Conditions for Solution of a Linear First-Order Differential Equation in the Hardy-Lebesgue Space and Applications

E. K. Ifantis and P. D. Siafarikas*
Department of Mathematics, University of Patras, Patras, Greece

AND
C. B. Kouris

Nuclear Research Center "Demokritos," Aghia Paraskevi Attikis, Greece
Submitted by R. P. Boas

Introduction

The singular differential equation

$$
\begin{equation*}
z^{2} \frac{d y}{d z}+\left(\alpha_{0}+\alpha_{1} z\right) y=h(z) \tag{1}
\end{equation*}
$$

where $h(z)=\sum_{n=1}^{\infty} h_{n} z^{n-1}$ is analytic in some neighbourhood of zero, was the subject of several investigations and generalizations [1]. A basic result is a necessary and sufficient condition for Eq. (1) to have analytic solutions in some neighbourhood of zero. This condition is the following:

$$
\begin{gather*}
h(0)=0 \quad \text { for } \alpha_{0}=0 \quad \text { and } \quad \alpha_{1} \neq-k \\
\sum_{n=1}^{\infty}(-1)^{n-1} \alpha_{0}^{n-1} \frac{h_{n}}{\Gamma\left(\alpha_{1}+n-1\right)}=0 \quad \text { for } \alpha_{0} \neq 0
\end{gather*}
$$

In this paper we are interested in solutions of Eq. (1) which belong to the Hardy-Lebesgue .space, i.e., the Hilbert space of functions $y(z)=$ $\sum_{n=1}^{\infty} y_{n} z^{n-1}$ which are analytic in $\Delta=\{z:|z|<1\}$ and satisfy the condition $\sum_{n=1}^{\infty}\left|y_{n}\right|^{2}<\infty \Leftrightarrow \sup _{0<r<1} \int_{0}^{2 \pi}\left|y\left(r e^{i \theta}\right)\right|^{2} d \theta<\infty$.

[^0]It is not difficult to find functions $h(z)$ which satisfy the condition (2 α) such that the solutions of (1) do not belong to the space $H_{2}(4)$. The equation $z^{2} y^{\prime}+z y=h(z)$ with $h(z)=z /(1-z)^{2}$ provides such an example. This shows that condition (2a) fails in general to hold for solutions of Eq. (1) in $H_{2}(\Delta)$. A basic result of this paper is that under the assumption that $h(z)$ belongs to $\mathrm{H}_{2}(4)$ the condition (2) is necessary and sufficient for Eq. (1) to have solutions in $H_{2}(\Delta)$. Moreover we observe that the solutions of Eq. (1) belong to the class of functions $y(z)=\sum_{n=1}^{\infty} y_{n} z^{n-1}$ in $H_{2}(\Delta)$ which satisfy the condition $\sum_{n=1}^{\infty} n^{2}\left|y_{n}\right|^{2}<\infty$. This result can be easily generalized for a class of differential equations:

$$
\begin{equation*}
z^{2} \frac{d \varphi}{d z}+\alpha(z) \varphi(z)=b(z) \tag{3}
\end{equation*}
$$

which can be transformed to Eq. (1).
We observe that for $\alpha_{0}=-\rho / 2, \alpha_{1}=\mu+1$ and

$$
h(z)=-\frac{\rho}{2} \exp \left(-\frac{\rho}{2} z\right) \quad\left(h_{n}=\frac{(-1)^{n}}{(n-1)!}\left(\frac{\rho}{2}\right)^{n}\right)
$$

the left-hand side of Eq. (2β) is the ordinary Bessel function $J_{\mu}(\rho)$. Thus it follows from the above result that $\rho \neq 0$ is a zero of the Bessel function $J_{\mu}(z)$ if and only if the equation

$$
z^{2} y^{\prime}(z)+\left(-\frac{\rho}{2}+(\mu+1) z\right) y(z)=-\frac{\rho}{2} \exp \left(-\frac{\rho}{2} z\right), \quad y(0)=1
$$

has a solution in $\mathrm{H}_{2}(4)$. On the other hand we know [3] that the study of Eq. (1) in $H_{2}(4)$ is equivalent to the study of an operator equation in an abstract Hilbert space H with an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. This equation has the form $(V+K) f=h, h \in H$, where V is the shift operator ($V e_{n}=e_{n+1}, n=1,2, \ldots$) and K is compact. In the case of Bessel functions the above equation can be transformed to an eigenvalue equation of the form $A_{\mu} g=(2 / \rho) g, g \in H$, where A_{μ} is a compact operator on H. This result leads us to an operator approach in an abstract separable Hilbert space for the study of the zeros of the Bessel functions $J_{\mu}(z)$. In case $\mu>-1$ the operator A_{μ} is similar to a self-adjoint compact operator S_{μ}. Using some properties of the operators A_{μ} and S_{μ} we are led easily to some alternative proofs of well-known properties of Bessel functions and some results which are not presented as new although we were unable to find them in the literature.

