JOURNAL OF FUNCTIONAL ANALYSIS 74, 328-332 (1987)

A Strict Inequality for Projection Constants

H. König

Mathematisches Seminar der Universität Kiel, Olshauserstrasse 40-60, 2300 Kiel 1, West Germany

AND

D. R. LEWIS*

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Communicated by the Editors

Received January 29, 1986

It is shown that the projection constant of an *n*-dimensional space *E* is strictly less than $n^{1/2}$. Also, if the projection constant of *E* is close to $n^{1/2}$, so is the 1-summing norm of the identity on *E*. C 1987 Academic Press, Inc.

Let E be a closed subspace of a Banach space F. The relative projection constant of E in F is defined as

 $\lambda(E, F) = \inf\{ \|u\| \colon u \colon F \to E \text{ a projection} \},\$

and the projection constant of E is

 $\lambda(E) = \sup \{ \lambda(E, F) \colon E \subset F \text{ isometrically} \}.$

A well-known result of Kadec-Snobar [2] is that $\lambda(E) \leq n^{1/2}$ for every space E of dimension n. We show that a strict inequality holds.

THEOREM 1. For $n \ge 2$ there is an $\varepsilon_n > 0$ with

 $\lambda(E) \leqslant n^{1/2} - \varepsilon_n$

for every space E of dimension n.

* Research supported by NSF Grant DMS-8320632.

The results of [3] show there are complex *n*-dimensional spaces with $\lambda(E) \ge n^{1/2} - n^{-1/2}$, and real spaces with $\lambda(E) \ge n^{1/2} - 1$. Thus $\varepsilon_n \le n^{-1/2}$ and we conjecture that $cn^{-1/2} \le \varepsilon_n$, that is:

Conjecture. There is an absolute constant c with $\lambda(E) \leq n^{1/2} - cn^{-1/2}$ for every E with dim $E = n \geq 2$.

We use standard Banach space notation and terminology as given in the books of Lindenstrauss-Tzafriri [4] and Pietsch [5]. In particular the *Banach-Mazur distance* between spaces E and F is

$$d(E, F) = \inf\{ \|u\| \|u^{-1}\| : u: E \to F \text{ an isomorphism} \},\$$

and tr(u) denotes the trace of the finite rank operator u. Pietsch's book [5] contains the facts about the nuclear norm, integral norm i_1 and p-summing norms π_p which are needed here.

The singular numbers of an operator u on a Hilbert space H are defined for $n \ge 1$ by

$$s_n(u) = \inf\{ \|u - v\| : v \in L(H) \text{ and } \operatorname{rank}(v) < n \}.$$

For $u \in L(H)$ compact, $\lambda_i(u)$ denotes the sequence of eigenvalues of u, ordered with non-increasing modulus and counted according to their multiplicities. Weyl's Inequality [6] imply that, for all n and $p \in (0, \infty)$,

$$\sum_{i \leq n} |\lambda_i(u)|^p \leq \sum_{i \leq n} s_i(u)^p.$$

For $u \in L(H)$ one has $s_n(u) = \lambda_i(u^*u)^{1/2}$ (cf. [5, 11.3]). A key step in the proof of Theorem 1 is a duality argument. Write $\pi_1(E)$ for the 1-summing norm of 1_E , the identity map on *E*. By Garling–Gordon [1]

$$n \leq \lambda(E) \pi_1(E)$$

whenever dim E = n, with equality holding for spaces E with enough symmetries. Although equality need not hold for arbitrary E (cf. the examples of [1]) there is near equality for spaces with large projection constants.

