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It is shown that the projection constant of an n-dimensional space E is strictly 
less than n’!2. Also, if the projection constant of E is close to u’ ‘, so is the 
l-summing norm of the identity on E. * 1987 Academic Press. Inc. 

Let E be a closed subspace of a Banach space F. The relative projection 
constant of E in F is delined as 

A(E, F) = inf{ Ilull : U: F+ E a projection}, 

and the projection constant of E is 

,4(E) = sup(/l(E, F): EC F isometrically}. 

A well-known result of Kadec-Snobar [2] is that A(E)<n”’ for every 
space E of dimension n. We show that a strict inequality holds. 

THEOREM 1. For n 3 2 there is an E, > 0 with 

A(E) d n “2 - E,, 

for every space E of dimension n. 
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The results of [3] show there are complex n-dimensional spaces with 
l(E) 2 n ‘I* - n - ‘I*, and real spaces with 1(E) > n1j2 - 1. Thus E, < n2’42 
and we conjecture that cn - ‘I2 < E,, that is: 

Conjecture. There is an absolute constant c with A(E) < n”’ - cn ~ ‘/2 for 
every E with dim E = n 3 2. 

We use standard Banach space notation and terminology as given in the 
books of Lindenstrauss-Tzafriri [4] and Pietsch [S]. In particular the 
Banach-Mazur distance between spaces E and F is 

d(E, F) = inff l\ull (Iu-‘Il: U: E + F an isomorphism), 

and tr(u) denotes the trace of the finite rank operator U. Pietsch’s book [S] 
contains the facts about the nuclear norm, integral norm il and p-summing 
norms 71, which are needed here. 

The singular numbers of an operator u on a Hilbert space H are defined 
for n 3 1 by 

.~,,(~)=inf{ I/u-~ll: UEL(N) and rank(o)<n). 

For u E L(H) compact, i,,(u) denotes the sequence of eigenvalues of U, 
ordered with non-increasing modulus and counted according to their mul- 
tiplicities. Weyl’s Inequality [6] imply that, for all n and p E (0, a), 

1 V,(u)l” G 1 s;(uY. 
i s II I < ,I 

For UEL(H) one has s,,(u)= 1i(~*~)“2 (cf. [S, 11.31). A key step in the 
proof of Theorem 1 is a duality argument. Write n,(E) for the l-summing 
norm of 1 E, the identity map on E. By Garling-Gordon [ 1 ] 

whenever dim E = n, with equality holding for spaces E with enough sym- 
metries. Although equality need not hold for arbitrary E (cf. the examples 
of [ 11) there is near equality for spaces with large projection constants. 

THEOREM 2. Let 0<&<(2n)-‘. Zf dimE=n and A(E)>(l-&)n”*, 
then 

n’(E)<n”‘[l+2$&1 -+))‘I. 

Proof of Theorem 2. By trace duality there is a u E L(E) with A(E) = 
tr(u)/n,(u). Scaling if necessary assume n2(u) = n”*, so that 

tr(u) > 7cl(z4)( 1 -E) n1j2 2 n(1 -E). (1) 
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Since 7rJ 1 E) = n”‘, 

which with (1) yields 

rc,(#)<n”2(1 --E)-‘. (2) 

It remains to estimate n ,( 1 E - 24). 
By Pietsch’s theorem [S, 17.31, u has a factorization u = /ICY for some 

maps ~1: E + I; and fl: I;’ -+ E which satisfy ~~(a) IlBll <X*(U) = n”*. Write 
H = /;l and w  = a/I E L(H). Note that 

x2(w) d x2(a) IlBll = n”* and tr( w) = tr(u). 

The 2-summing and Hilbert-Schmidt norm coincide on L(H), so using ( 1) 
and the last two estimates, 

n,(l.-w)‘=tr(l,-LV)(~~-MM’)* 

= n - 2 tr( M’) + tr( M9+‘*) 

< n - 2 tr(z.4) -+ rr2( ‘v) 7r2(ul*) 

= 2n - 2 tr(u) d 2ne. 