1. The Solvability of EQ. (1) in the Space $H_{2}(\boldsymbol{4})$

We write the differential equation (3) as

$$
\begin{equation*}
z^{2} \frac{d \varphi}{d z}+\left[\alpha_{0}+\alpha_{1} z+z^{2}\left(\alpha_{2}+\alpha_{3} z+\cdots\right)\right] \varphi(z)=b(z) \tag{4}
\end{equation*}
$$

and set $\varphi(z)=e^{-p(z)} \cdot y(z)$, where $p(z)=\alpha_{2} z+\alpha_{3}\left(z^{2} / 2\right)+\alpha_{4}\left(z^{3} / 3\right)+\cdots$, and Eq. (3) is thus transformed to Eq. (1) where $h(z)=e^{p(2)} b(z)$. We assume that

$$
\begin{equation*}
h(z)=\sum_{n=1}^{\infty} h_{n} z^{n-1} \tag{5}
\end{equation*}
$$

belongs to the space $H_{2}(4)$. Then (see Ref. [3]) Eq. (1) has a solution in $\mathrm{H}_{2}(\Delta)$ if and only if the operator equation

$$
\begin{equation*}
\left(V^{2} C_{0} V^{*}+\bar{\alpha}_{0} I+\bar{\alpha}_{1} V\right) f=h \tag{6}
\end{equation*}
$$

has a solution f in an abstract separable Hilbert space H with an orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}, \ldots$. Here $h=\sum_{n=1}^{\infty} \bar{h}_{n} e_{n}, V$ is the shift operator on $H\left(V e_{n}=e_{n+1}\right), V^{*}$ its adjoint, C_{0} is the diagonal operator $C_{0} e_{n}=n e_{n}, n=1,2, \ldots$, and bars denote complex conjugation. The operator C_{0} is densely defined in H with a compact inverse B :

$$
\begin{equation*}
B: B e_{n}=(1 / n) e_{n}, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

(see Proposition 2 in Ref. [3]). Taking into account the relations $V^{2} C_{0} V^{*}=$ $V\left(C_{0}-I\right)$ and $V C_{0}-C_{0} V=-V$, Eq. (6) can be written as

$$
\begin{equation*}
\left(C_{0} V+\bar{\alpha}_{0} I+\left(\bar{\alpha}_{1}-2\right) V\right) f=h \tag{1}
\end{equation*}
$$

and since C_{0} is invertible we have

$$
\begin{equation*}
(V+K) f=B h, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\bar{\alpha}_{0} B+\left(\bar{\alpha}_{1}-2\right) B V . \tag{9}
\end{equation*}
$$

The function $y(z) \in H_{2}(\Delta)$ and the element $f \in H$ are connected by the representation $y(z)=\left(f_{z}, f\right)$, where $f_{z}=\sum_{n=1}^{\infty} z^{n-1} e_{n}[3],|z|<1$.

Remark 1. The definition domain of the operator C_{0} is the range of the operator $B[3]$. Thus if f is a solution of Eq. $\left(8_{2}\right)$ then the element $g=V f=$ $-K f+B h=-\left(\bar{\alpha}_{0} B+\left(\bar{\alpha}_{1}-2\right) B V\right) f+B h=B\left[\left(-\bar{\alpha}_{0}+\left(2-\bar{\alpha}_{1}\right) V\right) f+h\right]$ belongs to the range of B and therefore to the definition domain of C_{0}.

This means that $\sum_{n=1}^{\infty} n^{2}\left|\left(g, e_{n}\right)\right|^{2}<\infty$. Thus $\sum_{n=1}^{\infty} n^{2}\left|\left(V^{*} g, e_{n}\right)\right|^{2}=$ $\sum_{n=1}^{\infty} n^{2}\left|\left(g, e_{n+1}\right)\right|^{2} \leqslant \sum_{n=1}^{\infty} n^{2}\left|\left(g, e_{n}\right)\right|^{2}<\infty$. But $V^{*} g=V^{*} V f=f$ and this shows that f belongs to the definition domain of C_{0}, i.e., it satisfies the condition $\sum_{n=1}^{\infty} n^{2}\left|\left(f, e_{n}\right)\right|^{2}<\infty$. This is the reason for which Eq. $\left(8_{1}\right)$ follows from Eq. $\left(8_{2}\right)$ and therefore Eqs. $\left(8_{1}\right)$ and $\left(8_{2}\right)$ are equivalent.

According to the representation $y(z)=\left(f_{z}, f\right)$ we obtain the following result: If f is a solution of Eq. $\left(8_{2}\right)$ then $y(z)=\sum_{n=1}^{\infty} y_{n} z^{n-1}$ is a solution of Eq. (1) which satisfies the condition $\sum_{n=1}^{\infty} n^{2}\left|y_{n}\right|^{2}<\infty$. Since B is a compact operator on H and since V is bounded the operator K is a compact operator on H and since V is a Fredholm operator $V+K$ is also a bounded Fredholm operator. Thus Eq. $\left(8_{2}\right)$ and therefore Eq. (6) has a solution in H if and only if $B h$ is orthonormal to the null space of the operator $V^{*}+K^{*}$, the adjoint of $V+K$, i.e.,

$$
\begin{equation*}
(f, B h)=0 \quad \forall f \in \operatorname{Ker}\left(V^{*}+K^{*}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{*}=\alpha_{0} B+\left(\alpha_{1}-2\right) V^{*} B \tag{11}
\end{equation*}
$$

We give below some results concerning the dimension of the null space of $V^{*}+K^{*}\left(\operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)\right)$ which we shall use later.

