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Abstract

The main result of this article shows that all character values of commutative quasi-thin schemes are
cyclotomic algebraic integers. In particular, all of the eigenvalues of the adjacency matrices corresponding
to relations in these association schemes are cyclotomic algebraic integers.
Crown Copyright © 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

A well-known question in the book by Bannai and Ito [2, p. 123] asks whether or not the
character values of commutative association schemes have to be cyclotomic algebraic integers;
that is, elements of Z(ζn), where ζn is a primitive complexnth root of unity for some positive integer
n. Even among the noncommutative association schemes (homogeneous coherent configurations),
the authors are not aware of an example of a relation in a finite association scheme for which the
eigenvalues of its adjacency matrix are not cyclotomic algebraic integers.

This cyclotomic character value property is known to hold for several classes of association
schemes, including thin schemes (via the character theory of finite groups), Cayley schemes
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[2, Theorem 7.3(iii)], P - and Q-polynomial schemes (for which the character values are rational)
[2, Section 3.7], and commutative Schurian schemes via the corresponding result for Hecke
algebras [3, (11.24)]. A result of Munemasa shows that commutative schemes whose Krein
parameters are all rational have cyclotomic character values [8]. From Munemasa’s arguments,
it can also be observed that this will be the case as long as the field obtained by adjoining the
Krein parameters for the scheme to Q is a cyclic Galois extension of Q. On the other hand, the
adjacency matrix of a relation in an association scheme is also the adjacency matrix of a regular
digraph, and a result of Godsil shows that any algebraic integer can occur as the eigenvalue of a
regular digraph [4]. So there is still a huge gap in understanding that remains to be filled.

The next natural situation to consider is the case of quasi-thin association schemes, those for
which the valency ng of any basis relation g is at most 2. It is known that quasi-thin association
schemes (not necessarily commutative) in which each basis relation g satisfies ng∗g /= 2 are always
Schurian (see [10, Theorem 6.4.4]). However, for arbitrary quasi-thin association schemes the
problem is still open. In this article we will show that commutative quasi-thin schemes have the
cyclotomic character value property.

2. Background

Here we will give a brief introduction to the basic definitions and notation in the theory of
association schemes that we will use, all of which the reader can find in [9] or [10].

Let (X, G) be an association scheme, with X an ordered index set of size n and G = {1X =
g0, g1, . . . , gd} be the set of scheme relations on the set X. Let Ai be the n × n adjacency matrix
for the corresponding scheme relation gi . Each Ai is an n × n (0,1)-matrix for which the number
of 1’s in each row and column is a fixed positive integer ngi

. This number is called the valency of
the scheme relation gi because it is the valency of the regular digraph whose adjacency matrix is
precisely Ai . An association scheme is called quasi-thin if ngi

� 2 for all i = 0, 1, . . . , d.
It follows from (and in fact it is equivalent to) the definition of a finite association scheme that

the set of n × n matrices B = {I = A0, A1, . . . , Ad} satisfies the following conditions:

(1) the transpose map restricts to a one-to-one correspondence from B to itself;
(2) the sum of the elements of B is the n × n matrix J with every entry equal to 1;
(3) B is a basis for a (d + 1)-dimensional semisimple subalgebra of Mn(C) with nonnegative

integer structure constants.

The subalgebra of Mn(C) defined by the span of B is called the complex adjacency algebra (or
Bose-Mesner algebra) of the association scheme (X, G), and is denoted by CG. If the complex ad-
jacency algebra CG is commutative, then the association scheme (X, G) is said to be commutative.

We are interested in the values that the irreducible characters of the complex adjacency algebra
take on elements of the defining basisB. These are known as the character values of the association
scheme (X, G). The character values of a commutative scheme are precisely the eigenvalues of
the adjacency matrices of the scheme.

A subset H of the set G of relations of the association scheme (X, G) is said to be a closed subset
of the scheme if, for every pair gi, gj ∈ H , the product AiAj of the corresponding adjacency ma-
trices can be written as a linear combination of the adjacency matrices of relations belonging to H .

Remark 2.1. Let (X, G) be an association scheme with |X| = n. Suppose A is an adjacency
matrix for a relation g in G with valency ng . Then by arguing exactly as in the proof of Birkhoff’s
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theorem in [7, (8.7.1)], we can show that A is the sum of exactly ng distinct permutation matrices.
The list of permutation matrices appearing in such a sum does not need to be unique.

