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First vs. best improvement: An empirical study
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Abstract

When applying the 2-opt heuristic to the travelling salesman problem, selecting the best improvement at each iteration gives worse
results on average than selecting the first improvement, if the initial solution is chosen at random. However, starting with ‘greedy’
or ‘nearest neighbor’ constructive heuristics, the best improvement is better and faster on average. Reasons for this behavior are
investigated. It appears to be better to use exchanges introducing into the solution a very small edge and fairly large one, which can
easily be removed later, than two small ones which are much harder to remove.
© 2005 Published by Elsevier B.V.
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1. Introduction

Greedy heuristics for combinatorial optimization select at each iteration the feasible move which gives the best
improvement in objective function value. It is well known that for several problems such heuristics are optimal. This is,
for instance, the case for the Minimum Spanning Tree problem [8]. However, for many other combinatorial optimization
problems the greedy heuristic is not optimal anymore. But it is still intuitively appealing: if a best improvement is selected
at each iteration one would expect that a better local optimum would be found than with some other selection rule
(which might be preferred because finding the best improvement may be time consuming). The main purpose of the
experimental study reported here is to refute, by example, such conventional wisdom. We consider heuristic solution
of the Travelling salesman problem (TSP) [7], i.e., given n cities and distances between pairs of them find a shortest
tour passing once and only once through each city. If the initial solution is chosen at random, the first improvement is
better and faster than the best improvement. However, if the initial solution is found by some constructive heuristic,
i.e., if the initial solution is not too bad, then the best improvement is slightly better and even faster in average than
the first improvement. Indeed, it is shown below that when applying the 2-opt heuristic [2,3], to both the Euclidean
and random distance TSP, using first improvement instead of best improvement gives on average local optima with a
smaller value, but only if initial solution is chosen at random. This result was obtained by serendipity when applying
the Variable Neighborhood Search (VNS) metaheuristic [9,5,6] to the TSP. VNS exploits systematically changes of
neighborhood both in the descent phase (Variable Neighborhood Descent, VND) which leads to a local optimum and in
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the exploratory phase (or VNS proper) which seeks a better local optimum. For the TSP, VND uses a series of heuristics,
in order of increasing complexity: 1-opt, 2-opt, 2.5-opt, Or-opt, etc.

Variants of the 2-opt heuristic used in this study are described in the next section. First, experiments and computational
results are presented in Section 3. Several further series of experiments designed to find explanations of the observed
phenomenon are described, with their results, in Section 4. Conclusions are drawn in the last section.

We are, of course, aware that the 2-opt heuristic is not sufficient, taken alone, even with a streamlined implementation,
to provide good quality near-optimal solutions to the TSP. The focus of this paper is not on building a better heuristic
(the first improvement neighbor-list implementation is indeed not new, see e.g. [7] although perhaps not all variants
considered below have yet been studied) but on studying a surprising phenomenon as one ingredient. The insight so
obtained will, hopefully, prove to be quite general and therefore useful in the design of new heuristics (or more efficient
versions of existing ones) for the TSP and other combinatorial optimization problems.

2. Heuristics

The 2-opt heuristic for the TSP [2,3] removes at each iteration a pair of edges in the tour and reconnects their
endpoints in the only other way which gives a connected tour. This is done as long as the length of the tour decreases.
The simplest, and classical, implementation of the 2-opt heuristic consists in a systematic enumeration of pairs of
edges, to be considered for deletion, along the tour. In the best improvement version, all n(n − 1)/2 such pairs must be
checked at each iteration which thus requires O(n2) time for a n-city problem. Detailed rules of this heuristic, noted
BI-CL, are presented in Fig. 1, where the simplest so-called array data structure for tour representation is used (for
different data structures which appear to be more efficient in solving very large problem instances, see for example [4]).
It is time consuming, and dominated by the neighbor-list implementation, described below. In the first improvement

Fig. 1. Heuristic BI-CL: classical implementation of heuristic 2-opt with best improvement criterion.
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Fig. 2. Heuristic FI-CL: modified step 3′ in heuristic BI-CL for classical implementation of 2-opt with first improvement criterion.

version enumeration of pairs of edges is interrupted as soon as a 2-opt exchange decreasing the length of the tour is
found (see Fig. 2). The time per iteration remains in O(n2) in worst case and, indeed, at the last one all n(n − 1)/2
pairs will be checked to show a local optimum has been reached. Average time per iteration will be substantially less
in practice.

Modification to the BI-CL heuristic to obtain a classical first improvement version noted FI-CL are presented
in Fig. 2.

The property (first noted by Steiglitz and Weiner [11]) that, for a 2-opt exchange to reduce the current tour length,
one of the entering edges must be shorter than one of the leaving edges leads to further and better implementations. A
preliminary step is then to rank all edges incident with each node by order of non-decreasing length. Enumeration is
done by examining potential entering edges incident at a node, say the ith one in that order, and with length smaller
than that of the edge from that ith node to the next one in the tour. Initial nodes i may be enumerated in any order, e.g.,
the natural one, or that of their position along the tour. As all possibilities must be checked, it is necessary to consider
also entering edges from the ith to the j th node in the tour with length smaller than that of the edge in the tour from their
second node, i.e., the j th one, to the next. It is equivalent to do the search along successive nodes along the tour and then
reverse the process. Details of an implementation doing this are given in Fig. 3 for the best improvement criterion. The
corresponding heuristic is noted BI-NL. Modifications to obtain a version following the first improvement criterion are
presented in Fig. 4. A few further variants are considered in Section 4 and were designed in order to better understand
the results of a comparison between the versions of the 2-opt heuristic presented here. These results will be summarized
next.

3. First experiments and results

All programs are written in Fortran 90 and experiments conducted on a Sun Ultra I computer with 143 MHz UltraSparc
processor.

The heuristics BI-NL, FI-CL and FI-NL were first applied to a series of Euclidean travelling salesman problem with
n = 20–1000 cities. To define these problems, n points were randomly generated from a uniform distribution on the
[0, 100]× [0, 100] square. Distances D = (dij ) are Euclidean. Heuristic BI-CL is not included in the comparison since
at each of its steps the same exchange as in BI-NL takes place and computing time is larger (multiplied roughly by 1.5
for problems with n=500). Results are presented in Table 1. They are averages over 1000 instances for small problems
(up to n = 150) and over 100 instances for larger ones (n = 200–1000). It appears that:

(i) Except for very small problems (n = 20 and 30), FI-CL performs better than BI-NL on average. The difference
in solution values is substantial and about 2% for the larger problems. (As a yardstick for comparison recall that
Johnson and McGeoch [7] consider as substantial a 0.5% improvement when going from 2-opt to 2.5-opt [1] for
random Euclidean instances as well.)