Proposition 1. If $\alpha_{0} \neq 0$, or $\alpha_{0}=0, \alpha_{1} \neq-k, k=0,1,2, \ldots$, then $\operatorname{dim} \operatorname{ker}(V+K)=0, \quad \operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=1$. If $\alpha_{0}=0, \quad \alpha_{1}=-k$ then $\operatorname{dim} \operatorname{ker}(V+K)=1, \operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=2$.

Proof. Let $b=\sum_{n=1}^{\infty} b_{n} e_{n}$ and $c=\sum_{n=1}^{\infty} c_{n} e_{n}$ be two elements belonging to the null space of $V+K$ and $V^{*}+K^{*}$, respectively, i.e., $(V+K) b=0$, $\left(V^{*}+K^{*}\right) c=0$. Multiplying both sides of these equations by e_{1}, e_{2}, \ldots we are led to the following conclusions:
(1) If $\alpha_{0} \neq 0, \quad$ then $\quad b_{i}=0, \quad i=1,2, \ldots$ Hence $b=0$, $\operatorname{dim} \operatorname{ker}(V+K)=0$ and all c_{i} 's are expressed linearly in terms of c_{1}, so the space is at most one dimensional. On the other hand if we write $V^{*}+K^{*}=$ $V^{*}\left(I+V K^{*}\right)$ then the Fredholm alternative for the compact operator $-V K^{*}$ implies that the null space of $V^{*}+K^{*}$ is nontrivial thus $\operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=1$.
(2) If $\alpha_{0}=0, \alpha_{1} \neq-k, k=0,1,2, \ldots$, then $b_{i}=0, i=1,2, \ldots$, hence $b=0, \quad \operatorname{dim} \operatorname{ker}(V+K)=0, \quad c_{1} \neq 0, \quad c_{i}=0, \quad i=2,3, \ldots, \quad$ hence $c=c_{1} e_{1}$, $\operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=1$.
(3) If $\alpha_{0}=0, \alpha_{1}=-k, k=0,1,2, \ldots$, then $b_{i}=0$ for $i \neq k+1$, $b_{k+1} \neq 0, \quad b=b_{k+1} e_{k+1}, \operatorname{dim} \operatorname{ker}(V+K)=1$ and $c_{1} \neq 0, c_{k+2} \neq 0, c_{i}=0$, $i \neq 1, k+2$, hence $c=c_{1} e_{1}+c_{k+2} e_{k+2}, \operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=2$.

Remark 2. Proposition 1 proves the well-known index theorem: Index $(V+K)=\operatorname{Index} V=1$ in a very special case.

Now from (10) we obtain the following necessary and sufficient condition in order that (1) has a solution in $\mathrm{H}_{2}(4)$.

Condition 1. If $\alpha_{0}=0$ then the necessary and sufficient condition for Eq. (1) to have a solution in $H_{2}(\Delta)$ is the following:

$$
\begin{equation*}
h(0)=0 \quad \text { and }\left.\quad \frac{d^{k+1} h(z)}{d z^{k+1}}\right|_{z=0}=h^{(k+1)}(0)=0 \tag{12}
\end{equation*}
$$

in case $\alpha_{1}=-k, k=0,1,2, \ldots$, and

$$
\begin{equation*}
h(0)=0 \tag{13}
\end{equation*}
$$

in case $\alpha_{1} \neq-k, k=0,1,2, \ldots$.
Proof. From (10) and the above proposition we have $\left\langle e_{1}, B h\right\rangle=$ $\left\langle e_{k+2}, B h\right\rangle=0$ which means $h_{1}=h_{k+2}=0$ or

$$
h(0)=h^{(k+1)}(0)=0 .
$$

Proposition 2. Let $\alpha_{0} \neq 0$. Then the null space of $V^{*}+K^{*}$ is spanned by the element

$$
\begin{equation*}
f_{0}=\sum_{n=1}^{\infty} \alpha_{0}^{n-1} n(-1)^{n-1} \cdot \frac{1}{\Gamma\left(\alpha_{1}+n-1\right)} e_{n} \tag{14}
\end{equation*}
$$

in case $a_{1} \neq-k, k=0,1,2, \ldots$, and by the element

$$
\begin{equation*}
f_{0}=\sum_{n=k+2}^{\infty} \alpha_{o}^{n-k-2}(-1)^{n-k-1} \cdot n \frac{1}{\Gamma(n-k-1)} e_{n} \tag{15}
\end{equation*}
$$

in case $\alpha_{1}=-k, k=-1,0,1,2, \ldots$.
Proof. From (11) we have

$$
\begin{equation*}
V^{*}+K^{*}=V^{*}(I+\delta B)+\alpha_{0} B, \quad \delta=\alpha_{1}-2 . \tag{16}
\end{equation*}
$$

We know from Proposition 1 that $\operatorname{dim} \operatorname{ker}\left(V^{*}+K^{*}\right)=1$. We can find the element $f_{0}:\left(V^{*}+K^{*}\right) f_{0}=0$ or $V^{*}(I+\delta B) f_{0}=-\alpha_{0} B f_{0}$ recursively by setting $\left\langle f_{0}, e_{1}\right\rangle=1 / \Gamma(\delta+2)$ in case $\delta \neq-k-2, k=0,1, \ldots$, and $\left\langle f_{0}, e_{k+2}\right\rangle=$ $-k-2$ in case $\delta=-k-2, k=-1,0,1,2, \ldots$. Note that for $k=-1$ both formulas (14), (15) give the null space element and coincide apart from a multiplicative constant.

