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Abstract

We show that any finite group can act freely on a rational homology 3-spfie2800 Elsevier
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1. Introduction
The purpose of this note is to prove the following:

Theorem 1.1. Let G be a finite group. Then there is a rational homoldtfyon whichG
acts freely.

That any finite group acts freely on some closed 3-manifold is easy to arrange: There
are many examples of closed 3-manifolds whose fundamental groups surject a free group
of rank two (for example, by taking a connected sunsdfx $2's) and by passing to a
covering space, one can obtain a manifold whose group surjects a free group of any given
rank. This gives a surjection onto any finite group and hence a free action on the associated
covering space. We also note that results of Milnor [3] easily imply that one cannot replace
rational coefficients by integral coefficients and hope for a similar result.

The strategy for proving Theorem 1.1 is this: We begin with a free acti@h of some
3-manifold M. This makesH1(M) into a representation module for the groGp (Here,
as throughout, homology groups will be with rational coefficients.) Our first task is to gain
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some control over the representations which occur. To this end we recall that every finite
group acts on its rational group algeliggG] by left multiplication to give the so-called

left regular representatioriVe denote this representation by:. Then the control we seek

is accomplished in Lemma 2.3, where, denoting the trivial representati¢l) ifthat is to

say, the one-dimensional vector space with the trigiedction) we show that one can find

a possibly different 3-manifold and a fr&e-action, so that th&-module H1 (M) & (1)
becomes a large number of copiedqf.

We then show that one can systematically remove summands of this controlled type by
Dehn surgery, a process which eventually yields a rational homology sphere wity free
action. We conclude with a sketch that this rational homology sphere can be chosen to be
hyperbolic.

It was pointed out to the authors that Browder and Hsiang (see [1, p. 267]) have proved:

Theorem 1.2. Given a finite grougs and an integek > 1, there is a freeG action on a
simply connected rational homology sphere of dimengion 1.

It was further suggested that perhaps Theorem 1.1 follows from the same ideas, dropping
the conclusion that the manifold is simply connected. Nonetheless we hope that our proof
is still of value, being completely elementary and bypassing Wall groups and the machinery
of high-dimensional surgery.

2. The construction

Suppose thai/ is a 3-manifold with a freeG-action. Suppose that, ..., yx g is
a set of disjoint smooth simple closed curvesphwhich are freely permuted by.
Equivariantly deleting open regular neighborhoods of these curves, we form the manifold
X:M—G~N(y1u~~~uyk|g|).
We note that, by constructiolx, has a frees action.
We have aG map
iy H1(0X) —> H1(X)

which is induced by inclusion and by duality we have a splitting into two submodules of
the equal dimensions: k@x) & Im(i,) = H1(9X). This is still an isomorphism o[G]-
modules, but is not natural since it arose by splitting a short exact sequence.

Lemma 2.1. AsG modules we havém(i,) = (Lg)*.

Proof. Sinced X consists of tori which are freely permuted 8y there is an isomorphism
H1(3X) = (Lg)* @ (Lg)*. Duality implies that dindlm(i,)) = dim((Lg)*) =k - |G|. The
intersection pairing 0@ X is G-equivariant. We denote this pairing by'.“It induces a
bilinear G-invariant pairing:

(,):ker(iy) x Im(i,) — Q.
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We note that this is well defined, since although the splitting which gives the direct sum
decomposition is not natural, the ambiguity in a choice of elemeAyiid X) representing
an element of In,) is an element of ke&i,). The intersection pairing vanishes on the
subspace ke, ) thus the ambiguity is erased by;.

The intersection pairing on a surface is nondegenerate and this implieg, that
nondegenerate. This gives an isomorphisnzahodules

Im(i,) = Hom(ker(i,), Q) = ker(iy).
The first isomorphism
6 :Im(i,) = Hom(ker(i,), Q)

is given by[6 (i,x)](y) = x - y wherex, y are inH1(3 X). Thend is Q-linear. Also, ifg € G
then

[0(gix)] () = (gx) -y =x- (g7 1Y)

since the intersection pairing G-invariant. Thusd(gi.x) = 0 (i+x) o g~1. The action of
g € G on ¢ € Hom(ker(i,), Q) is ¢ — ¢ o g~1. Henced is a Q[G]-module map. The
second isomorphism

¥ :Hom(ker(i,), Q) = ker(i,)

is defined the same way, but in place(of we use aG-invariant positive-definite inner-
product on kefi,).