Lemma 2.2. Let (X, G) be an association scheme with |X| = n. Let g ∈ G be a symmetric
relation of valency 2. Then every eigenvalue of its adjacency matrix A is of the form ζ + ζ−1 for
some mth root of unity ζ with m ∈ {1, . . . , n} \ {2, n − 2, n − 1}. In particular, every eigenvalue
of A is a real cyclotomic algebraic integer.

Proof. This follows easily from the fact that the matrix A is the adjacency matrix of a 2-regular
graph on n vertices that is the union of disjoint cycles. Since the adjacency matrix of a 2-regular
graph containing 2-cycles will have some entries equal to 2, the cycles must have length at least 3.
Therefore, m cannot be 2. Furthermore, the graph cannot contain an (n − 1)-cycle or an (n − 2)-
cycle, because either of these situations would prevent it from being regular. Therefore, m can be
restricted as indicated. �

Remark 2.3. It is in fact the case that the m of the previous lemma is always a divisor of n. This
observation is not needed for the remainder of the paper, but we will previde a short argument
here. We can assume m � 3. By Remark 2.1 there is a permutation σ of order m such that the
adjacency matrix A can be written as Pσ + Pσ−1 . The permutation σ can be decomposed as
the product of disjoint cycles τj , j = 1, . . . , �. Since A /= I , σ is fixed-point-free, and so the
subsets Xj = {x ∈ X: τj (x) /= x}, j = 1, . . . , �, form a partition of X. It suffices to show that
|Xj | = m for each j = 1, . . . , �. To do this, let E be the equivalence relation corresponding to
this partition, which means X/E = {X1, . . . , X�} and E = ⋃�

j=1(Xj × Xj). It is easy to see

that (Ak)x,y = 1 if and only if σk(x) = y or σk(y) = x for all k = 0, 1, . . . , m − 1. For h ∈ G,
let A(h) be the adjacency matrix of h. Define H to be the subset of G consisting of all h ∈ G

for which A(h) appears in the decomposition of Ak for some integer k = 0, . . . , m − 1. Then
E = ⋃

h∈H h. Considering E as a graph, its adjacency matrix is A(E) = ∑
h∈H A(h). On the

other hand, A(E) = ∑
Xj ∈X/E JXj

, where JXj
is the matrix with entries equal to 1 in the positions

(x, y) when x, y ∈ Xj , and all other entries equal to 0. Therefore, A(E)2 = ∑
Xj ∈X/E |Xj |JXj

.

It follows that the coefficient of A(g0) = I in A(E)2 is equal to |Xj | for each j = 1, . . . , �. This
shows that |Xj | does not depend on j , and thus each τj occurring in the decomposition of σ has
the same order, which must be m.

The association scheme for which the elements of B are defined by

8∑
i=0

iAi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 6 7 7 8 8
1 0 4 5 2 3 6 6 7 7 8 8
3 5 0 2 1 4 7 7 8 8 6 6
2 4 3 0 5 1 8 8 6 6 7 7
5 3 1 4 0 2 7 7 8 8 6 6
4 2 5 1 3 0 8 8 6 6 7 7
6 6 7 8 7 8 0 1 2 4 3 5
6 6 7 8 7 8 1 0 4 2 5 3
7 7 8 6 8 6 3 5 0 1 2 4
7 7 8 6 8 6 5 3 1 0 4 2
8 8 6 7 6 7 2 4 3 5 0 1
8 8 6 7 6 7 4 2 5 3 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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provides an example of a nonsymmetric association scheme of rank 9 and order 12 which is
quasi-thin and each basis relation of valency 2 is symmetric. (This example is [6, as12, No.
53].) Therefore, a quasi-thin association scheme satisfying the conditions of the next result is not
necessary symmetric.

Theorem 2.4. Let (X, G) be a quasi-thin association scheme. Suppose that each relation with
valency 2 is symmetric. Then all character values of (X, G) are cyclotomic algebraic integers.