Theorem 1 (Condition 2). Let $\alpha_{0} \neq 0$ and $h(z)$ belong to $H_{2}(\Delta)$. Then the necessary and sufficient condition for Eq. (1) to have a solution in $\mathrm{H}_{2}(\Delta)$ is the following:

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n-1} \alpha_{0}^{n-1} \frac{h_{n}}{\Gamma\left(\alpha_{1}+n-1\right)}=0 . \tag{17}
\end{equation*}
$$

Proof. From (10) and (14) we have in case $\alpha_{1} \neq-k, k=0,1,2, \ldots$,

$$
\begin{aligned}
\left\langle f_{0}, B h\right\rangle & =\left\langle B f_{0}, h\right\rangle=\left\langle\sum_{n=1}^{\infty} \alpha_{0}^{n-1}(-1)^{n-1} \frac{1}{\Gamma\left(\alpha_{1}+n-1\right)} e_{n}, h\right\rangle \\
& =\left\langle\sum_{n-1}^{\infty} \alpha_{0}^{n-1}(-1)^{n-1} \frac{1}{\Gamma\left(\alpha_{1}+n-1\right)} e_{n}, \sum_{n=1}^{\infty} \bar{h}_{n} e_{n}\right\rangle \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} \alpha_{0}^{n-1} \frac{h_{n}}{\Gamma\left(\alpha_{1}+n-1\right)}=0,
\end{aligned}
$$

and from (10) and (15)

$$
\sum_{n=k+2}^{\infty} \alpha_{0}^{n-k-2}(-1)^{n-k-1} \cdot \frac{h_{n}}{\Gamma(n-k-1)}=0
$$

in case $\alpha_{1}=-k, k=-1,0,1,2, \ldots$. The last relation follows from (17) for $\alpha_{1}=-k$ because $1 / \Gamma(n-k-1)=0$ for $n<k+2$.

Remark 3. Taking into account Remark 1 we observe that the solutions $y(z)=\sum_{n=1}^{\infty} y_{n} z^{n-1}$ of Eq. (1) satisfy the condition $\sum_{n=1}^{\infty} n^{2}\left|y_{n}\right|^{2}<\infty$.

Remark 4. Equation (17) in the special case that $\alpha_{0}=1$ was found by Grimm and Hall [1] by a different method as the necessary and sufficient condition for Eq. (1) to have a solution in A_{1} if $h(z)$ belongs to A_{0}. (A_{0} is the class of functions analytic in Δ and continuous on $\bar{\Delta}$, and A_{1} the class of functions analytic in Δ and continuously differentiable once on $\bar{\Delta}$.) In a special case ($\alpha_{0}=\alpha_{1}=1$) it was found for the same class of functions by a different method by Hall [2]. It was also found in a special case by a different method by Turrittin [5].

2. Connection to the Zeros of Bessel Functions

We set in Eq. (1) $\alpha_{0}=-\rho / 2, \alpha_{1}=\mu+1$ and

$$
h(z)=-\frac{\rho}{2} \exp \left(-\frac{\rho}{2} z\right)=-\frac{\rho}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-1)!}\left(\frac{\rho}{2} z\right)^{n-1} .
$$

Then we have from (17)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(\frac{\rho}{2}\right)^{2 n-1}}{\Gamma(n) \Gamma(n+\mu)}=0
$$

or

$$
\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\rho}{2}\right)^{2 n+\mu} \frac{1}{\Gamma(n+1) \Gamma(n+\mu+1)}=0, \quad \text { i.e., } J_{\mu}(\rho)=0
$$

It follows from Theorem 1 that $\rho \neq 0$ is a zero of the Bessel function $J_{\mu}(z)$ if and only if the equation

$$
\begin{equation*}
z^{2} \frac{d y}{d z}+\left(-\frac{\rho}{2}+(\mu+1) z\right) y(z)=-\frac{\rho}{2} \exp \left(-\frac{\rho}{2} z\right), \quad y(0)=1 \tag{18}
\end{equation*}
$$

has a solution in $H_{2}(\Delta)$.
We consider the transformation

$$
\begin{equation*}
y(z)=\exp \left(-\frac{\rho}{2} z\right) g(z) \tag{19}
\end{equation*}
$$

which transforms Eq. (18) to

$$
\begin{equation*}
z^{2} g^{\prime}(z)-\left(\frac{\rho}{2} z^{2}-(\mu+1) z+\frac{\rho}{2}\right) g(z)=-\frac{\rho}{2}, \quad g(0)=1 \tag{20}
\end{equation*}
$$

Since $\exp (\pm(\rho / 2) z)$ is an entire function it follows that $y(z) \in H_{2}(\Delta) \Rightarrow$ $g(z)=\exp (\rho / 2) z) y(z) \in H_{2}(\Delta)$ and $g(z) \in H_{2}(\Delta) \Rightarrow y(z) \in H_{2}(\Delta)$. Thus solvability of Eq. (18) in $H_{2}(4)$ implies solvability of Eq. (20) and conversely.

