and by the element 

a{-k-2(-1)“-k-’ . n r(n -lk _ 1) e, (15) 
n=k+2 

in case a1 = -k, k = -l,O, 1, 2 ,... . 

Pro05 From (11) we have 

V* + K* = V*(I + JB) + a,B, d=a,--2. (16) 

We know from Proposition 1 that dim ker(V* + K*) = 1. We can find the 
element fo: (V* + K*)fo = 0 or V*(I + 6B)fo = -aoBfo recursively by 
setting (Jo, e,) = l/QS + 2) in case 6 f -k - 2, k = 0, l,..., and (f,, ek+*) = 
-k - 2 in case 6 = -k - 2, k = -1, 0, 1,2 ,... . Note that for k = -1 both 
formulas (14), (15) give the null space element and coincide apart from a 
multiplicative constant. 
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THEOREM 1 (Condition 2). Let a, # 0 and h(z) belong to H,(A). Then 
the necessary and suficient condition for Eq. (1) to have a solution in H,(A) 
is the following: 

f (-1)“-1 q1 hn 

T(a, + n - 1) 
= 0. 

n=1 

ProoJ From (10) and (14) we have in case a, # -k, k = 0, 1,2 ,..., 

(fo, Bh) = @f,, h) = 2 at-‘(-l)“-’ =(a +ln _ 1) e,, h) 
n=l 1 

=f 

( 

(-q’(-I)“-’ l 

n-1 Qa, + n - 1) en3 2 hen) 
n=1 

= f (-l)“-la,“-l 4 

r(a, +n- 1) 
= 0, 

PI=1 

and from (10) and (15) 

n=k+2 

a~-k-2(-1)“-k-1 . r(n -hi _ 1) = 0 

in case a, = -k, k = -1, 0, 1,2 ,... . The last relation follows from (17) for 
aI = -k because l/r(n - k - 1) = 0 for n < k + 2. 

Remark 3. Taking into account Remark 1 we observe that the solutions 
Y(Z) = c:=1 J&-l of Eq. (1) satisfy the condition C,“r n2 [yn12 < 00. 

Remark 4. Equation (17) in the special case that a,, = 1 was found by 
Grimm and Hall [l] by a different method as the necessary and sufficient 
condition for Eq. (1) to have a solution in A r if h(z) belongs to A,. (A, is the 
class of functions analytic in A and continuous on d, and A, the class of 
functions analytic in A and continuously differentiable once on 2) In a 
special case (a, = aI = 1) it was found for the same class of functions by a 
different method by Hall [2]. It was also found in a special case by a 
different method by Turrittin [5]. 

2. CONNECTION TO THE ZEROS OF BESSEL FUNCTIONS 

We set in Eq. (1) a,, = -p/2, a, =p + 1 and 
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Then we have from (17) 

2 
(-1)” (q-’ 

=o 
n=1 T(n) qn + Pu) 

or 

fJo C-1)” ($)‘“’ l 
qn+ l)qz+p+ 1) 

= 0, i.e., J,@) = 0. 

It follows from Theorem 1 that p # 0 is a zero of the Bessel function J,(z) if 
and only if the equation 

2 Y d 
z z+ 

(-f+@+l)z)y(z)=--$exp(-$z), y(O)=1 (18) 

has a solution in H,(d). 
We consider the transformation 

y(z) = exp -$z g(z) 
c 1 

(19) 

which transforms Eq. (18) to 

z2g’(z)- 
l 
$z2-@+ l)z+$ 

1 
g(z)=-53 g(0) = 1. (20) 

Since exp(f@/2) ) z is an entire function it follows that y(z) E H,(d) + 
g(z) = exp(@P) Z)Y(Z) E H2(4 and g(z) E H,(d) =P- y(z) E H,(d). Thus 
solvability of Eq. (18) in H,(d) implies solvability of Eq. (20) and 
conversely. 

Now we consider the equivalent operator equation of Eq. (20) by the 
representation g(z) = df,, g), g E H. This equation is the following: 

v2c,v*g- fv’-@+ 1) V+C 
i- i 

g+?,, (g,e,)= 1 

or, since PC, V* = V(C, -I), 

[ 
V(C,+,ii)g-$-V2--$ g=-$e,, 

-1 
(g,e,)= 1. (21) 

Thus we have proved the following: 
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LEMMA 1. p # 0 is a zero of the Bessel function J,(z) if and only q 
Eq. (21) has a solution in the abstract Hilbert space H. 

Moreover we can prove the following: 

LEMMA 2. The solvability of Eq. (21) implies the solvability of the 
operator equation 

(C, +gg=$v+ v*)g (22) 

and conversely. 

ProoJ Equation (21) implies Eq. (22) because V*V= Z and V*e, = 0. 
Suppose that Eq. (22) has a solution g # 0 in H. We observe that (g, e,) # 0 
because otherwise from (22) it follows that (g, e2) = (g, e3) = . . . = 0, i.e., 
g = 0. We normalize g by setting (g, e,) = 1 and write Eq. (22) as 

T/* 
( 

V(C,++fv*-f g=o. 
1 

(23) 

Since the null space of V* is one dimensional we have 

V(C,+p)g--$-Pg-$g=ce,, c = constant 

and since (g, e,) = 1 we obtain c = -D/2, i.e., Eq. (2 1). From Lemmas 1 and 
2 we get the following: 

COROLLARY 1. p # 0 is a zero of the Bessel function J,,(z) if and only if 
Eq. (22) has a solution in H. 