This shows both 

7r2(lH-W)<(2n&)“* and IlIz’-‘[I < [l -&I-- ‘. 

Since 1 E - u = /?( 1 H - w) w  - ‘c(, the last two inequalities show 

dn*(a) IIPII ~*(l,-W) IIw-‘II 
<n”2(2n&)“* [l-J%&]-‘. 

This last inequality, (2) and the triangle inequality for n,-norm establish 
the theorem. 

Proof of Theorem 1. For n fixed the set ~4’~ of all n-dimensional spaces 
is compact under the metric log d(E, F), and 1 is continuous on &,, because 
of the inequality A(E) Q A(F) d(E, F). Taking into account the Kadec- 
Snobar Theorem R(E) < n”‘, we need only show that A(E) = ,‘I2 is 
impossible for n 2 2. Assume to the contrary that 1(E) = nli2 for some E; by 
Theorem 1 n,(E) = nli2 and we will show this forces n = 1. 

Assume E c C(S) isometrically for S compact Hausdorff. Since 
n’(E) =r~“~, Pietsch’s integral representation theorem [S] gives a 
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probability measure p on S satisfying lIxll 6 n”2p(1xl), all x E E. Write 
11: E -+ L,(p) for the natural map, so u is 1 - 1. Write c$,,,: L,,(p) -+ L,(p) 
for inclusion, 1 < q <p < co. A standard argument from the integral 
representation produces an operator U: L,(p) + L,(p) with llu\I 6 n’j’ and 
o = u#~~,, u. The claim now is that w1 = u&%., is a rank n projection on 
L-I (p). To see this write H = L,(p) and let w  E L(H) be u’ = 4, ,z~~z,, Then 

The subspace F=c+~,~ v(E) c H has dimension n because u is l-to-l and 
11’ ) F= I !:, so 12.,(w)] 3 1 for 1 f i < n. Weyl’s Inequalities show 

which implies that ii(w*w) = 1 for 1 < i ,< n and I,(w*u*) = 0 for i > n. The 
map LV has polar decomposition u’ = g(w*w)‘12 for some partial isometry g. 
Hence both w  and w, = ub,,, have rank at most n. But since u(E) is an 
n-dimensional subspace of L,(p) and u‘, I v(E) = identity, the claim is 
proven. 

For ~3, a finite rank operator on L,(p), the spectral trace coincides with 
the trace of &v, as a nuclear map, and the nuclear and integral norms of ~7, 
coincide too. Thus 

EXAMPL.ES. The spaces with the largest known projection constants and 
smallest known n,-norms were constructed in [3]. For n a prime the sub- 

space X,, of l’: spanned by 

-xi= (expC2~i(~1j+~2j2)n~‘)I~,,.,z~,1, 16j<n. 

has projection constant 

4X,,) = n 91 yn- 1 +n~ 3121. 

By the results of [3] there is a canonical projection 1.4: I”: -+X,, with 
liul/ =2(X,,) for which u’=u-(K--~--“~) 1 satisfies i,(w)=n1’2. This 
yields 

n,(w 1 X,)d711(U’)=i,(U’)=n”2. 

However, w~X,,=[1-n~“+n~3’2]1x~sothat 

cl -n-‘+n-312 ] 7c,(X,7)=n,(w ( X,,)Gn’12. 
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Thus 

q(X,)=n”2[1 -.-‘+n-3’*]-‘<,“*[1 +n-‘1 

and 

In the real case there are spaces X, with at least 7c1(X,,) < ,li2 + 1. 
It is not clear whether there exist spaces E satisfying the hypothesis of 

Theorem 2. However, if one could show that nl(E) > nl’* + 6, always holds 
for suitable 6,,, Theorem 2 would establish Theorem 1 for the associated 
(computable) E,,. 
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