Now we consider the equivalent operator equation of Eq. (20) by the representation $g(z)=\left(f_{z}, g\right), g \in H$. This equation is the following:

$$
V^{2} C_{0} V^{*} g-\left(\frac{\bar{\rho}}{2} V^{2}-(\bar{\mu}+1) V+\frac{\bar{\rho}}{2}\right) g=-\frac{\bar{\rho}}{2} e_{1}, \quad\left(g, e_{1}\right)=1
$$

or, since $V^{2} C_{0} V^{*}=V\left(C_{0}-I\right)$,

$$
\begin{equation*}
\left[V\left(C_{0}+\bar{\mu}\right) g-\frac{\bar{p}}{2} V^{2}-\frac{\bar{p}}{2}\right] g=-\frac{\bar{\rho}}{2} e_{1}, \quad\left(g, e_{1}\right)=1 . \tag{21}
\end{equation*}
$$

Thus we have proved the following:

Lemma 1. $\rho \neq 0$ is a zero of the Bessel function $J_{u}(z)$ if and only if Eq. (21) has a solution in the abstract Hilbert space H.

Moreover we can prove the following:
Lemma 2. The solvability of Eq. (21) implies the solvability of the operator equation

$$
\begin{equation*}
\left(C_{0}+\bar{\mu}\right) g=\frac{\bar{\rho}}{2}\left(V+V^{*}\right) g \tag{22}
\end{equation*}
$$

and conversely.
Proof. Equation (21) implies Eq. (22) because $V^{*} V=I$ and $V^{*} e_{1}=0$. Suppose that Eq. (22) has a solution $g \neq 0$ in H. We observe that $\left(g, e_{1}\right) \neq 0$ because otherwise from (22) it follows that $\left(g, e_{2}\right)=\left(g, e_{3}\right)=\cdots=0$, i.e., $g=0$. We normalize g by setting (g, e_{1}) $=1$ and write Eq. (22) as

$$
\begin{equation*}
V^{*}\left(V\left(C_{0}+\bar{\mu}\right)-\frac{\bar{\rho}}{2} V^{2}-\frac{\bar{\rho}}{2}\right) g=0 . \tag{23}
\end{equation*}
$$

Since the null space of V^{*} is one dimensional we have

$$
V\left(C_{0}+\bar{\mu}\right) g-\frac{\bar{\rho}}{2} V^{2} g-\frac{\bar{\rho}}{2} g=c e_{1}, \quad c=\mathrm{constant}
$$

and since $\left(g, e_{1}\right)=1$ we obtain $c=-\bar{\rho} / 2$, i.e., Eq. (21). From Lemmas 1 and 2 we get the following:

Corollary 1. $\rho \neq 0$ is a zero of the Bessel function $J_{\mu}(z)$ if and only if Eq. (22) has a solution in H.

Now we consider the diagonal operator

$$
\begin{equation*}
L_{\mu} e_{n}=\frac{1}{n+\mu} e_{n}, \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

which is the inverse of the operator $C_{0}+\mu I, \mu \neq-n, n=1,2, \ldots$ The operator L_{μ} is defined on H for $\mu \neq-n, n=1,2, \ldots$. This is not a restriction with respect to the zeros of $J_{-n}(z), n=1,2, \ldots$ because due to the relation $J_{-n}(z)=(-1)^{n} J_{n}(z)$ the functions $J_{-n}(z)$ and $J_{n}(z)$ have the same zeros.

Since L_{μ} is a diagonal operator and $\lim (1 /(n+\mu))=0 n \rightarrow \infty, L_{\mu}$ is a compact operator. (In our case the compactness of L_{μ} follows also from the fact that it possesses absolute norm $N\left(L_{\mu}\right)=\sqrt{\sum_{n=1}^{\infty}\left\|L_{\mu} e_{n}\right\|^{2}}=$ $\sqrt{\sum_{n=1}^{\infty} 1 /|n+\mu|^{2}}<\infty$.) Moreover, since the operator

$$
\begin{equation*}
T_{0}=V+V^{*} \tag{25}
\end{equation*}
$$

is bounded $\left(\left\|T_{0}\right\|=2\right)$, the operators

$$
\begin{equation*}
A_{\mu}=L_{\mu} T_{0}, \quad B_{\mu}=T_{0} L_{\mu} \tag{26}
\end{equation*}
$$

are also compact non-self-adjoint operators, therefore $\sigma\left(A_{\mu}\right)$, the spectrum of A_{μ}, except for the point zero, is a purely point spectrum. The same holds for $\sigma\left(B_{\mu}\right)$. On the other hand we see that zero is not an eigenvalue of A_{μ} and B_{μ}. In fact $A_{\mu} f=0$ (or $B_{\mu} f=0$) implies $T_{0} f=0$ (or $L_{\mu} f=0$) which also implies $f=0$ because the spectrum of T_{0} is purely continuous [4] (or the inverse of the operator L_{μ} exists). This can also be seen from the fact that $A_{\mu} f=0$, with $f=\sum_{n=1}^{\infty} c_{n} e_{n}$ implies $c_{2}=c_{1}+c_{3}=c_{2}+c_{4}=c_{3}+c_{5}=$ $\cdots=0$, i.e., $c_{2}=c_{4}=\cdots=0$ hence $c_{1}=c_{2}=c_{3}=\cdots=0$. It is now easy to prove the following.