(ii) Heuristic FI-NL is always better than BI-NL and more so than FI-CL. The difference is about 3.3% for the larger
problems, and reaches 3.48% for n = 1000. Note that for n = 1000, random initial solution and 100 random
Euclidean instances, a 7.9% average percent excess of FI-NL 2-opt over the Held–Karp lower bound is reported in
[7] (the implementation used there differs slightly from that of the present paper in that it uses truncated neighbor
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Fig. 3. Heuristic BI-NL: neighbor-list implementation of heuristic 2-opt with best improvement.

lists). Thus, BI-NL is about 11.4% over this bound. Improvement curves as function of problem size for FI-CL
and FI-NL over BI-NL are given in Fig. 5, where the % improvements are defined as (v(BI)-v(FI))/v(FI) × 100.

(iii) Computing times of all three heuristics increase with problem size, but at different rates: for BI-NL and FI-CL it
is approximately multiplied by 10 when n doubles; for FI-NL it is approximately multiplied by about 6 when n
doubles. Moreover, the computing time of this last heuristic is much lower than that of the two others, i.e., almost
100 times less when n = 1000.
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Fig. 4. Heuristic FI-NL: modified step 3′ to replace step 3 in heuristic BI-NL for neighbor-list implementation of heuristic 2-opt with first improvement
criterion.

(iv) The number of iterations of BI-NL is much smaller than those of FI-NL (about 2.3 times less for n = 1000) and,
most of all, of FI-CL (about 6 times less for n= 1000). That the computing time of FI-CL remains smaller despite
this discrepancy shows it is much inferior per iteration to that of BI-NL.

To corroborate these results the same three heuristics were applied to a series of Euclidean problems from the TSP-
LIB [10], with n = 51 to n = 1432 cities. While variance is larger than in the previous table, single instances of each
size being solved instead of 100 or 1000 (the average error with 10 random initial solutions are reported in Table 2), the
conclusions are similar to the previous ones. In addition, optimal values being known for these problems, one can see
that residual error of FI-NL is about 7.5% for the larger instances. This is of course substantial, but has to be expected as
2-opt is not a very powerful heuristic for the TSP when used alone. The reduction in error for the five largest problems,
which have over 1000 cities, i.e., u1060, pcb1173, d1291, rl1323 and u1432, are of 1.94%, 5.22%, 4.33%, 5.55% and
5.13%, respectively. This corroborates the observation that the percentage of improvement augments with problem size.

A third series of experiments consisted in the application of the same three heuristics to randomly generated problems
without structure, i.e., such that all distances are uniformly drawn at random in the interval [0, 100]. Results are presented
in Table 3. Again results are averages over 1000 instances for n = 20–150 and over 100 instances for n = 200–1000.
Concerning solution values, they differ markedly from the previous ones in two contrasting ways:

(v) For all problem sizes, FI-CL performs worse than BI-NL. The difference in average value of the solution obtained
is between 3% and 6% of the best value obtained, in favor of BI-NL.

(vi) For all problem sizes FI-NL performs better than BI-NL and FI-CL. Moreover, differences are much larger than
for the Euclidean case: they reach about 20% of the best value found for n = 100, almost 50% for n = 500 and
over 67% for n = 1000 (see also Fig. 6).

Conclusions regarding computing times are also different:

(vii) While for Euclidean problems BI-NL and FI-CL used computing times of the same order of magnitude, for
randomly generated distances computing times of the latter heuristic are 22 times less than those of the former.
Computing times of FI-NL remain by far the smallest and very similar to those used for Euclidean problems.
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Table 1
Average results for Euclidean TSP on 1000 random instances, for n = 20, . . . , 150 (average of averages reported in line ‘Av. 20–150’), 100 random
instances for n = 200, 250, . . . , 500 (line ‘Av. 200–500’ gives average results) and 100 random instances for n = 600, 700, . . . , 1000 (line ‘Av.
600–1000’ reports average)

n Obj. function values % improv. CPU times # of iterations

BI-NL FI-CL FI-NL FI-CL FI-NL BI-NL FI-CL FI-NL BI-NL FI-CL FI-NL

20 394.21 395.48 393.94 −0.32 0.07 0.00 0.00 0.00 16 37 24
30 473.86 474.80 472.85 −0.20 0.21 0.00 0.00 0.00 26 69 41
40 541.93 540.52 538.59 0.26 0.62 0.01 0.01 0.00 36 107 58
50 603.50 601.35 598.66 0.36 0.81 0.02 0.02 0.00 46 149 77
60 654.69 652.68 648.95 0.31 0.88 0.04 0.03 0.00 58 192 95
70 704.35 700.05 695.15 0.62 1.32 0.07 0.05 0.01 68 239 115
80 750.91 747.04 740.06 0.52 1.47 0.11 0.07 0.01 79 288 135
90 796.40 790.03 783.40 0.81 1.66 0.16 0.12 0.01 91 338 154
100 836.68 828.75 821.42 0.97 1.86 0.22 0.19 0.01 102 391 176
110 873.51 864.90 857.34 1.00 1.89 0.30 0.27 0.02 114 445 197
120 910.83 903.99 894.46 0.76 1.83 0.40 0.37 0.02 125 502 217
130 948.84 932.20 928.20 1.79 2.22 0.51 0.46 0.02 137 561 241
140 983.70 974.02 964.32 1.00 2.01 0.66 0.62 0.03 149 619 261
150 1016.08 1000.62 994.05 1.56 2.22 0.83 0.81 0.04 161 682 283
200 1166.58 1152.36 1144.30 1.24 1.95 2.08 1.95 0.07 222 988 397
250 1305.99 1279.39 1266.69 2.10 3.10 4.21 4.00 0.12 283 1311 520
300 1421.77 1400.41 1383.51 1.54 2.77 7.66 6.59 0.19 346 1659 630
350 1530.62 1504.22 1489.10 1.77 2.79 12.87 11.30 0.27 410 2015 750
400 1635.59 1603.03 1588.80 2.05 2.94 20.39 16.75 0.38 474 2387 892
450 1727.46 1697.76 1680.46 1.77 2.80 30.30 25.71 0.49 541 2793 1008
500 1821.29 1793.68 1766.90 1.56 3.08 36.80 34.23 0.63 605 3172 1138
600 1994.88 1958.54 1931.68 1.88 3.27 68.53 60.72 1.00 734 3949 1410
700 2152.85 2111.12 2083.07 2.00 3.35 111.52 96.51 1.41 870 4801 1660
800 2292.88 2252.68 2224.27 1.81 3.08 169.45 141.41 1.87 1008 5663 1950
900 2428.38 2383.16 2345.38 1.93 3.54 237.63 203.08 2.42 1144 6526 2236
1000 2564.79 2508.58 2478.63 2.27 3.48 369.11 271.42 3.03 1279 7407 2505