Now we consider the diagonal operator 

1 
L,e,=-e 

ntp n’ 
n = 1, 2,... (24) 

which is the inverse of the operator C, +pZ, ,D # -n, n = 1, 2,... . The 
operator L, is defined on H for ZI # -n, n = 1, 2,... . This is not a restriction 
with respect to the zeros of J-,(z), n = 1,2,... because due to the relation 
J-,(z) = (-1)” J,(z) the functions J-,(z) and J,(z) have the same zeros. 

Since L, is a diagonal operator and lim(l/(n t y)) = 0 n -+ 00, L, is a 
compact operator. (In our case the compactness of L, follows also from the 
fact that it possesses absolute norm N(L,) = d/c:! 1 1) L, e, I( * = 
d/cE, l/In +iu/* < a.1 M oreover, since the operator 

T,= V+ V* (25) 
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is bounded (11 ToI1 = 2), the operators 

A, =L,To, B, = T,,L, (26) 

are also compact non-self-adjoint operators, therefore o(A,), the spectrum of 
A,, except for the point zero, is a purely point spectrum. The same holds for 
a(B,). On the other hand we see that zero is not an eigenvalue of A, and B, . 
In fact A, f = 0 (or B,f = 0) implies T,,f= 0 (or L, f = 0) which also 
implies f = 0 because the spectrum of T,, is purely continuous [4] (or the 
inverse of the operator L, exists). This can also be seen from the fact that 
A,f=O, with f=C~zlc,e, implies c, = c, + c3 = c2 + c, = c3 + c5 = 
. . . = 0, i.e., c2 = cd = . . . = 0 hence c, = c, = c3 = ..a = 0. It is now easy to 
prove the following. 

THEOREM 2. p # 0 is a zero of the Bessel function J,(z) if and only if 
2/p is an eigenvalue of the operator A, or the operator B,. 

Proof. We give first the proof for the operator B, = T,L,. Let p be a 
zero of J,(z). Then from Corollary 1 we obtain that 2/p is an eigenvalue of 
the operator L, T,, and therefore 2/p is an eigenvalue of (Lu T,)* = TOL,, 
because LFT,, is compact. Conversely if 2/p is an eigenvalue of T,L, then 
2/p is an eigenvalue of (TOLu)* = L,-T,, i.e., Eq. (22) holds for g # 0. 
Therefore p is a zero of the Bessel function J,(z) due to the same corollary. 
For the operator A,, the theorem follows from the relation TOL, = 
L;‘(L,, T,) L, which h s ows that the operators T,L, and L@T,, have the 
same eigenvalues. It is easy to see that for ,u > -1 the operator L, is 
nonnegative ((L, f,f) > 0), and therefore its square root LL” exists and is 
the diagonal operator 

L112e = P n Aen, n=l,2 ,.... 

Defining the operator S, as 

S 
P 

=L’12T ,5’/2 
P 0 P (27) 

we see from the relation 

that for ~1 > -1 the operators A, and S, have the same spectrum. Thus we 
obtain from Theorem 2 the following: 

COROLLARY 2. For ,u > -1, p # 0 is a zero of J,,(z) if and only if2/p is 
an eigenvalue of the compact and self-adjoint operator S,. 



EQUATION IN THE HARDY-LEBESGUE SPACE 463 

Remark 5. The part “only if’ of Theorem 2 can be obtained easily if we 
observe that if J,@) = 0 then f, = C,“i J,,+,,(p) e, is the eigenelement of A, 
that corresponds to the eigenvalue 2/p. Due to the recurrence relation 
J U+n+l@) + J,,+n-l@) = (2/p)@ + n) Ju+,$p) (n = 1,2,...) the eigenelement 
f, corresponding to the eigenvalue A = 2/p is uniquely determined up to a 
constant (&,e,)=J,+,@)=a#O. Since J,,@)=O, J,+l@)=O is 
impossible because in this case J:(p) = 0 from zJ;(z) = NW(z) - zJ,+ 1(z) 
hence J,“(p) = 0 from Bessel’s differential equation. Taking the successive 
derivatives of this equation we find J:‘(p) = Jr’@) = . . . = 0 which is 
impossible for the function J,(z). This is a proof of Bourget’s hypothesis in a 
very special case. 

Remark 6. For ,LJ > -1 S, is a Hilbert-Schmidt operator with absolute 
norm 

In fact we find easily 

Sren = 
e II-1 e 

&+n)@+n-l)+\/ 

n+l for n > 1 
@+n+ 1)@+n) 

P9a) 

and 

S,e, = 
&I + 4;0, + 2) 

for n=l. 