Theorem 2. $\quad \rho \neq 0$ is a zero of the Bessel function $J_{\mu}(z)$ if and only if $2 / \rho$ is an eigenvalue of the operator A_{μ} or the operator B_{μ}.

Proof. We give first the proof for the operator $B_{\mu}=T_{0} L_{\mu}$. Let ρ be a zero of $J_{\mu}(z)$. Then from Corollary 1 we obtain that $2 / \bar{\rho}$ is an eigenvalue of the operator $L_{\bar{\mu}} T_{0}$ and therefore $2 / \rho$ is an eigenvalue of $\left(L_{\bar{\mu}} T_{0}\right)^{*}=T_{0} L_{\mu}$ because $L_{\bar{\mu}} T_{0}$ is compact. Conversely if $2 / \rho$ is an eigenvalue of $T_{0} L_{\mu}$ then $2 / \bar{\rho}$ is an eigenvalue of $\left(T_{0} L_{\mu}\right)^{*}=L_{\bar{\mu}} T_{0}$, i.e., Eq. (22) holds for $g \neq 0$. Therefore ρ is a zero of the Bessel function $J_{\mu}(z)$ due to the same corollary. For the operator A_{μ} the theorem follows from the relation $T_{0} L_{\mu}=$ $L_{\mu}^{-1}\left(L_{\mu} T_{0}\right) L_{\mu}$ which shows that the operators $T_{0} L_{\mu}$ and $L_{\mu} T_{0}$ have the same eigenvalues. It is easy to see that for $\mu>-1$ the operator L_{μ} is nonnegative $\left(\left(L_{\mu} f, f\right) \geqslant 0\right)$, and therefore its square root $L_{\mu}^{1 / 2}$ exists and is the diagonal operator

$$
L_{\mu}^{1 / 2} e_{n}=\frac{1}{\sqrt{n+\mu}} e_{n}, \quad n=1,2, \ldots
$$

Defining the operator S_{μ} as

$$
\begin{equation*}
S_{\mu}=L_{\mu}^{1 / 2} T_{0} L_{\mu}^{1 / 2} \tag{27}
\end{equation*}
$$

we see from the relation

$$
\begin{equation*}
L_{\mu}^{-1 / 2} A_{\mu} L_{\mu}^{1 / 2}=S_{\mu} \tag{28}
\end{equation*}
$$

that for $\mu>-1$ the operators A_{μ} and S_{μ} have the same spectrum. Thus we obtain from Theorem 2 the following:

Corollary 2. For $\mu>-1, \rho \neq 0$ is a zero of $J_{\mu}(z)$ if and only if $2 / \rho$ is an eigenvalue of the compact and self-adjoint operator S_{μ}.

Remark 5. The part "only if" of Theorem 2 can be obtained easily if we observe that if $J_{\mu}(\rho)=0$ then $f_{\mu}=\sum_{n=1}^{\infty} J_{\mu+n}(\rho) e_{n}$ is the eigenelement of A_{μ} that corresponds to the eigenvalue $2 / \rho$. Due to the recurrence relation $J_{\mu+n+1}(\rho)+J_{\mu+n-1}(\rho)=(2 / \rho)(\mu+n) J_{\mu+n}(\rho)(n=1,2, \ldots)$ the eigenelement f_{μ} corresponding to the eigenvalue $\lambda=2 / \rho$ is uniquely determined up to a constant $\left\langle f_{\mu}, e_{1}\right\rangle=J_{\mu+1}(\rho)=\alpha \neq 0$. Since $J_{\mu}(\rho)=0, \quad J_{\mu+1}(\rho)=0 \quad$ is impossible because in this case $J_{\mu}^{\prime}(\rho)=0$ from $z J_{\mu}^{\prime}(z)=\mu J_{\mu}(z)-z J_{\mu+1}(z)$ hence $J_{\mu}^{\prime \prime}(\rho)=0$ from Bessel's differential equation. Taking the successive derivatives of this equation we find $J_{\mu}^{(3)}(\rho)=J_{\mu}^{(4)}(\rho)=\cdots=0$ which is impossible for the function $J_{\mu}(z)$. This is a proof of Bourget's hypothesis in a very special case.