Av. 20–150 749.25 743.32 737.96 0.68 1.36 0.24 0.22 0.01 86 330 148
Av. 200–500 1515.61 1490.12 1474.25 1.72 2.77 16.33 14.36 0.31 412 2047 762
Av. 600–1000 2286.76 2242.82 2212.61 1.98 3.34 191.25 154.63 1.95 1007 5669 1952
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Fig. 5. Average difference in results of FI-NL and FI-CL over BI-NL for random Euclidean instances; % improvements are defined as
(v(BI) − v(FI))/v(FI) × 100.
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Table 2
Average results on 10 random initial permutations for Euclidean TSP instances from TSP-LIB

Problem name Optimal solution % error CPU times # of iterations

BI-NL FI-CL FI-NL BI-NL FI-CL FI-NL BI-NL FI-CL FI-NL

eil51 429.98 5.36 5.16 2.95 0.04 0.01 0.01 47 162 74
berlin52 7544.37 8.27 7.99 6.00 0.03 0.01 0.01 49 154 91
kroC100 20749.00 6.27 4.36 5.42 0.22 0.09 0.02 107 333 182
kroD100 21294.00 7.24 5.62 6.19 0.23 0.24 0.02 100 404 244
lin105 14379.00 5.66 5.66 5.34 0.24 0.27 0.02 114 445 208
ch130 6110.86 7.96 7.48 4.52 0.54 0.49 0.04 137 631 295
ch150 6532.28 10.52 7.87 5.23 0.82 0.73 0.05 155 666 305
d198 15780.00 4.19 4.36 3.93 2.16 2.85 0.11 221 954 464
tsp225 3859.00 9.39 8.95 5.99 2.91 2.77 0.11 245 1203 479
pr299 48191.00 9.80 7.89 6.52 7.35 9.39 0.20 344 1618 772
linhp318 41345.00 9.49 8.03 7.99 8.96 8.60 0.26 399 1779 810
rd400 15281.00 9.00 7.42 6.21 21.16 18.60 0.45 469 2482 988
pr439 107215.00 10.51 8.00 7.20 27.07 30.59 0.48 534 2798 895
pcb442 50779.00 10.68 8.80 5.76 26.75 20.16 0.50 513 2437 913
u574 36905.00 9.65 8.31 7.02 60.13 49.99 0.87 725 3830 1519
p654 34643.00 6.98 4.93 6.15 88.82 150.32 1.17 801 3939 1448
pr1002 259045.00 10.04 9.28 7.58 343.82 246.63 2.74 1299 7244 3029
u1060 224094.00 9.53 8.78 7.59 407.09 355.67 3.17 1401 8114 3048
pcb1173 56892.00 12.61 9.54 7.39 627.97 376.06 3.81 1523 8848 3175
d1291 50606.00 13.29 11.82 8.96 871.49 692.23 4.23 1756 9248 2766
rl1323 269554.00 12.27 8.99 6.72 952.32 853.55 4.50 1849 9988 2918
u1432 152970.00 11.99 9.76 6.86 1161.29 583.91 5.38 1713 10781 3464
pr2392 378032.00 12.65 10.10 9.00 4979.86 1951.96 16.02 3292 18342 5857

(viii) While ranking of heuristics by number of iterations required remains the same as in the Euclidean case, differences
are less pronounced: FI-CL takes about 4 times the number of iterations of BI-NL (instead of about 6 times) and
FI-NL roughly 1.5 times that number (instead of about 2.5 times).

4. Further experiments and explanations

Reason for the surprising phenomenon described in the previous section, i.e., that best improvement gives worse
results than first improvement, is not immediately apparent. Observe that there might be several, as explanations for
the good performance of FI-CL and FI-NL could be different. Indeed, their results are similar for the Euclidean case,
but not for random distances. Several further series of experiments were conducted to find adequate explanations.

4.1. Improvement directions

A first series aimed at determining if it was beneficial or not to use a constant target value (in terms of the interval
between best and worst improvement) for the improvement at each iteration. Therefore heuristic BI-NL was modified
as follows: in a first pass, at each iteration, the best improvement �max and worst improvement �min are determined; a
target value for improvement

�p = p�min + (1 − p)�max (1)

is chosen, where p ∈ [0, 1] is a given parameter; in a second pass the improvement closest in absolute value to �t is
determined and current solution updated accordingly.

Results for n = 100 to n = 300, and p equal to 0.00, 0.05, 0.10, 0.15, . . . , 1.00 are presented in Fig. 7. Values are
averages for the same 100 Euclidean TSP problems of each size. It appears that:

(i) No precise value of p appears to be better than all others in all cases.
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Table 3
Average results on 1000 random matrix distance instances for n = 20, . . . , 150, and 100 instances for n = 200, . . . , 1000

n Obj. function values % improv. CPU times # of iterations

BI-NL FI-CL FI-NL FI-CL FI-NL BI-NL FI-CL FI-NL BI-NL FI-CL FI-NL

20 229.83 236.90 224.51 −3.15 2.37 0.00 0.00 0.00 14 34 23
30 255.36 263.12 242.85 −3.20 5.15 0.00 0.00 0.00 23 61 38
40 276.74 284.92 256.77 −3.19 7.78 0.01 0.00 0.00 33 91 54
50 293.80 301.83 266.11 −3.02 10.41 0.03 0.01 0.00 42 123 71
60 309.20 320.76 274.15 −4.22 12.78 0.06 0.01 0.01 52 156 87
70 324.51 335.13 282.45 −3.76 14.89 0.11 0.03 0.01 62 190 104
80 337.56 347.00 289.06 −3.27 16.78 0.16 0.04 0.01 72 226 121
90 347.36 358.65 293.12 −3.85 18.50 0.23 0.05 0.02 82 263 138
100 359.88 370.84 300.03 −3.65 19.95 0.33 0.07 0.02 93 300 155
110 373.09 382.35 305.90 −3.03 21.96 0.44 0.09 0.03 103 338 173
120 382.59 394.12 311.21 −3.70 22.94 0.57 0.11 0.03 114 377 191
130 389.94 403.87 315.47 −4.42 23.61 0.73 0.13 0.04 125 418 208
140 403.37 414.44 320.83 −3.45 25.73 0.91 0.15 0.05 135 459 226
150 411.61 423.14 325.60 −3.54 26.42 1.12 0.18 0.05 147 497 245
200 456.07 468.96 346.95 −3.72 31.45 2.37 0.31 0.09 202 706 337
250 493.86 505.77 365.28 −3.26 35.20 4.85 0.56 0.13 258 929 428
300 530.36 544.32 377.13 −3.70 40.63 8.98 0.85 0.20 313 1163 521
350 555.99 578.67 393.50 −5.76 41.29 14.46 1.29 0.28 374 1393 614
400 590.03 605.46 405.71 −3.80 45.43 22.29 1.81 0.38 433 1630 708
450 619.18 637.99 420.02 −4.48 47.42 32.71 2.33 0.48 491 1878 806
500 643.11 667.92 431.75 −5.75 48.95 46.11 3.14 0.60 552 2124 893
600 697.79 719.37 451.09 −4.78 54.69 91.95 5.55 0.98 670 2638 1091
700 743.42 764.78 468.49 −4.56 58.68 148.14 8.19 1.35 787 3155 1286
800 786.92 811.33 486.44 −5.02 61.77 222.78 11.51 1.77 914 3696 1481
900 827.16 856.07 504.28 −5.73 64.03 318.71 15.12 2.26 1039 4227 1685
1000 868.17 890.37 519.23 −4.28 67.20 440.23 19.86 2.80 1155 4792 1867