THEOREM 2. Let $0 \le \varepsilon < (2n)^{-1}$. If dim E = n and $\lambda(E) \ge (1-\varepsilon) n^{1/2}$, then

$$\pi_1(E) \leq n^{1/2} [1 + 2\sqrt{2n\varepsilon}(1 - \sqrt{2n\varepsilon})^{-1}]$$

Proof of Theorem 2. By trace duality there is a $u \in L(E)$ with $\lambda(E) = tr(u)/\pi_1(u)$. Scaling if necessary assume $\pi_2(u) = n^{1/2}$, so that

$$\operatorname{tr}(u) \ge \pi_1(u)(1-\varepsilon) \ n^{1/2} \ge n(1-\varepsilon). \tag{1}$$

Since $\pi_2(1_E) = n^{1/2}$,

$$\operatorname{tr}(u) \leq i_1(u) \leq \pi_2(1_E) \, \pi_2(u) = n$$

which with (1) yields

$$\pi_1(u) \leq n^{1/2} (1-\varepsilon)^{-1}.$$
 (2)

It remains to estimate $\pi_1(1_E - u)$.

By Pietsch's theorem [5, 17.3], *u* has a factorization $u = \beta \alpha$ for some maps $\alpha: E \to l_2^n$ and $\beta: l_2^n \to E$ which satisfy $\pi_2(\alpha) ||\beta|| \le \pi_2(u) = n^{1/2}$. Write $H = l_2^n$ and $w = \alpha\beta \in L(H)$. Note that

$$\pi_2(w) \le \pi_2(\alpha) \|\beta\| = n^{1/2}$$
 and $\operatorname{tr}(w) = \operatorname{tr}(u)$

The 2-summing and Hilbert-Schmidt norm coincide on L(H), so using (1) and the last two estimates,

$$\pi_{2}(1_{H} - w)^{2} = \operatorname{tr}(1_{H} - w)(1_{H} - w)^{*}$$

= $n - 2 \operatorname{tr}(w) + \operatorname{tr}(ww^{*})$
 $\leq n - 2 \operatorname{tr}(u) + \pi_{2}(w) \pi_{2}(w^{*})$
= $2n - 2 \operatorname{tr}(u) \leq 2n\varepsilon$.

This shows both

$$\pi_2(1_H - w) \leq (2n\varepsilon)^{1/2}$$
 and $||w^{-1}|| \leq [1 - \sqrt{2n\varepsilon}]^{-1}$.

Since $1_E - u = \beta(1_H - w) w^{-1} \alpha$, the last two inequalities show

$$\pi_1(1_E - u) \leq \pi_2(\beta(1_H - w)) \pi_2(\omega^{-1}\alpha)$$
$$\leq \pi_2(\alpha) \|\beta\| \pi_2(1_H - w) \|w^{-1}\|$$
$$\leq n^{1/2}(2n\varepsilon)^{1/2} [1 - \sqrt{2n\varepsilon}]^{-1}.$$

This last inequality, (2) and the triangle inequality for π_1 -norm establish the theorem.

Proof of Theorem 1. For *n* fixed the set \mathcal{M}_n of all *n*-dimensional spaces is compact under the metric log d(E, F), and λ is continuous on \mathcal{M}_n because of the inequality $\lambda(E) \leq \lambda(F) d(E, F)$. Taking into account the Kadec-Snobar Theorem $\lambda(E) \leq n^{1/2}$, we need only show that $\lambda(E) = n^{1/2}$ is impossible for $n \geq 2$. Assume to the contrary that $\lambda(E) = n^{1/2}$ for some E; by Theorem 1 $\pi_1(E) = n^{1/2}$ and we will show this forces n = 1.

Assume $E \subset C(S)$ isometrically for S compact Hausdorff. Since $\pi_1(E) = n^{1/2}$, Pietsch's integral representation theorem [5] gives a

330

probability measure μ on S satisfying $||x|| \leq n^{1/2}\mu(|x|)$, all $x \in E$. Write $v: E \to L_{\infty}(\mu)$ for the natural map, so v is 1-1. Write $\phi_{p,q}: L_p(\mu) \to L_q(\mu)$ for inclusion, $1 \leq q . A standard argument from the integral representation produces an operator <math>u: L_1(\mu) \to L_{\infty}(\mu)$ with $||u|| \leq n^{1/2}$ and $v = u\phi_{\infty,1}v$. The claim now is that $w_1 = u\phi_{\infty,1}$ is a rank n projection on $L_{\infty}(\mu)$. To see this write $H = L_2(\mu)$ and let $w \in L(H)$ be $w = \phi_{\infty,2}u\phi_{2,1}$. Then

$$\pi_2(w^*) = \pi_2(w) \leqslant \pi_2(\phi_{\infty,2}) \|u\| \leqslant n^{1/2}.$$