Remark 6. For $\mu>-1 S_{\mu}$ is a Hilbert-Schmidt operator with absolute norm

$$
\begin{equation*}
N\left(S_{\mu}\right)=\sqrt{\sum_{n=1}^{\infty}\left\|S_{\mu} e_{n}\right\|^{2}}=\sqrt{\frac{2}{1+\mu}} \tag{29}
\end{equation*}
$$

In fact we find easily

$$
\begin{equation*}
S_{\mu} e_{n}=\frac{e_{n-1}}{\sqrt{(\mu+n)(\mu+n-1)}}+\frac{e_{n+1}}{\sqrt{(\mu+n+1)(\mu+n)}} \quad \text { for } n>1 \tag{29a}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\mu} e_{1}=\frac{e_{2}}{\sqrt{(\mu+1)(\mu+2)}} \quad \text { for } \quad n=1 \tag{29b}
\end{equation*}
$$

Hence

$$
\begin{gather*}
\left\|S_{\mu} e_{1}\right\|^{2}=\frac{1}{(\mu+1)(\mu+2)}=\frac{1}{\mu+1}-\frac{1}{\mu+2} \tag{30}\\
\left\|S_{\mu} e_{n}\right\|^{2}=\frac{1}{(\mu+n+1)(\mu+n)}+\frac{1}{(\mu+n-1)(\mu+n)} \\
=\frac{1}{n+\mu-1}-\frac{1}{n+\mu+1} \tag{31}
\end{gather*}
$$

From (31) we observe

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\|S_{\mu} e_{n}\right\|^{2}=\frac{1}{1+\mu}+\frac{1}{2+\mu} \tag{32}
\end{equation*}
$$

and from (32) and (30) follows (29).

3. Some Qualitative Results for the Zeros of $J_{\mu}(z)$

Some of the most important results which follow easily from Theorem 2 and its corollary are the following:

1. Lommel-Hurwitz theorem [6]. For $\mu>-1$ all the zeros of $J_{\mu}(z)$ are real.

This follows from the corollary to Theorem 2 because S_{μ} is self-adjoint.
2. Rayleigh's formula [6]. Since $S_{\mu}(\mu>-1)$ is self-adjoint and compact and since the point zero is not an eigenvalue, it possesses a complete orthonormal system of eigenelements $f_{n}, n=1,2, \ldots$,

$$
S_{\mu} f_{n}=\lambda_{n} f_{n}, \quad\left\|f_{n}\right\|=1, n=1,2, \ldots
$$

with λ_{n} the corresponding eigenvalues. Hence

$$
\begin{equation*}
\left\|S_{\mu} f_{n}\right\|^{2}=\lambda_{n}^{2}, \quad n=1,2, \ldots \tag{33}
\end{equation*}
$$

Since for every linear operator A the sum $\sum_{n=1}^{\infty}\left\|A e_{n}\right\|^{2}$, if it exists, is independent of the complete orthonormal system e_{n} it follows from (29) and (33) that

$$
\sum_{n=1}^{\infty} \lambda_{n}^{2}=\frac{2}{1+\mu}
$$

or

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\rho_{n}^{2}}=\frac{1}{2(1+\mu)}, \quad \mu>-1 . \tag{34}
\end{equation*}
$$

Note that this result includes all zeros (positive and negative) and therefore the above sum is equal to $2 \sigma_{\mu}^{(1)}$ where

$$
\sigma_{\mu}^{(1)}=\frac{1}{2^{2}(1+\mu)}
$$

as found by Rayleigh [6].
3. If $J_{\mu}(\rho)=0$ and $J_{\mu+m}(\rho)=0$ for μ rational and m natural numbers, then $J_{\mu+m}=0$ for $m=1,2,3, \ldots$. This follows from the recurrence relation $J_{\mu+1}(\rho)+J_{\mu-1}(\rho)=(2 \mu / \rho) J_{\mu}(\rho)$ and a theorem of Siegel [6] which implies that if μ is rational then the zeros of $J_{\mu}(z)$ are not algebraic numbers. It therefore follows that the eigenelement $f_{0}=\sum_{n=1}^{\infty} J_{\mu+n}(\rho)(\sqrt{\mu+n}) e_{n}$ of the operator S_{μ} is zero which is impossible because, as in the case of A_{μ}, the eigenvalues of the operator S_{μ} are simple. (See Remark 5.) This is an alternative proof of Bourget's hypothesis [6] in its generalized version.
4. Consider the eigenvalue equation $L_{\mu} T_{0} f=(2 / \rho) f$ or

$$
\begin{equation*}
\left(\rho T_{0}-2 C_{0}\right) f=2 \mu f \tag{35}
\end{equation*}
$$

for some real number ρ. In Eq. (35) the operator ρT_{0} is self-adjoint and is perturbed by a self-adjoint operator with compact resolvent hence the operator $\rho T_{0}-2 C_{0}$ has a discrete spectrum in the sense that it consists of a sequence of real numbers $2 \mu_{n}, n=1,2, \ldots$, such that $\left|\mu_{n}\right| \rightarrow \infty$. Thus we obtain the following result:

For every real ρ there exists a sequence of real numbers $\mu_{n},\left|\mu_{n}\right| \rightarrow \infty_{n \rightarrow \infty}$, such that $J \mu_{n}(\rho)=0, n=1,2, \ldots$.