Av. 20–150 335.35 345.51 286.29 −3.53 16.38 0.34 0.06 0.02 78 252 131
Av. 200–500 555.51 572.73 391.48 −4.35 41.48 18.82 1.47 0.31 375 1403 615
Av. 600–1000 784.69 808.38 485.91 −4.87 61.28 244.36 12.05 1.83 913 3702 1482

-10

n

0

10

20

30

40

50

60

%

70

0 100 200 300 400 500 600 700 800 900 1000

FI-NL
FI-CL

Fig. 6. Average % improvement (or deterioration) of FI-NL and FI-CL over BI-NL for random matrix instances.

(ii) Best values of p appear to be in the range [0, 0.2], i.e. close to best improvement but not necessary at it.
(iii) Computing times and number of iterations augment moderately when p increases, and very substantially when

p = 1 (therefore not all problems could be solved in reasonable time for that value).
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Fig. 7. Average objective values on 100 random Euclidean instances for n = 100, 150, 200, 250 and 300 as a function of target value p (p = 0 and
p = 1 correspond to best and worst improvement 2-opt versions, respectively); horizontal lines represent average value obtained by FI-NL.

In conclusion, this series of experiments shows that slope of the descent does not play an important role in the
performance of 2-opt for Euclidean TSP as long as it remains moderate. Similar conclusions were obtained for random
distances.

4.2. First improvement exchange

Three further series of experiments study more closely how the heuristics FI-CL and FI-NL go from one iteration to
the next. The versions described in the previous section continue from the current city in the tour after each iteration (a
version noted CURR in the following tables). Two other options are to return to the initial city (noted BACK) or choose
at random the position from where to test for improving exchanges (a version noted RAND). Results for FI-CL and the
same Euclidean TSPs as in Table 1 are presented in Table 4. It appears that, for the Euclidean TSPs:

(i) Results obtained with the RAND version of FI-CL are worse than those of the two other versions; they are only
slightly better than the results obtained with BI-NL.

(ii) Results obtained with the CURR version of FI-CL are worse than those of the BACK version, by about 0.4% for the
larger problems.

(iii) The RAND version of FI-CL is much faster than the other two and performs less iterations; thus, it finds larger
moves in less time (its average CPU time per iteration for instances with n = 600, . . . , 1000 is 0.005 s, while
CURR and BACK spend 0.027 and 0.088 s per iteration, respectively), but with the worst final solution quality; we
conclude that systematic search for successive improving exchanges is more time consuming, but more effective
than random search.

Results of similar experiments with the neighbor list implementation FI-NL are given in Table 5. It appears that:

(i) Ranking of the three versions is the same as for FI-CL.
(ii) Performances are always substantially better than for BI-NL; in other words, differences between the three versions

are smaller than with FI-CL.

Results with the three versions of FI-CL applied to TSPs with random data are given in Table 6. It appears that:

(i) Results are less clear-cut than with Euclidean TSPs: no version is uniformly better than another one.
(ii) The ranking of versions appears to be again the same, but with smaller differences.

Another way to see if there is a significant difference between the three first improvement and the best improvement
methods is to apply them a certain number of times on the same instance, but with different initial tours. We compare
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Table 4
Average results for Euclidean TSP on 1000 random instances for n = 20, . . . , 150, and 100 random instances for n = 200, . . . , 1000, by variants of
2-opt and classical implementation

n Obj. function values % improv. CPU times # of iterations

RAND CURR BACK CURR BACK RAND CURR BACK RAND CURR BACK

20 397.25 395.48 396.72 0.45 0.13 0.00 0.00 0.00 38 37 37
30 479.31 474.80 474.90 0.95 0.93 0.00 0.00 0.00 69 69 70
40 548.37 540.52 541.79 1.45 1.22 0.00 0.01 0.01 106 107 106
50 609.59 601.35 601.01 1.37 1.43 0.01 0.02 0.02 146 149 149
60 662.74 652.68 651.61 1.54 1.71 0.01 0.03 0.03 188 192 192
70 711.44 700.05 699.30 1.63 1.74 0.02 0.05 0.06 231 239 239
80 757.54 747.04 745.03 1.41 1.68 0.02 0.07 0.09 278 288 288
90 802.71 790.03 788.14 1.61 1.85 0.04 0.12 0.16 325 338 338
100 843.34 828.75 829.21 1.76 1.70 0.05 0.19 0.26 375 391 389
110 880.47 864.90 864.49 1.80 1.85 0.07 0.27 0.38 424 445 445
120 920.15 903.99 902.03 1.79 2.01 0.08 0.37 0.53 473 502 500
130 948.43 932.20 935.28 1.74 1.41 0.11 0.46 0.69 528 561 552
140 994.62 974.02 972.03 2.12 2.32 0.14 0.62 0.97 581 619 617
150 1028.75 1000.62 1003.01 2.81 2.57 0.16 0.81 1.25 633 682 679
200 1176.75 1152.36 1149.67 2.12 2.36 0.37 1.95 3.48 910 988 979
250 1303.14 1279.39 1282.11 1.86 1.64 0.70 4.00 7.62 1215 1311 1307
300 1426.20 1400.41 1399.14 1.84 1.93 1.16 6.59 14.69 1518 1659 1652
350 1532.19 1504.22 1503.01 1.86 1.94 1.84 11.30 23.99 1835 2015 2020
400 1632.69 1603.03 1603.25 1.85 1.84 2.89 16.75 40.44 2154 2387 2396
450 1726.32 1697.76 1699.09 1.68 1.60 3.93 25.71 52.70 2490 2793 2787
500 1818.34 1793.68 1786.07 1.38 1.81 5.55 34.23 79.21 2837 3172 3177
600 1993.66 1958.54 1949.44 1.80 2.27 9.88 60.72 164.52 3531 3949 3979
700 2148.34 2111.12 2101.60 1.77 2.22 15.40 96.51 281.23 4247 4801 4837
800 2284.87 2252.68 2241.96 1.44 1.91 23.80 141.41 438.78 4999 5663 5734
900 2422.80 2383.16 2374.97 1.67 2.01 34.05 203.08 620.51 5750 6526 6668
1000 2550.02 2508.58 2502.33 1.66 1.91 46.03 271.42 1041.04 6497 7407 7559

Av. 20–150 756.05 743.32 743.18 1.60 1.61 0.05 0.22 0.32 314 330 329
Av. 200–500 1516.52 1490.12 1488.91 1.80 1.87 2.35 14.36 31.73 1851 2047 2045
Av. 600–1000 2279.94 2242.82 2234.06 1.67 2.07 25.83 154.63 509.22 5005 5669 5755

the three FI-NL versions by solving a random Euclidean instance with n = 500. The empirical distributions of the
tour lengths of all four variants obtained after generating 1000 initial solutions are given in Fig. 8, from where similar
conclusions as before can be derived: the best performance is that of the BACK version of first improvement and the
worst one that of best improvement.