Proof. This is an easy consequence of Lemma 2.2. �

3. Commutative quasi-thin schemes

Let (X, G) be a commutative association scheme. Then (CG,B) is an integral table algebra
with respect to the algebra automorphism A → A

t
, where A

t
is the conjugate transpose of A as a

matrix. (For the definition and the basic properties of integral table algebras used here, see [1].)
We will need some basic properties of (CG,B) that come from its natural integral table algebra
structure. First of all, the map Ai �→ ni , 0 � i � d can be extended to an algebra homomorphism
f :A → C satisfying f (Ai) = f (Ai

t
) ∈ R for 0 � i � d. Second, there is a Hermitian form [ , ]

on CG given by

[D, E] := trace(DE
t
)/n

for all D, E ∈ CG. Finally, for all basis elements A, B, C ∈ B, this form satisfies

[AB, C] = [A, CB t] = [B, AtC] and [A, B] = δA,Bf (A),

where δA,B is the Kronecker delta.
Since CG is a commutative semisimple subalgebra of Mn(C) with basis B, all of the ma-

trices in CG can be simultaneously diagonalized. Therefore, there is a basis of Cn for which
all vectors in this basis are eigenvectors for all elements of B at the same time. Fix one ele-
ment v of this basis. If A ∈ B, then let λA be the eigenvalue of A corresponding to v. If we
can show that λA lies in a cyclotomic extension of Q, then it will follow that every eigen-
value of A is a cyclotomic algebraic integer. We use this argument in the proof of our main
theorem.

Theorem 3.1. Every character value of a commutative quasi-thin scheme is a cyclotomic alge-
braic integer.

Proof. Let (X, G) be a finite commutative quasi-thin scheme, and let B be the set of adjacency
matrices for the relations in G.

By [5, Lemma 3.2], the possibilities for the product of two adjacency matrices A, B in B of
degree (or valency) 2 are:

• 2C + 2D for some C, D ∈ B with f (C) = f (D) = 1;
• 2C for some C ∈ B with f (C) = 2;
• 2C + D for some C, D ∈ B with f (C) = 1 and f (D) = 2;
• C + D for some C, D ∈ B with f (C) = f (D) = 2.
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By Lemma 2.2, we may assume A ∈ B is a nonsymmetric element of valency 2. Thus by the
argument in Remark 2.1 there exists two permutation matrices Pτ and Pγ such that A = Pτ + Pγ .
On the other hand, by the above possibilities for the product of A and At it follows that either

(a) AAt = 2I + 2B for some basis element B of degree 1, or
(b) AAt = 2I + B for some basis element B of degree 2.

Suppose that (a) holds. Then there is a permutation ε such that B = Pε , since f (B) = 1. Since
our algebra is commutative, from (a) and the fact that B is symmetric we get

Pτγ −1 + Pγτ−1 = 2Pε = Pγ −1τ + Pτ−1γ ,

which implies that ε = τγ −1 = γ τ−1 = γ −1τ = τ−1γ . It follows that γ τ = τγ . Therefore, A

can be written as the sum of two commuting permutation matrices, and so all of its eigenvalues
are cyclotomic, as desired.

We now may assume that (b) holds. Since B is symmetric, we have that [AB, A] = [B, AAt] =
2, which implies that the coefficient of A in the decomposition of AB is 1. So we have two
possibilities:

(1) AB = A + 2C for some basis element C of degree 1, or
(2) AB = A + C for some basis element C of degree 2, with C /= A.

If (1) occurs, then BC = A, because f (C) = 1 and [BC, A] = [AB, C] = 2. It follows that
λA = λBλC . Since B is symmetric, it follows from Lemma 2.2 that λB is cyclotomic. Since C is
a permutation matrix, λC is a root of unity. Therefore, λA is cyclotomic also, and we are done in
this case.

So now we may assume that (b) and (2) occur. Since A /= At there are two non-identity basis
elements H and K such that one of the following holds:

(i) A2 = 2H + 2K if f (H) = f (K) = 1,
(ii) A2 = H + K if f (H) = f (K) = 2, or

(iii) A2 = 2H + K if f (H) = 1, f (K) = 2.

If (i) occurs, it follows that AtH = A and AtK = A. These facts along with (2) yield

2A + AB = 3A + C = A(AAt) = A2At = 2AtH + 2A2K = 4A,

which forces A = C, a contradiction. Hence (i) cannot occur.
Now suppose that (ii) occurs. Then

AtH + AtK = A2At = A(AAt) = 2A + AB = 3A + C.