4. Lower Bounds for the Real and Imaginary Parts of the Complex Zeros of the Bessel Functions

We consider the case where $\mu=\mu_{1}+i \mu_{2}$ with $\mu_{2} \neq 0$ and suppose that ρ is a zero of $J_{\mu}(z)$, then according to Theorem 2 we have: $L_{\mu} T_{0} f=(2 / \rho) f$ with $\|f\|=1$, or $\rho T_{0} f=2\left(C_{0}+\mu\right) f$ and

$$
\begin{equation*}
\rho\left(T_{0} f, f\right)=2\left(C_{0} f, f\right)+2 \mu_{1}+2 i \mu_{2} \tag{36}
\end{equation*}
$$

Since T_{0} and C_{0} are self-adjoint $\left(T_{0} f, f\right)$ and $\left(C_{0} f, f\right)$ are real numbers. Thus it follows from (36) that for complex μ the function $J_{\mu}(z)$ has no real zeros.

Setting $\rho=\rho_{1}+i \rho_{2}, \rho_{2} \neq 0$, in (36) and comparing real and imaginary parts we obtain

$$
\begin{align*}
& \rho_{2}\left(T_{0} f, f\right)=2 \mu_{2} \tag{37}\\
& \rho_{1}\left(T_{0} f, f\right)=2\left(C_{0} f, f\right)+2 \mu_{1} \tag{38}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{\rho_{1}}{\rho_{2}} \mu_{2}=\left(C_{0} f, f\right)+\mu_{1} \tag{39}
\end{equation*}
$$

Since $\left|\left(T_{0} f, f\right)\right| \leqslant\left\|T_{0} f\right\| \leqslant\left\|T_{0}\right\|=2$ for $\|f\|=1$ we obtain from (37) a lower bound for ρ_{2} :

$$
\begin{equation*}
\left|\rho_{2}\right| \geqslant\left|\mu_{2}\right| . \tag{40}
\end{equation*}
$$

Moreover since $\left(C_{0} f, f\right)>1$ for $\|f\|=1$, it follows from (39) that

$$
\begin{array}{ll}
\frac{\rho_{1}}{\rho_{2}}>\frac{1+\mu_{1}}{\mu_{2}} & \text { for } \quad \mu_{2}>0 \\
\frac{\rho_{1}}{\rho_{2}}<\frac{1+\mu_{1}}{\mu_{2}} & \text { for } \quad \mu_{2}<0
\end{array}
$$

$\left(\left(C_{0} f, f\right) \geqslant 1\right.$ by the relation $\left(C_{0} f, f\right)=\sum_{n=1}^{\infty} n\left|\left(f, e_{n}\right)\right|^{2}=1+\left|\left(f, e_{2}\right)\right|^{2}+$ $2\left|\left(f, e_{3}\right)\right|^{2}+\cdots$ and $\left(C_{0} f, f\right)>1$ because if $\left(C_{0} f, f\right)=1$, then $f=e_{1}$, which is not an eigenelement of A_{μ}).

It follows from (40α) and (40) that for $\mu_{1}>-1$ and $\mu_{2}>0$ the parts ρ_{1} and ρ_{2} have the same sign while for $\mu_{1}>-1$ and $\mu_{2}<0$ they have different signs.

For $\mu_{1}>-1$ we have in both cases $\mu_{2}>0$ and $\mu_{2}<0$ so that

$$
\begin{equation*}
\frac{\rho_{1}^{2}}{\rho_{2}^{2}}>\frac{\left(1+\mu_{1}\right)^{2}}{\mu_{2}^{2}}, \quad \mu_{1}>-1 \tag{41}
\end{equation*}
$$

From (40) and (41) we obtain

$$
\begin{equation*}
\rho_{1}^{2}>\left(1+\mu_{1}\right)^{2}, \quad \mu_{1}>-1 \tag{42}
\end{equation*}
$$

Remark 7. From (40) and (42) we obtain a lower bound for $|\rho|^{2}=$ $\rho_{1}^{2}+\rho_{2}^{2}>\left(1+\mu_{1}\right)^{2}+\mu_{2}^{2}, \mu_{1}>-1$. This bound follows easily from a bound of the norm of $B_{\mu}=T_{0} L_{\mu}$ or A_{μ}.

References

1. L. J. Grimm and L. M. Hall, An alternative theorem for singular differential systems, J. Differential Equations 18 (1975), 411-422.
2. L. M. Hall, A characterization of the cokernel of a singular Fredholm differential operator, J. Differential Equations 24 (1977), 1-7.
3. E. K. Ifantis, An existence theory for functional-differential equations and functionaldifferential systems, J. Differential Equations 29 (1978), 86-104.
4. E. K. Ifantis, On the nature of the spectrum of generalized oscillator phase operators, Lett. Nuovo Cimento 2 (1971), 1096-1100.
5. H. L. Turrittin, My mathematical expectations, Symposium on Ordinary Differential Equations, in "Lecture Notes in Mathematics No. 312," pp. 3-22, Springer-Verlag, New York/Berlin, 1973.
6. G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge Univ. Press, London/New York, 1958.

[^0]: * Part of the present work was submitted by one of us (P.D.S.) to the University of Patras to fulfill part of the requirements for a Ph.D. degree.