Recall that a module isimpleif it has no proper submodules, asdmi-simpléf it is
a direct sum of simple modules. Maschke’s theorem [2, p. 455] stateg[tigis semi-
simple if the characteristic of does not divide the order af. In our situationk = Q
has characteristic zero, so the theorem applies. Sui¢g is semi-simple, ever@[G]-
module,M, is semi-simple [2, p. 446]. The number of times a simple module appears (up
to isomorphism) in a decomposition 81 into simple submodules is independent of the
decomposition [2, p. 440]. Now

(Lo)* @ (Lo)k = Hi(9X) = Ker(iy) @ Im (i) = ker(i,) @ Keriy).

If we consider the decompositions of both sides into simple submodules and compare
the number of times each simple module appears, we deduce that) kedm(i,) =
(Le)k. O

Corollary 2.2. If, in addition, the map, is surjective, therH;(X) = (L¢)X.

Lemma 2.3. In the above notation, suppose that the majs surjective.
ThenH1(DX) = (Le)* @ (Lg)* — (1), where DX denotes the doubleXf

Proof. Choose basepoints; and pg in the left and right copies ok inside DX and

form the graphl” by connecting the basepoints by one arc for each copy of a boundary
torus of X which lies insideDX. The graphl” admits an obviouss action and there

is a retraction mapping: DX — I'. This retraction is noG-equivariant, but the map
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induced on homology is. The exact sequence of the (@if{p., pr}), together with
the observation that our construction gives tHatI™, {p., pr}) = (Lg)* yields the short
exact sequence

0— Hi(I") — Hi(I'. {pL. pr}) = (Lc)* > Q= (1) > 0

so that asz-modules we haveél; (I") = (Lg)* — (1).
Since H1(X) is carried by the boundary/1(X) — H1(DX) is injective and we have a
short exact sequence Q G] modules:

0— Hi(X) = (Lg)* — Hi(DX) — Hi(I') = (Lg)¥ — (1) > 0

which implies the result. O

We now seek to improve the module provided by Lemma 2.3. To this end (following
Serre, [4]) we define a submodule of a Q[G]-moduleA to becanonical inA if it has
the property that if’ is any submodule oA with V' =V, thenV’ = V. Not all simple
modules are canonical, but for our purposes it is sufficient to note:

Lemma 2.4. The submodulekg, (1) and L — (1) are all canonical submodules &f;.

Proof. Though this is standard, (see [4]) we include a proof for convenience.Jha
canonical in itself is transparent. It is clear that the elemept ; A,¢ of Q[G] s invariant
under the action o€ if and only if all thex, € Q are equal. Thus there is a unique one-
dimensional subspacél), on which G acts trivially. Henceg(1) is canonical. It follows
that Lg — (1) is canonical inLg since it is the sum of all the simple submoduledin
which are not isomorphic tdl). O

Proposition 2.5. Suppose that admits a freeG-action so that
Hi(M)ZVeW,

whereV is a canonical submodule dfs. Then by doing Dehn surgeries @i, we may
find another manifold with fre&-action so that

Hi(M)=W.

Proof. Firstly we note that the modulés is cyclic, that is to say, there is a vector
v € Lg so that the smallesP[G]-module containing is all of Lg. This implies that
any submoduleV of L is also cyclic. This is because th&-action admits aG-
invariant positive definite form. Form the orthogonal decomposifign= vV @ V= then
the orthogonal projection int¥ of any cyclic vector folL; is a cyclic vector forV.