In conclusion, coordination between iterations appears to play a substantial role in the performance of FI-CL and
FI-NL in the Euclidean case; it appears to be much less important in the case of random distances.

4.3. Ranks of edges

In the last series of experiments we investigate if the ranks of entering and leaving edges as well as average rank of
edges in the current solution give possible explanations of why first improvement 2-opt exchange is better than best
improvement.

Assume that matrices D′, R and P (see Step 1 in Fig. 3) are known. We first define the rank of an edge (i, j) as

r(i, j) = pi,j + pj,i

2
, (2)

i.e., the rank is defined as the average position of cities with index j (in the ranked list of cities with index i) and i (in
the ranked list of cities with index j). Then the random variable rank of the tour is defined as the average sum of ranks
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Table 5
Average results for Euclidean TSP on 1000 random instances for n = 20, . . . , 150, and 100 random instances for n = 200, . . . , 1000, by variants of
2-opt and neighbor list implementation

n Obj. function values % improv. CPU times # of iterations

RAND CURR BACK CURR BACK RAND CURR BACK RAND CURR BACK

20 394.22 393.94 394.02 0.07 0.05 0.00 0.00 0.00 23 24 23
30 473.78 472.85 473.58 0.20 0.04 0.00 0.00 0.00 39 41 38
40 539.58 538.59 537.48 0.18 0.39 0.00 0.00 0.00 56 58 55
50 599.20 598.66 598.39 0.09 0.14 0.00 0.00 0.00 74 77 73
60 649.49 648.95 647.62 0.08 0.29 0.01 0.00 0.01 93 95 91
70 695.65 695.15 693.62 0.07 0.29 0.01 0.01 0.01 112 115 110
80 740.65 740.06 739.76 0.08 0.12 0.01 0.01 0.02 131 135 128
90 783.56 783.40 781.17 0.02 0.31 0.02 0.01 0.02 151 154 149
100 823.55 821.42 820.76 0.26 0.34 0.02 0.01 0.03 171 176 169
110 857.85 857.34 855.76 0.06 0.24 0.03 0.02 0.03 191 197 190
120 893.80 894.46 893.42 −0.07 0.04 0.03 0.02 0.04 212 217 211
130 930.15 928.20 926.16 0.21 0.43 0.04 0.02 0.05 234 241 233
140 965.69 964.32 960.80 0.14 0.51 0.05 0.03 0.06 257 261 253
150 995.12 994.05 992.46 0.11 0.27 0.06 0.04 0.06 276 283 275
200 1143.28 1144.30 1139.38 −0.09 0.34 0.10 0.07 0.12 383 397 388
250 1273.12 1266.69 1265.91 0.51 0.57 0.17 0.12 0.19 504 520 498
300 1382.48 1383.51 1378.89 −0.07 0.26 0.25 0.19 0.29 622 630 632
350 1486.15 1489.10 1480.06 −0.20 0.41 0.35 0.27 0.40 751 750 733
400 1586.56 1588.80 1581.82 −0.14 0.30 0.48 0.38 0.55 880 892 881
450 1679.70 1680.46 1676.93 −0.05 0.17 0.62 0.49 0.72 1006 1008 987
500 1771.05 1766.90 1766.58 0.23 0.25 0.78 0.63 0.89 1126 1138 1108
600 1934.24 1931.68 1934.25 0.13 0.00 1.17 1.00 1.35 1411 1410 1384
700 2084.33 2083.07 2080.31 0.06 0.19 1.64 1.41 1.90 1666 1660 1671
800 2223.34 2224.27 2221.12 −0.04 0.10 2.18 1.87 2.56 1949 1950 1937
900 2354.88 2345.38 2348.42 0.41 0.28 2.84 2.42 3.24 2248 2236 2206
1000 2479.90 2478.63 2475.53 0.05 0.18 3.58 3.03 4.13 2529 2505 2517

Av. 20–150 738.73 737.96 736.79 0.11 0.25 0.02 0.01 0.02 144 148 143
Av. 200–500 1474.62 1474.25 1469.94 0.03 0.33 0.39 0.31 0.45 753 762 747
Av. 600–1000 2215.34 2212.61 2211.93 0.12 0.15 2.28 1.95 2.64 1961 1952 1943

of the edges in the tour T = (xi), i = 1, . . . , n,

r(T ) = 1

n

n∑

i=1

r(xi, xi+1), (3)

where xn+1 = x1.
As in Step 3 of Figs. 1–4, let us denote by e1 = (xi, xj ) and e2 = (xi+1, xj+1) the two edges that enter the solution in

some iteration of 2-opt and by e3 = (xi, xi+1) and e4 = (xj , xj+1) the two leaving edges. Let us further define random
variables that represent smaller and larger ranks of entering or leaving edges:

�1 = min{r(e1), r(e2)}; �2 = max{r(e1), r(e2)};

�3 = min{r(e3), r(e4)}; �4 = max{r(e3), r(e4)};

In our tests we found experimentally approximate expected values of �j , j = 1, 2, 3, 4 for each variant of 2-opt
mentioned before. In Table 7 we present some of the results for 10 random Euclidean distance problems with n = 500.
Let us denote by �j (BI-NL), �j (FI-NL) and �j (FI-NL) values obtained by BI-NL, FI-NL and FI-CL, respectively.
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Table 6
Average results on 1000 random matrix instances for n = 20, . . . , 150, and 100 distances for n = 200, . . . , 1000, by variants of 2-opt and classical
implementation