By interchanging H and K if necessary, we can assume that AtH = 2A and AtK = A + C. If
H /= K , then

2 = [H, H ] = [H, H + K] = [H, A2] = [AtH, A] = [2A, A] = 4

a contradiction. If H = K , then

2HAt = A2At = A(AAt) = 3A + C,

which is also impossible since the coefficient of C in 2HAt cannot be 1. Therefore, (ii) cannot
occur either.
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So we have that (iii) holds. It follows that

2HAt + KAt = A2At = A(AAt) = 2A + AB = 3A + C,

which implies that HAt = A and KAt = A + C. Therefore

2H + K = A2 = A(AtH) = (AAt)H = 2H + BH

and so BH = K . It follows from this that

(λA)2 = λH (2 + λB).

Since λH is a root of unity, it suffices to show that every eigenvalue of 2I + B is cyclotomic. By
Lemma 2.2, every eigenvalue of B has the form ζ + ζ−1, for some root of unity ζ . Therefore, the
eigenvalues of 2I + B are of the form

2 + ζ + ζ−1 = ζ−1(ζ 2 + 2ζ + 1) = ζ−1(ζ + 1)2.

The theorem now follows from the observation that the square root of every eigenvalue of 2I + B

is cyclotomic. �

Remark 3.2. Let (X, G) be a commutative scheme and let B be the set of adjacency matrices
for relations in G. Suppose H is a closed subset of G, and let B′ be the subset of B consisting of
the adjacency matrices for the elements of H . If CH = spanC(B′), then we have that (CH,B′)
is also an integral table algebra with the same degree map as the integral table algebra (CG,B).

Note that the above proof of Theorem 3.1 does not require the assumption that
∑d

i=0 Ai = J .
Therefore, if H is a closed subset of G consisting entirely of relations of valency at most 2, then it
follows from proof of Theorem 3.1 that all eigenvalues of elements of B′ are cyclotomic algebraic
integers. The last result demonstrates the applicability of the main theorem to other classes of
association schemes.

Theorem 3.3. Let (X, G) be a commutative scheme. Suppose that

(a) there exists an integer k > 4 such that for all g ∈ G, ng ∈ {1, 2, 3, k},
(b) there is at most one relation in G of valency 3,

(c) there is at most one relation in G of valency k.

Then every character value of (X, G) is a cyclotomic algebraic integer.

Proof. Let B be the set of adjacency matrices for relations in G. Since we are assuming k > 4,
it follows that the set H of all relations in G which have valency 1 or 2 forms a closed subset of
G. Let B′ be the set of adjacency matrices corresponding to relations in H . Then (CH,B′) is an
integral table algebra for which each basis element has degree 1 or 2. Now by Remark 3.2, all of
the eigenvalues of every element of B′ are cyclotomic algebraic integers.

Suppose A is a unique element of B of degree 3. (Note that the theorem does not require
such a basis element to exist.) Let m be the multiplicity of some C ∈ B of degree 2 in the
decomposition of A2. Then 2m = [A2, C] = [AC, A] = 3l where l is the multiplicity of A in
AC. This shows that whenever m /= 0 occurs, we have m = 3 and l = 2, and so AC = A. On the
other hand, suppose that m′ is the multiplicity of some D ∈ B of degree 1 in A2. If m′ /= 0, then
m′ = [A2, D] = [AD, A] = 3, and so AD = A.
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This means that there are three possibilities for A2: either

(a) A2 = 3.1 + 2A; or
(b) A2 = 3.1 + 3D + A, where D has degree 1; or
(c) A2 = 3.1 + 3C, where C has degree 2.

If case (a) holds, then A satisfies in the polynomial g(x) = x2 − 2x − 3. Therefore, all eigenvalues
of A are in the set {−1, 3}, as desired. If case (b) holds, then A3 = 3A + 3DA + A2 = 6A + A2,
so the matrix A satisfies in the polynomial g(x) = x(x − 3)(x + 2). Hence all eigenvalues of A

are in the set {−2, 0, 3} and we are done. Finally, if case (c) occurs, then A3 = 3A + 3CA = 6A,
so A satisfies in the polynomial g(x) = x(x2 − 6) and so all of its eigenvalues are in the set
{0, ±√

6}.
Now let B be a unique element of B of degree k, assuming such a basis element exists.

To complete the proof of the theorem we need only to show that all eigenvalues of B are in a
cyclotomic field. But this is a direct consequence of the equality

B = J −
⎛
⎝ ∑

C∈B−{B}
C

⎞
⎠ . �
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