Choose a cyclic vector for the moduleand represent it by an embedded simple closed
curve y C M. By general position we may assume that thdranslates ofy are all
disjoint, so that as above, we may remove a small equivariant neighbourhgdd ébrm
a manifoldX = M — G - N(y) with free G-action and G| torus boundary components.
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Leti:9X — X andj: X — M be the inclusion maps. Denoting the projection oito
by 7w : HL(M) — W, we obtain aG map p = ww o jx: H1(X) — W which is clearly
surjective.

Clearly j.(Im(i,)) = (G - y) = V sincey generates the submoduleof H1(M).

We claim that in fact kelp) = Im(i,). To this end, note that

ker(mw) =V =(G - y) = ji Im(iy),

so that Infi,.) C ker(p). Moreover, ifé € H1(X) lies in ket(p), this implies thatj, (£) lies
in ker(zyw) = V, and so by the observation of the above paragragh) = j.(t) for some
T € Im(i,). This implies that — = € ker(j,) C Im(i). It follows that kefp) = Im(i,.) and
we have a short exact sequence:

0— Im(@iy) > HH(X) > W—>0

from which it follows thatH1(X) = Im(i.) @ W, whence by Lemma 2.1 thd{1(X) =
Lo W.

We wish to do an equivariant surgery on a boundary torus which kills all of theL g
part of H1(X).

Now Im(i,) = Lg =V & A and the submodule of I@.) corresponding td is unique
becauseV is canonical inLs. Doing equivariant surgery along the meridianc 9 X
recovers the manifold/, and

Hi(M) = H1(X)/ix(G.11) = (IMG) /(G.(ix)) W =V @ W.

Setting(G.(i.u)) = A’, we have an internal direct-sum decompositioriibn=V’' @ A’.
Note thatV’ = V is unique, becausk is canonical.

Fix an element. ¢ H1(0X) represented by a simple closed curve so fhétA) = y.
Denote the projection ont®¥ by wy: Hi(M) — V. Thus y j.(G.(i.1)) = V. Write
i = (0,m) andi,A = (¢1,£2) as elements o’ & A’ = Im(i,) < Hi(X). Since
my j«(ixA) is a cyclic vector forV it follows that £1 is a cyclic vector forV’. Also m
is a cyclic vector ford’.

Fix some intege and consider th&[G]-submodule B, of H1(X) generated by the
vectori,(u+q - 1) = (g 1, m+q o) e V'@ A'. Let ys, w4 be the projection of
V' @ A’ onto the factors. Theny: B = V'. Moreover the set of cyclic vectors for a given
representation is open, so that for sufficiently laggéhe vectorm + ¢ ~1¢5 continues to be
cyclic for the submodulel’. Thusz 4 B = A’. It follows that the submodul8 = V' @ A’
because it surjects to both factors, and the factors are canonical. Thus equivariant Dehn
filling alongq - « + A produces a manifold with1 (M’) = H1(X)/B = W as required. O

The proof of Theorem 1.1 follows. Our introductory remarks constructeddraetions
on some closed 3-manifold for any finite groGp we then perform the modifications to
achieve the situation of Lemma 2.3 and multiple applications of Proposition 2.5 prove the
result.

We conclude with a sketch that the homology sphere can also be chosen to be hyperbolic:
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Theorem 2.6. Let G be a finite group. Then there is an hyperbolic rational homol§gy
on whichG acts freely.

Proof. We have shown that there is a rational homology spii@ whichG acts freely.
Consider the manifold//G. By standard results, this manifold contains a simple closed
curve K, so that(M/G) — K is a complete hyperbolic 3-manifold with a single cusp.
With a little more care one can arrange that the ldogies in the kernel of the map
71(M/G) — G defining the covering o over M/G, so thatK lifts to M with |G|
preimages.

By standard results (see [5]), all but finitely many surgerieskogield a hyperbolic
manifold, so that all but finitely many equivariant surgeriepoR K M give hyperbolic
3-manifolds. By Corollary 2.2, the action & on M — p~1K gives an isomorphism of
G-modulesLg = Hi(M — p~1K) and the meridian is a cyclic vector fér;; whence all
sufficiently close vectors on one of the boundary tori are also cyclic vectors; equivariant
surgery along such a slope yields a hyperbolic manifold as required.
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