n Obj. function values % improv. CPU times # of iterations

RAND CURR BACK CURR BACK RAND CURR BACK RAND CURR BACK

20 237.44 236.90 236.72 0.23 0.30 0.00 0.00 0.00 32 34 36
30 262.24 263.12 265.29 −0.34 −1.16 0.00 0.00 0.00 57 61 63
40 287.53 284.92 287.60 0.92 −0.02 0.00 0.00 0.00 85 91 94
50 303.39 301.83 304.63 0.52 −0.41 0.01 0.01 0.01 114 123 126
60 319.47 320.76 319.77 −0.40 −0.09 0.01 0.01 0.02 145 156 161
70 336.23 335.13 334.65 0.33 0.47 0.02 0.03 0.03 176 190 196
80 349.32 347.00 348.01 0.67 0.38 0.03 0.04 0.05 208 226 232
90 358.81 358.65 359.46 0.04 −0.18 0.04 0.05 0.07 244 263 271
100 372.17 370.84 369.80 0.36 0.64 0.05 0.07 0.10 277 300 309
110 384.99 382.35 383.38 0.69 0.42 0.06 0.09 0.12 310 338 349
120 393.87 394.12 395.64 −0.06 −0.45 0.07 0.11 0.15 345 377 388
130 404.37 403.87 402.57 0.12 0.45 0.09 0.13 0.19 380 418 430
140 416.91 414.44 414.71 0.60 0.53 0.11 0.16 0.24 416 459 471
150 426.87 423.14 424.49 0.88 0.56 0.13 0.18 0.28 453 497 513
200 468.01 468.96 470.34 −0.20 −0.50 0.24 0.36 0.61 639 706 726
250 512.18 505.77 506.01 1.27 1.22 0.42 0.64 1.11 832 929 956
300 546.28 544.32 543.71 0.36 0.47 0.68 0.96 1.83 1039 1163 1193
350 581.90 578.67 576.67 0.56 0.91 0.99 1.49 2.86 1236 1393 1433
400 609.62 605.46 614.08 0.69 −0.74 1.36 2.07 4.08 1443 1630 1674
450 641.07 637.99 641.54 0.48 −0.07 1.82 2.69 5.58 1653 1878 1930
500 665.63 667.92 669.73 −0.34 −0.62 2.40 3.64 7.70 1872 2124 2176
600 725.27 719.37 716.52 0.82 1.22 3.67 5.56 12.67 2306 2638 2722
700 769.07 764.78 765.71 0.56 0.44 5.51 8.22 19.65 2762 3155 3242
800 816.14 811.33 810.79 0.59 0.66 7.40 11.54 28.27 3203 3696 3798
900 858.83 856.07 853.67 0.32 0.60 9.64 15.08 38.69 3664 4227 4357
1000 898.16 890.37 894.32 0.87 0.43 12.64 19.78 50.80 4132 4792 4931

Av. 20–150 346.69 345.51 346.19 0.33 0.10 0.04 0.06 0.09 232 252 260
Av. 200–500 574.96 572.73 574.58 0.40 0.10 1.13 1.69 3.40 1245 1403 1441
Av. 600–1000 813.49 808.38 808.20 0.64 0.67 7.77 12.04 30.02 3213 3702 3810
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Fig. 8. Empirical distributions of r.v. v(T ) obtained by 1000 restarts of the three FI-NL versions and BI-NL in solving one random Euclidean instance
(n = 500).
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Table 7
Average ranks of entering edges in 10 random Euclidean instances obtained by different 2-opt versions

Pr. BI-NL FI-NL (CURR) FI-CL (RAND) FI-CL (CURR) FI-CL (BACK)

# �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T )

1 5.1 15.9 1842.9 3.7 181.9 1797.2 31.1 99.1 1819.4 29.8 119.8 1765.6 27.9 115.5 1797.2
2 5.1 14.8 1821.6 3.9 184.8 1787.6 31.0 98.7 1821.0 30.5 104.7 1794.0 30.6 120.0 1775.5
3 5.0 15.3 1809.3 3.9 164.7 1775.4 30.7 100.9 1824.3 30.3 120.9 1786.5 26.8 117.4 1759.2
4 5.1 15.4 1816.5 3.8 194.3 1786.8 29.2 94.1 1804.5 28.6 112.4 1806.8 29.3 119.9 1792.6
5 5.0 15.4 1841.1 3.9 171.7 1808.1 29.6 98.9 1818.6 28.9 119.7 1818.1 29.5 121.5 1770.0
6 5.2 15.3 1860.3 3.6 197.5 1790.9 31.5 98.0 1804.3 28.8 115.7 1826.4 27.8 119.6 1818.9
7 5.1 15.6 1743.7 3.9 160.5 1706.9 29.0 94.6 1744.4 28.3 110.4 1738.8 28.7 114.5 1754.0
8 5.0 15.9 1860.7 3.8 184.3 1762.7 29.6 99.3 1841.7 29.4 112.3 1784.5 29.4 120.3 1776.8
9 5.3 14.7 1853.3 3.9 182.5 1748.8 30.0 100.3 1851.0 30.1 114.0 1784.2 31.1 121.9 1761.1
10 5.1 16.1 1812.9 3.9 168.8 1803.3 29.0 93.1 1789.2 28.3 110.1 1764.1 28.1 113.7 1797.0

Av. 5.1 15.5 1826.2 3.8 179.0 1776.5 30.1 97.7 1811.9 29.3 114.0 1786.9 28.9 118.6 1780.2

From Table 7, the following conclusions can be drawn:

(i) Average rank of smaller entering edges (�1) is always smaller when applying FI-NL than with BI-NL. Moreover,
the following holds:

�1(FI-NL)��1(BI-NL)��2(BI-NL)��2(FI-NL), (4)

i.e., average ranks of entering edges for FI-NL bracket those for BI-NL. From this inequality we conclude that
in best improvement both entering edges are small and such small edges tend to remain in the tour at further
iterations, while FI-NL leaves in the solution very small edges as well as large edges, which can be easily removed
later.

(ii) The average quality of the solutions obtained by the three FI-CL variants are ranked in the same way as the
corresponding values of �1, i.e.,

�1(FI-CL-B)��1(FI-CL-C)��1(FI-CL-R). (5)

These values are much larger than for the neighbor list implementation.
(iii) The larger the average value of �2, the better is the final tour obtained. The ranking is

�2(FI-NL)��2(FI-CL-B)��2(FI-CL-C)��2(FI-CL-R)��2(BI-NL). (6)

This tends to confirm the advantage of being able to remove easily the large edges introduced in the tour.

In Table 8 the first problem from Table 7 is analyzed in more detail. Each line represents average results in the
previous 100, 200 and 500 iterations obtained by BI-NL, FI-NL and FI-CL, respectively. The second column gives
number of iterations done. Columns 3 and 4 report average values of indices of cities i and j when improvement is
made. Columns 5–8 give values of �j , j = 1, 2, 3, 4, obtained in last 100, 200 or 500 iterations (depending on the
method used), while columns 9–12 report average results from the first iteration during the current phase. In columns
13 and 14, average rank of last 100, 200 or 500 solutions and standard deviation from it are reported, for each phase.
The last column gives average improvement per iteration. It should be noted that general conclusions cannot be derived
from Table 8 since only one problem is considered. For example, the solution obtained by FI-CL (CURR) is better than
that of FI-NL, which is not the case on average (see Table 1). Anyway, some trends are typical and easy to recognize:

(i) The outer loop index i (or position in the tour of city i) when a move takes place has a value very close to the
average one (e.g., n/2 = 250) only for FI-CL (RAND). That was to be expected since i in the RAND version is
chosen at random; this index monotonously increases for BACK version of FI-CL, i.e., with this version smallest
edges are introduced first, together with large ones, then slightly larger ones.
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Table 8
Statistics on one n = 500 random Euclidean instance solved by different 2-opt versions

Mth. Iter. i j �1 �2 �3 �4 �1 �2 �3 �4 r(T ) St.d v(T ) Dif-a

100 159.8 332.2 8.2 28.0 373.5 404.4 8.2 28.0 373.5 404.4 101.7 102.7 12323.2 −133.3
BI 200 140.1 302.6 8.3 28.6 186.7 225.0 8.2 28.3 280.1 314.7 26.7 31.2 5798.9 −65.2

300 177.0 310.1 4.9 17.6 37.7 67.2 7.1 24.7 199.3 232.2 10.3 9.2 3453.1 −23.5
NL 400 210.3 298.4 3.5 7.8 11.3 21.7 6.2 20.5 152.3 179.6 5.9 4.4 2454.9 −10.0

500 242.1 265.0 3.1 6.3 6.0 11.5 5.6 17.6 123.1 146.0 4.3 2.9 1995.0 −4.6
596 239.6 270.2 3.2 6.7 4.2 8.2 5.2 15.9 103.9 123.8 3.8 2.3 1842.9 −1.6

200 68.4 236.4 3.6 212.0 117.4 268.3 3.6 212.0 117.4 268.3 182.0 164.2 19404.5 −31.2
FI 400 84.6 224.1 3.7 205.0 99.0 261.0 3.7 208.5 108.2 264.6 121.5 156.3 13823.0 −27.9

600 192.3 305.3 3.7 217.8 106.5 273.3 3.7 211.6 107.6 267.5 58.2 120.8 7403.3 −32.1
NL 800 161.1 255.6 4.1 169.1 60.9 215.4 3.8 201.0 95.9 254.5 17.0 57.0 3153.1 −21.3

969 336.1 369.8 4.5 91.6 18.5 117.2 3.9 181.9 82.4 230.5 3.6 2.3 1797.2 −8.0

500 257.3 9.1 87.8 249.2 140.9 315.5 87.8 249.2 140.9 315.5 130.7 111.6 15511.9 −20.3
FI 1000 247.4 20.5 45.7 152.4 69.8 193.4 66.7 200.8 105.4 254.4 65.6 68.4 9844.2 −11.3

1500 245.5 41.3 22.4 79.9 33.2 103.8 52.0 160.5 81.3 204.2 31.0 34.6 6216.8 −7.3
CL 2000 250.4 97.9 10.0 43.1 14.3 54.2 41.5 131.2 64.5 166.7 15.6 19.9 4113.7 −4.2

2500 239.7 144.5 6.4 23.4 8.9 29.9 34.4 109.6 53.4 139.3 6.6 7.6 2472.1 −3.3
RAND 2798 250.1 186.1 4.3 11.5 5.8 14.8 31.2 99.1 48.3 126.1 3.7 2.3 1819.4 −2.2

500 4.7 94.0 57.7 220.3 94.1 259.3 57.7 220.3 94.1 259.3 174.7 132.9 18941.8 −13.4
FI 1000 12.6 111.5 42.6 180.2 73.9 209.6 50.1 200.2 84.0 234.4 113.9 112.9 13619.9 −10.6

1500 37.6 115.3 29.5 118.5 50.3 136.3 43.3 173.0 72.8 201.7 75.4 91.3 10016.7 −7.2
CL 2000 36.2 142.6 29.5 119.3 46.4 135.9 39.8 159.6 66.2 185.3 41.8 59.7 6825.0 −6.4

2500 158.4 220.5 15.1 62.0 22.6 72.8 34.9 140.0 57.5 162.8 23.5 42.7 4668.5 −4.3
CURR 3000 53.0 227.3 13.7 54.3 20.7 63.0 31.3 125.8 51.3 146.1 7.7 17.1 2463.0 −4.4

3211 170.6 315.2 7.1 34.4 11.2 40.1 29.8 119.8 48.7 139.2 3.5 1.9 1765.6 −3.3

500 2.5 52.6 63.1 239.7 109.0 284.8 63.1 239.7 109.0 284.8 159.1 129.5 17606.2 −16.1
FI 1000 22.1 82.1 44.1 173.3 78.2 198.2 53.6 206.5 93.6 241.5 100.1 106.9 12363.5 −10.5

1500 55.4 118.0 26.5 108.6 41.3 127.9 44.6 173.9 76.2 203.6 66.0 82.1 9209.2 −6.3
CL 2000 86.7 137.2 22.7 99.4 35.7 113.1 39.1 155.3 66.1 181.0 39.3 58.8 6562.9 −5.3

2500 177.4 240.7 14.9 62.7 22.1 75.3 34.3 136.8 57.3 159.9 19.5 34.2 4244.7 −4.6
BACK 3000 284.9 315.3 9.7 45.5 15.5 53.1 30.2 121.6 50.3 142.1 6.2 9.8 2304.1 −3.9

3185 342.0 385.7 5.5 17.0 7.4 21.7 28.7 115.5 47.8 135.1 3.7 2.5 1797.2 −2.7

(ii) The rank of entering edges (e.g. value of �1) decreases along iterations for all methods except for the best one (in
average) FI-NL; by applying FI-NL exchanges, a solution is built by entering one very small and one large edge.

(iii) If we look at values of statistics �2, �3 and �4 (averages in last 100, 200 or 500 iterations in columns 6–8, or
averages in all iterations, columns 10–12), again they are strictly decreasing for all methods except FI-NL.

(iv) There is a strong correlation between values r(T ) and v(T ): the smaller the tour length, the smaller the rank of
the tour.

The same experiments has been done for 10 random matrix instances. Results are presented in Table 9. We see that:
(Table 10)

(i) Relation (4) still holds, but the difference between the first two statistics are much larger (compare 5.1−3.8=1.3
from Table 7 with 9.4 − 5.2 = 4.2 from Table 9).