The subspace $F = \phi_{\infty,2}v(E) \subset H$ has dimension *n* because *v* is 1-to-1 and $w \mid F = 1_F$, so $|\lambda_i(w)| \ge 1$ for $1 \le i \le n$. Weyl's Inequalities show

$$n \leq \sum_{i \leq n} |\lambda_i(w)|^2 \leq \sum_{i \leq n} \lambda_i(w^*w)$$
$$\leq \sum_{i \geq 1} \lambda_i(w^*w) \leq \pi_2(w^*) \pi_2(w) = n$$

which implies that $\lambda_i(w^*w) = 1$ for $1 \le i \le n$ and $\lambda_i(w^*w) = 0$ for i > n. The map w has polar decomposition $w = g(w^*w)^{1/2}$ for some partial isometry g. Hence both w and $w_1 = u\phi_{\infty,1}$ have rank at most n. But since v(E) is an *n*-dimensional subspace of $L_{\infty}(\mu)$ and $w_1 | v(E) =$ identity, the claim is proven.

For w_1 a finite rank operator on $L_{\infty}(\mu)$, the spectral trace coincides with the trace of w_1 as a nuclear map, and the nuclear and integral norms of w_1 coincide too. Thus

$$n = \operatorname{tr}(w_1) \leq i_1(w_1) \leq i_1(\phi_{\infty,1}) ||u|| \leq n^{1/2}.$$

EXAMPLES. The spaces with the largest known projection constants and smallest known π_1 -norms were constructed in [3]. For *n* a prime the subspace X_n of $l_x^{n^2}$ spanned by

$$x_j = \{ \exp[2\pi i (s_1 j + s_2 j^2) n^{-1} \}_{1 \le s_1, s_2 \le n}, \qquad 1 \le j \le n,$$

has projection constant

$$\lambda(X_n) = n^{1/2} [1 - n^{-1} + n^{-3/2}].$$

By the results of [3] there is a canonical projection $u: l_{\infty}^{n^2} \to X_n$ with $||u|| = \lambda(X_n)$ for which $w = u - (n^{-1} - n^{-3/2}) 1$ satisfies $i_1(w) = n^{1/2}$. This yields

$$\pi_1(w \mid X_n) \leq \pi_1(w) = i_1(w) = n^{1/2}.$$

However, $w \mid X_n = [1 - n^{-1} + n^{-3/2}] 1_{X_n}$ so that

$$[1 - n^{-1} + n^{-3/2}] \pi_1(X_n) = \pi_1(w \mid X_n) \leq n^{1/2}.$$

Thus

$$\pi_1(X_n) = n^{1/2} [1 - n^{-1} + n^{-3/2}]^{-1} \leq n^{1/2} [1 + n^{-1}]$$

and

$$\lambda(X_n) \, \pi_1(X_n) = n.$$

In the real case there are spaces X_n with at least $\pi_1(X_n) \leq n^{1/2} + 1$.

It is not clear whether there exist spaces E satisfying the hypothesis of Theorem 2. However, if one could show that $\pi_1(E) \ge n^{1/2} + \delta_n$ always holds for suitable δ_n , Theorem 2 would establish Theorem 1 for the associated (computable) ε_n .

REFERENCES

- 1. Y. GORDON AND D. J. H. GARLING, Relations between some constants associated with finite dimensional Banach spaces, *Israel J. Math.* 9 (1971), 346–361.
- 2. M. I. KADEC M. G. SNOBAR, Certain functionals on the Minkowski compactum Math. Notes 10 (1971), 694-696. [Russian]
- 3. H. KÖNIG, Spaces with large projection constant, Israel J. Math. 50 (1985), 181-188.
- 4. J. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach Spaces I," Springer-Verlag, Berlin, 1977.
- 5. A. PIETSCH, "Operator Ideals," North-Holland, Amsterdam, 1980.
- H. WEYL, Inequalities between two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408-411.

332