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It is shown that the projection constant of an n-dimensional space E is strictly
less than n'2 Also, if the projection constant of E is close to n'? so is the
I-summing norm of the identity on £. ¢ 1987 Academic Press. Inc.

Let E be a closed subspace of a Banach space F. The relative projection
constant of E in F is defined as

ME, F)=inf{|lu|: u: F— E a projection},
and the projection constant of E is
AME)=sup{A(E, F): E c F isometrically }.
A well-known result of Kadec-Snobar [2] is that A(E)<n'? for every
space E of dimension #n. We show that a strict inequality holds.
THEOREM 1. For n>=2 there is an ¢, >0 with
ME)<n'?—¢,

for every space E of dimension n.
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The results of [3] show there are complex n-dimensional spaces with
ME)=n"?~n"'2 and real spaces with A(E)>n'?—1. Thus ¢,<n '
and we conjecture that cn ~ 2 <¢,, that is:

Conjecture. There is an absolute constant ¢ with A{E)<n'? —cn= ' for
every E with dm E=n>2.

We use standard Banach space notation and terminology as given in the
books of Lindenstrauss-Tzafriri [4] and Pietsch [5]. In particular the
Banach-Maczur distance between spaces E and F is

d(E, Fy=1inf{|u| llu~"|: u: E > F an isomorphism },

and tr(u) denotes the trace of the finite rank operator u. Pietsch’s book [5]
contains the facts about the nuclear norm, integral norm i, and p-summing
norms 7, which are needed here.

The singular numbers of an operator u on a Hilbert space H are defined
fornz=1 by

s(u)=1nf{|lu—v|:ve L(H) and rank(v)<n}.

For ue L(H) compact, 4,(u) denotes the sequence of eigenvalues of u,
ordered with non-increasing modulus and counted according to their mul-
tiplicities. Weyl’s Inequality [6] imply that, for all n and p e (0, ),

Z A ()" < Z s(u)”.

i<n i<n

For ue L(H) one has s,(u)=A(u*u)"? (cf. [5, 11.3]). A key step in the
proof of Theorem 1 is a duality argument. Write n,(E) for the l-summing
norm of 1, the identity map on E By Garling-Gordon [1]

n< AE) n,(E)

whenever dim E =n, with equality holding for spaces E with enough sym-
metries. Although equality need not hoid for arbitrary E (cf. the examples
of [1]) there is near equality for spaces with large projection constants.

THEOREM 2. Let 0<e<(2n) ' If dimE=n and ME)>=(1—¢)n'?,

then
r(E)S<n' 2 [1+2./2ne(l —/2ne) ']

Proof of Theorem 2. By trace duality there is a ue L(E) with A(E) =
tr(u)/m,(u). Scaling if necessary assume m,(u)=n'"? so that

tr(u) =, (u)(1 —e) n'?* = n(1 —¢). (1)
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Since 7,(1;)=n""?,
tr(u) <ijf(u) <yl ) nu)=n
which with (1) yields
n () <n(1—¢g)" " (2)

It remains to estimate 7,(1z— u).

By Pietsch’s theorem [5, 17.3], u has a factorization u= fo for some
maps «: E— [ and B: 12— E which satisfy n,(a) ||8]] < ms(u)=n"2 Write
H=1{0; and w=0af € L(H). Note that

ny(w)<my(a) |Bll=n'?  and tr(w) = tr(u).

The 2-summing and Hilbert-Schmidt norm coincide on L(H), so using (1)
and the last two estimates,

(1 —w)l=tr(l,—w)(1, —w)*
=pn-—2tr(w)+ tr(ww*)
Sn=21tr(u)+ a,(w) my(w*)
=2n—2tr(u) < 2ne.

This shows both

(1, —w)<(2ne)'?  and Iw ' < [1—./2ne] L
Since 1, —u=B(1,—w)w ', the last two inequalities show

(g —uw) S (A1, —w)) (0™ 'a)
<ap(a) 1Bl ma(ly—w) w ™|

<n'?(2ne)'? (1 —/2ne] .

This last inequality, (2) and the triangle inequality for n,-norm establish
the theorem.

Proof of Theorem 1. For n fixed the set .#, of all n-dimensional spaces
is compact under the metric log d(E, F), and 4 is continuous on .#, because
of the inequality A{E)<A(F)d(E, F). Taking into account the Kadec-
Snobar Theorem A(E)<n'?, we need only show that A(E)=n'? is
impossible for 7> 2. Assume to the contrary that A(E) = n'” for some E; by
Theorem 1 n,(E)=n"? and we will show this forces n=1.

Assume Ec C(S) isometrically for S compact Hausdorff. Since
n,(E)=n'?, Pietsch’s integral representation theorem [5] gives a
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probability measure p on S satisfying |ix|| <n'?u(|x|), all xe E. Write
v: E— L (u) for the natural map, so vis 1—1. Write ¢, : L,(u) = L, (1)
for inclusion, 1<g<p<o. A standard argument from the integral
representation produces an operator u: L,(u) — L (¢) with Jull <n"? and
v=ug, v. The claim now is that w,=ug¢__, is a rank » projection on
L, (). To see this write H = L,(u) and let we L{(H) be w=¢_ ,u¢, . Then

TH(W*) = my(w) < n2(¢oc,2) Jull < n'?.

The subspace F=¢_ ,v(E)< H has dimension n because v is 1-to-1 and
w | F=1, 50 |A(w)| =1 for 1 <i<n Weyl's Inequalities show
n< Z AW < Y A(wHw)
< X AwEw) So(w*) my(w) =n,
izl

which implies that A{w*w)=1 for { <i<n and A(w*w)=0 for i>n. The
map w has polar decomposition w = g(w*w)'? for some partial isometry g.
Hence both w and w, =ug_ , have rank at most n. But since v(E) is an
n-dimensional subspace of L. (x) and w, | v(E)=identity, the claim is
proven.

For w, a finite rank operator on L_(u), the spectral trace coincides with

the trace of w, as a nuclear map, and the nuclear and integral norms of w,
coincide too. Thus

n=1tr(w,) <i(w) <i1(¢'x,l) full <n'?

ExampLEs. The spaces with the largest known projection constants and
smallest known 7,-norms were constructed in [3]. For n a prime the sub-
space X,, of I spanned by

Xj= {exp[2ni(s,j+s2j2) n71}1<.\~|.,\-3<m 1<j<n,
has projection constant
MX,)=n"[1—n""+n 3],
By the results of [3] there is a canonical projection u: /" — X, with

full =A(X,) for which w=u—(n"'—n=%?*)1 satisfies i,(w)=n"2 This
yields

m(w | X,)Smy(w) =i (w)=n'"
However, w | X, =[1—n"'+n ] 1 so that

[l—n"'+n ] n(X,)=m(w| X,)<n'".
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Thus
(X)) =n[1=n"+n 3] '<n[1+n "]
and
MX,) m,(X,)=n.

In the real case there are spaces X, with at least 7,(X,)<n'?+ 1.

It is not clear whether there exist spaces £ satisfying the hypothesis of
Theorem 2. However, if one could show that n,(E) >n'? + §, always holds
for suitable J,, Theorem 2 would establish Theorem 1 for the associated
(computable) ¢,,.
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