(ii) Relation (5) holds as well, but CURR version of FI-CL is not the worst as for Euclidean problems.
(iii) The differences in values of �2 for the three FI-CL 2-opt versions are small and no conclusion (as in (6)) can be

made from this small sample.
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Table 9
Ranks of entering edges in 10 random matrix instances obtained by different 2-opt versions

Pr. BI-NL FI-NL (CURR) FI-CL (RAND) FI-CL (CURR) FI-CL (BACK)

# �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T ) �1 �2 v(T )

1 9.6 25.7 641.7 5.3 118.7 456.7 37.2 105.4 646.3 34.9 100.7 664.0 32.8 94.8 664.2
2 9.4 25.5 620.9 5.0 136.0 430.7 35.9 98.6 704.4 32.3 96.9 663.8 30.7 94.5 700.6
3 9.6 24.5 627.7 5.0 119.8 428.5 34.5 96.4 666.5 33.8 101.8 684.6 31.5 95.8 683.7
4 9.3 24.1 607.8 4.9 129.7 403.6 34.7 97.4 681.1 31.5 96.5 680.9 32.9 97.1 666.1
5 9.4 25.9 654.3 5.2 130.4 450.5 36.0 99.8 667.5 33.4 98.2 748.6 31.6 94.5 703.9
6 9.7 24.8 675.4 5.1 123.3 437.6 37.2 99.1 679.8 32.9 100.2 706.0 30.1 90.5 676.5
7 9.2 24.4 646.2 5.4 126.5 439.8 34.2 97.2 676.4 32.3 93.6 668.4 32.0 95.1 662.2
8 9.3 24.7 634.7 5.3 127.7 420.0 35.8 98.8 663.0 32.4 94.9 641.8 30.6 95.0 639.2
9 9.1 24.6 711.0 5.3 126.8 472.5 35.4 95.2 662.5 31.6 93.7 698.6 31.6 92.8 717.7
10 9.7 24.4 665.6 5.2 116.3 444.8 34.9 97.5 688.0 31.1 89.8 632.4 29.3 90.5 662.3
Av. 9.4 24.9 648.5 5.2 125.5 438.5 35.6 98.5 673.6 32.6 96.6 678.9 31.3 94.1 677.6

Table 10
Statistics on one n = 500 random matrix instance by different 2-opt versions

Mth. Iter. i j �1 �2 �3 �4 �1 �2 �3 �4 r(T ) St.d v(T ) Dif-a

100 158.1 325.5 13.8 39.0 391.1 425.4 13.8 39.0 391.1 425.4 110.2 101.5 10832.5 −153.2
BI 200 164.8 346.0 14.7 42.3 198.7 238.6 14.3 40.6 294.9 332.0 34.1 30.1 3227.1 −76.1

300 164.6 344.5 9.3 21.5 46.0 75.4 12.6 34.3 212.0 246.5 16.0 11.5 1433.6 −17.9
NL 400 189.4 326.7 5.9 15.8 16.5 32.7 10.9 29.7 163.1 193.1 10.5 7.2 895.3 −5.4

500 206.9 302.6 5.9 14.6 10.2 20.9 9.9 26.6 132.5 158.6 8.4 5.7 679.9 −2.2
534 245.3 309.2 5.4 11.9 7.3 16.5 9.6 25.7 124.5 149.6 7.9 5.3 641.7 −1.1

200 6.1 243.0 3.4 180.0 105.3 340.1 3.4 180.0 105.3 340.1 158.1 150.5 15664.1 −52.5
FI 400 11.5 232.7 4.2 156.9 70.6 275.1 3.8 168.4 88.0 307.6 84.2 121.7 8271.6 −37.0

600 17.4 255.6 5.2 112.3 30.6 212.4 4.2 149.7 68.8 275.9 34.0 69.0 3247.2 −25.1
NL 800 35.4 276.2 6.9 58.9 19.5 110.8 4.9 127.0 56.5 234.6 8.2 15.0 684.5 −12.8
CURR 876 141.9 256.0 9.5 31.1 8.2 41.2 5.3 118.7 52.3 217.8 6.9 5.5 456.7 −2.5

500 257.3 8.1 83.4 229.7 140.1 320.9 83.4 229.7 140.1 320.9 114.9 95.2 11321.5 −29.7
FI 1000 247.4 38.4 36.0 109.2 55.3 159.2 59.7 169.4 97.7 240.0 45.6 40.2 4361.1 −13.9
CL 1500 245.7 139.2 16.8 48.8 23.8 69.1 45.4 129.2 73.1 183.1 18.3 14.4 1663.3 −5.4
RAND 1923 249.0 232.5 7.9 20.8 12.6 28.4 37.2 105.4 59.8 149.0 7.9 5.0 646.3 −2.4

500 1.0 25.5 60.9 183.3 82.7 258.8 60.9 183.3 82.7 258.8 165.6 143.8 16391.0 −19.5
FI 1000 1.0 54.0 51.8 146.7 64.4 221.5 56.3 165.0 73.5 240.2 78.2 75.2 7625.2 −17.5

1500 1.8 82.0 28.1 81.0 37.8 116.9 46.9 137.0 61.6 199.1 32.6 27.1 3089.7 −9.1
CL 2000 4.8 195.9 12.0 31.5 16.7 46.1 38.2 110.6 50.4 160.8 13.2 9.9 1149.1 −3.9
CURR 2236 47.2 258.4 7.2 16.6 11.0 23.6 34.9 100.7 46.2 146.4 8.1 5.0 664.0 −2.1

500 1.0 41.1 56.0 156.5 72.3 231.6 56.0 156.5 72.3 231.6 171.5 149.7 16946.2 −18.4
FI 1000 1.0 82.8 47.7 140.0 60.8 208.2 51.8 148.2 66.5 219.9 90.2 102.3 8866.3 −16.2

1500 2.4 106.8 29.9 93.2 39.1 139.6 44.5 129.9 57.4 193.1 34.5 29.5 3275.7 −11.2
CL 2000 7.6 163.1 12.6 34.1 17.3 49.7 36.5 105.9 47.4 157.3 14.1 11.1 1245.7 −4.1
BACK 2291 49.1 237.6 7.3 18.3 11.2 24.7 32.8 94.8 42.8 140.4 8.2 5.3 664.2 −2.0

In some further experiments, a good initial solution was used, i.e. that one provided by a nearest neighbor or greedy
heuristic. Then the improvements observed did not take place anymore. Moreover, first improvement was not only
worse but also not faster than best improvement.
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5. Conclusions

Numerous numerical studies of heuristics for the TSP have been made; however, they often concentrate on overall
performance, instead of seeking insight into the heuristics behavior, i.e., finding precisely why some versions work
better than others. In this paper it is shown how the well-known 2-opt heuristic exhibits unexpected behavior: the greedy
or best improvement version yields substantially worse results than the first improvement version. This is true for the
classical implementation which considers all possible exchanges at each iteration, or checks such exchanges until an
improving one is found, as well as for the neighbor list implementation, which ranks edges and considers those incident
to each node on the tour in turn.

Two factors appear to play a role in this phenomenon: (i) the coordination of iterations, where it is best, for Euclidean
TSPs, to perform iterations from the beginning node and only proceed further when no improving moves can be made
in that vicinity; (ii) the selection of both very short edges, which are likely to belong to optimal or near-optimal tours,
together with longer edges which are likely to be eliminated at some further iteration, instead of pairs of short edges.

This suggests, when designing heuristics for combinatorial optimization problems, to look at conditions which make
it likely for an element to belong to optimal or near-optimal solutions, and simple or composite moves which introduce,
possibly with others, such elements in the current solution instead of second-best ones.
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