Hence 

1 1 
l(S,e,IJ*= ’ =--- 

&+1)cp+2) c1+1 P+2 

llS,e,ll* = 
1 1 

Cu+n+ l)@+n)+ (u+n- l)(U+n) 

1 1 = 
n+/+l-n+P+l’ 

From (3 1) we observe 

g2 llS,~.I12=L+& 1 +lu 

G’9b) 

(30) 

(31) 

(32) 

and from (32) and (30) follows (29). 
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3. SOME QUALITATIVE RESULTS FOR THE ZEROS OF J,(z) 

Some of the most important results which follow easily from Theorem 2 
and its corollary are the following: 

1. Lommel-Hurwitz theorem [6]. For ,u > -1 all the zeros of J,,(z) are 
real. 

This follows from the corollary to Theorem 2 because S, is self-adjoint. 

2. Ruyleigh’s formula [6]. Since S, 01 > -1) is self-adjoint and compact 
and since the point zero is not an eigenvalue, it possesses a complete 
orthonormal system of eigenelements f,,, II = 1, 2,..., 

with 1, the corresponding eigenvalues. Hence 

Il%fII’ =cl, n = 1, 2,... . (33) 

Since for every linear operator A the sum C,“= 1 ilAenl12, if it exists, is 
independent of the complete orthonormal system e, it follows from (29) and 
(33) that 

or 

.f, A:=& 

(34) 

Note that this result includes all zeros (positive and negative) and therefore 
the above sum is equal to 20:’ where 

1 
4?= 271 +P) 

as found by Rayleigh [6]. 

3. If J,@) = 0 and J,,+,&) = 0 for y rational and m natural 
numbers, then J, +,,, = 0 for m = 1,2, 3 ,... . This follows from the recurrence 
relation J P+ I@) + J,- 1@) = (24~) J,(p) and a theorem of Siegel [6] which 
implies that if ,u is rational then the zeros of J,(z) are not algebraic numbers. 
It therefore follows that the eigenelement f, = Cr! I J, +,&I) (w)e, of 
the operator S, is zero which is impossible because, as in the case of A,, the 
eigenvalues of the operator S, are simple. (See Remark 5.) This is an alter- 
native proof of Bourget’s hypothesis [6] in its generalized version. 
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4. Consider the eigenvalue equation L, T,,f= (2/p)for 

@T, - VJf = 2/d- (35) 

for some real number p. In Eq. (35) the operator pT,, is self-adjoint and is 
perturbed by a self-adjoint operator with compact resolvent hence the 
operator pT,, - 2C, has a discrete spectrum in the sense that it consists of a 
sequence of real numbers 2,~,, n = 1,2,..., such that Jpu,J + co. Thus we 
obtain the following result: 

For every real p there exists a sequence of real numbers pu,, 1,~~ I+ co,,,, 
such that J,,(p) = 0, n = I,2 ,... . 

4. LOWER BOUNDS FOR THE REAL AND IMAGINARY PARTS 
OF THE COMPLEX ZEROS OF THE BESSEL FUNCTIONS 

We consider the case where ,u = ,u, + ipz with y, # 0 and suppose that p is 
a zero of JP(z), then according to Theorem 2 we have: L, T,f = (2/p)fwith 
llfll = 1, or pT,,f= 2(G + pu>f and 

~(Tdf) = 2(GLf) + &, + 2ip2. (36) 

Since To and C, are self-adjoint (T,f,f) and (C&f) are real numbers. Thus 
it follows from (36) that for complex ,D the function J,,(z) has no real zeros. 

Setting p = p, + ip2, p2 z 0, in (36) and comparing real and imaginary 
parts we obtain 

~,V’of,f) = 2~2 (37) 

P,V,L~-) = 2(G,.Lf) + 2~1 (38) 
or 

Since I(T,-,f,f)l < 1) Tofjl < )I Toll = 2 for ilfll= 1 we obtain from (37) a lower 
bound for p2: 

IPZI 2 IA. (40) 

Moreover since (C,f,f) > 1 for l/fll= 1, it follows from (39) that 

1 +p, E>-- for ,uu2 > 0 
P2 

1 +/J, g<- 
lu2 

for ,u2 < 0 
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((C,f,f) 2 1 by the relation (C&f) = CFEl n Idr; q,)12 = 1 + I(f, edI + 
2 I(f,eJ’+ e-m and (C&f) > 1 because if (C&f) = 1, then f = e,, which 
is not an eigenelement of A,). 

It follows from (40a) and (4Op) that for p1 > -1 and ,uz > 0 the parts p1 
and p2 have the same sign while for ,u~ > -1 and pu, < 0 they have different 
signs. 

For ,u~ > -1 we have in both cases iu2 > 0 and ,uz < 0 so that 

p: (1 +Pd2 
p 2 ’ 

P2 
p, > -1. (41) 

From (40) and (41) we obtain 

Pi > (1 +iuJ29 p1 > -1. (42) 

Remark 7. From (40) and (42) we obtain a lower bound for Jp I2 = 
p: +pG > (1 +P,)~ +&, ~1~ > -1. This bound follows easily from a bound 
of the norm of B, = T,L, or A,, . 
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