no change in force was observed, indicating that active cross bridge forces were not present at long (5μm) length. Based on these results, we suggest that there is a dramatic effect on force generation in passively stretched myofibrils and the individual sarcomeres.

1794-Pos
Role of Sarcomere Disruption in Stretch-Induced Force Loss of Myofibrils Appaji Panchangam, Walter Herzog.
University of Calgary, Calgary, AB, Canada.
Stretching of activated skeletal muscle results in loss of force. In the absence of direct evidence, it is often assumed that sarcomere disruption is the cause of stretch-induced force loss. We stretched mechanically isolated rabbit's psoas myofibrils on the descending limb of the length-tension relationship and asked the specific questions: does sarcomere disruption occur and does it affect the magnitude of stretch-induced force loss? Myofibrils were mounted on an inverted microscope with one end attached to a glass micro needle and the other to a silicon nitrate force lever. Myofibrils (n=11) were maximally activated at an average resting sarcomere length of 2.8 ± 0.2 μm. At peak isometric stress (234 ± 92 kN m⁻²), myofibrils were stretched by 34.3 ± 5.2% at a speed of 3.3 ± 1 s⁻¹ and immediately returned to the reference lengths at the same speed. Myofibrils were subsequently relaxed and re-activated after 3-5 minutes of rest to reassess post-stretch stress. Post-stretch isometric stress was reduced by 64 ± 9.6% compared with pre-stretch stress. Eight out of 11 myofibrils had no sarcomere disruption after stretching while the remaining 3 myofibrils had a small percentage of sarcomeres pulled beyond filament overlap suggesting sarcomere disruption. The average stress reduction in the disrupted and non-disrupted myofibrils was the same (27 ± 13% vs 36 ± 8%; p = 0.83). We conclude from these results that stretch-induced loss of force in myofibrils can occur in the absence of sarcomere disruption, and that sarcomere disruption does not increase force loss following myofibril stretch.

1795-Pos
Active Force Augmentation for Physiologically Relevant Stretches in Myofibrils and Mechanically Isolated Sarcomeres
University of Calgary, Calgary, AB, Canada.
We reported previously that forces in actively stretched myofibrils and sarcomeres were up to four times greater than forces in passively stretched myofibrils at sarcomere lengths >4μm. These increased forces were independent of actin-myosin based cross-bridge forces and were absent when titin was eliminated. Here, we demonstrate that such force augmentation also occurs for physiologically relevant sarcomere lengths (2.4-4.0μm). Actin-myosin based cross-bridge forces and non cross-bridge based forces were distinguished by assuming that sarcomeres reached a steady-state cross-bridge distribution in the first 0.4μm of stretch. The forces due to stretching could then be calculated and added to the passive forces measured during passive stretching (Figure 1) to obtain the expected forces during active stretching. Subtracting the expected from the experimentally measured forces during active stretching, the force augmentation was obtained. Mean force augmentation towards the end stretching reached values in excess of the mean maximal active isometric forces at optimal sarcomere length, suggesting that force augmentation not associated with actin-myosin based cross-bridge forces is highly relevant in actively stretched myofibrils and isolated sarcomeres.

1796-Pos
The Contribution of Calcium and Stretch-Activated Tension to Power Generation by Drosophila Indirect Flight Muscle
Qian Wang, Cuiping Zhao, Douglas M. Swank.
Rensselaer Polytechnic Institute, Troy, NY, USA.
Recent studies suggest small insects might regulate muscle power output by operating their stretch activated indirect flight muscles (IFM) at less than saturating calcium levels during flight instead of varying the number of muscle fibers recruited. Calcium levels have also been found to correlate with wing beat frequencies, suggesting calcium concentration might influence aerodynamic power. To test the effects of calcium concentration on muscle power generation, we used the work loop technique to measure Drosophila indirect flight muscle (IFM) oscillatory power generation under optimal length change parameters. Maximum power was 2.2 ± 0.4 nW/mm³ at pCa 4.7 ± 0.09. The threshold for muscle power generation occurs at - pCa 6.1, with pCa50 = 5.8 ± 0.05 and the Hill coefficient = 7.2 ± 3.7. Over the steepest portion of the curve, and above the estimated minimum power required for flight, about pCa 6.0 to 5.5, muscle power increases 2.5-fold. We compared the contributions to muscle power from calcium activated isometric tension to the contribution from the tension generation by stretch-activation during flight by imposing a 2.5% ML, 1.5 ms stretch. The pCa50 for calcium activated tension was 6.1 ± 0.05 and Hill coefficient was 4.6 ± 1.3. The pCa10 for stretch activated tension was 5.8 ± 0.07 and Hill coefficient was 3.8 ± 1.3. Following a stretch at pCa 4.5, total isometric tension increased from 2.5 ± 0.3 mN/mm² to 16.4 ± 1.2 mN/mm² of which 11.4 ± 1.1 mN/mm² was contributed by passive elastic elements. As calcium is increased from pCa 6.0 to 5.5, stretch-activated tension contributes 1.0 ± 0.3 mN/mm² of additional tension while calcium tension contributes 0.4 ± 0.2 mN/mm². We conclude that if calcium levels vary between pCa 6.0 to 5.5 during flight, then the contribution of stretch tension to additional power is about twice that of calcium tension.

1797-Pos
Dual Regulation Mechanisms for Ca²⁺-Activated and Stretch-Activated Forces in Asynchronous Flight Muscle of Insect: Mechanical and X-Ray Evidence
Hiroyuki Iwamoto, SPring-8, JASRI, Sayo-gun, Hyogo, Japan.
During flight of insects, their flight muscles (IFMs) are often endothermically maintained at an optimal temperature. In the case of bumblebee, this temperature is 42°C. At saturating [Ca²⁺], glycinated bumblebee IFM fibers develop large Ca²⁺-activated (CA) force of ~50 kPa above 20°C, as well as stretch-activated (SA) force. Below the critical temperature of 15°C, the CA force is sharply suppressed. Surprisingly, the SA force is not suppressed even at 5°C. This suggests that the inhibition of CA force at low temperatures is not due to myosin inactivation, but it is an issue of regulation. The CA force-pCa curve remains sigmoidal at lower temperatures, and the pCa50 value is only slightly affected, indicating that myosin is unable to develop large CA force even if tropomyosin is saturated with Ca²⁺. The mechanism for temperature-dependent CA force regulation is further investigated by X-ray diffraction, by recording semi-static patterns in the stretch and release phases of a repeated stretch-release protocol. At 5°C, the 2nd actin line layer (ALL) is increased from 5% at rest (relative to 6th ALL) to 19% in the release phase, indicating that the myosin binding sites on actin are almost fully open even when the CA force is suppressed. In the stretch phase, the 2nd ALL is further enhanced to 26%. At 20°C, the 2nd ALL intensity is enhanced to 25 and 29% in the release and stretch phases, respectively. These results suggest that a pathway after thin filament activation is blocked at low temperatures, and SA force could be regulated independently of this pathway. The critical temperature for CA force development is also found in other insects, such as a true bug Nezara (T=20-25°C), but not in a giant waterbug Lethocerus.

1798-Pos
Contractile Properties of Human Fetal Skeletal Muscle Proteins
Alice W. Ward, Galina Flint, Anita E. Beck, Michael J. Bamshad, Michael Regnier.
University of Washington, Seattle, WA, USA.
Congenital contracture syndromes associated with myofilament proteins are present in 1 out of every 1000 live births. Because the myosin heavy chain protein family has several isoforms unique to the pre-natal development of muscle, it is important to know the contractile properties of this tissue to determine how mutations affect performance and development. However, information on human fetal muscle contractile properties is lacking. We are beginning to characterize the contractile properties of this tissue using in vitro motility assays, where we can deconstruct which proteins of developing muscle can be attributed to differences seen in patients with congenital contracture syndromes. Embryonic myosin was isolated from human fetal muscle samples at 15.4 weeks gestation. An in vitro motility assay was performed at 30 degrees C with an ionic strength of 0.17 to determine the predominant myosin’s enzymatic properties. The max speed of filamentation on human fetal skeletal myosin (1.9 um/s) was significantly lower than filaments on adult rat skeletal myosin (4.8 um/s) under the same conditions. The Km values were similar between the human fetal (0.02 mM) and adult rat (0.03mM) myosins. Ongoing work includes studying the effects of calcium concentration on muscle power generation, we used the work loop technique to measure Drosophila indirect flight muscle (IFM) oscillatory power generation under optimal length change parameters. Maximum power was 2.2 ± 0.4 nW/mm³ at pCa 4.7 ± 0.09. The threshold for muscle power generation occurs at - pCa 6.1, with pCa50 = 5.8 ± 0.05 and the Hill coefficient = 7.2 ± 3.7. Over the steepest portion of the curve, and above the estimated minimum power required for flight, about pCa 6.0 to 5.5, muscle power increases 2.5-fold. We compared the contributions to muscle power from calcium activated isometric tension to the contribution from the tension generation by stretch-activation during flight by imposing a 2.5% ML, 1.5 ms stretch. The pCa50 for calcium activated tension was 6.1 ± 0.05 and Hill coefficient was 4.6 ± 1.3. The pCa10 for stretch activated tension was 5.8 ± 0.07 and Hill coefficient was 3.8 ± 1.3. Following a stretch at pCa 4.5, total isometric tension increased from 2.5 ± 0.3 mN/mm² to 16.4 ± 1.2 mN/mm² of which 11.4 ± 1.1 mN/mm² was contributed by passive elastic elements. As calcium is increased from pCa 6.0 to 5.5, stretch-activated tension contributes 1.0 ± 0.3 mN/mm² of additional tension while calcium tension contributes 0.4 ± 0.2 mN/mm². We conclude that if calcium levels vary between pCa 6.0 to 5.5 during flight, then the contribution of stretch tension to additional power is about twice that of calcium tension.