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Abstract

The fixed-point iteration is a simple method for finding the maximal Hermitian positive definite solutions
of the matrix equations X ± A∗X−1A = I (the plus/minus equations). The convergence of this method may
be very slow if the initial matrix is not chosen carefully. A strategy for choosing better initial matrices has
been recently proposed by Ivanov et al. They proved that this strategy can improve the convergence in
general and observed from numerical experiments that dramatic improvement happens for the plus equation
with some matrices A. It turns out that the matrices A are normal for those examples. In this note we prove a
result that explains the dramatic improvement in convergence for normal (and thus nearly normal) matrices
for the plus equation. A similar result is also proved for the minus equation.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the matrix equations

X + A∗X−1A = Q (1)
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and

X − A∗X−1A = Q, (2)

where Q ∈ Cn×n is Hermitian positive definite. We may assume Q = I without loss of gener-
ality. A numerically efficient way for the reduction is as follows (assuming Q is not ill-condi-
tioned). Let Q = LL∗ be the Cholesky factorization and set X̃ = L−1XL−∗, Ã = L−1AL−∗.
Then (1) and (2) become X̃ ± Ã∗X̃−1Ã = I . So our discussions will be mostly about the equa-
tions

X + A∗X−1A = I (3)

and

X − A∗X−1A = I. (4)

Eq. (1) has been studied in a number of papers [1,4,5,8,10,13,14,16,18]. Several applications
have been mentioned in [1]. More recently the equation has been used to solve a special quadratic
eigenvalue problem efficiently [9]. Eq. (2) has been studied is several papers [2,6,10,13,16]; some
applications have been mentioned in [6,11].

In this note we use the usual partial order for Hermitian matrices, that is, we write X > Y(X �
Y ) if X − Y is positive definite (semidefinite). We use ‖ · ‖ for the spectral norm, and ρ(·) for
the spectral radius.

A necessary and sufficient condition for the existence of positive definite solutions of (1) has
been given in [5]. It is also proved in [5] that if (1) has a positive definite solution, then it has
a maximum positive definite solution XL, which means that XL � X for any positive definite
solution X. Moreover, ρ(X−1

L A) � 1. The maximal solution is the required solution in applica-
tions. It is shown in [6] that (2) has a unique positive definite solution XL, and ρ(X−1

L A) < 1.
This solution is the one of practical interest.

The following fixed-point iteration for (1) is studied in [5].

Algorithm 1

X0 = Q,

Xk = Q − A∗X−1
k−1A, k = 1, 2, . . .

It is shown in [5] that the sequence generated by this algorithm is monotonically decreasing and
converges to XL. The rate of convergence can be determined by computing the Fréchet derivative
of the iterative function f (X) = Q − A∗X−1A, and we have

lim sup
k→∞

k
√‖Xk − XL‖ � (ρ(X−1

L A))2 (5)

(see [10] for details).
For the minus equation (2) the following fixed-point iteration is studied in [6].

Algorithm 2

X0 = Q,

Xk = Q + A∗X−1
k−1A, k = 1, 2, . . .

It is shown in [6] that the sequence produced by Algorithm 2 converges to XL. Moreover, {X2k} is
an increasing sequence and {X2k+1} is a decreasing sequence. The sequence {Xk} still converges
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to XL if X0 = Q in Algorithm 2 is replaced with any X0 > 0, see [6,17, Theorem 3.3], and we
have

lim sup
k→∞

k
√‖Xk − XL‖ � (ρ(X−1

L A))2. (6)

So the convergence of Algorithms 1 and 2 is fast if ρ(X−1
L A) is sufficiently small. On the other

hand, the convergence is usually very slow when X−1
L A has eigenvalues on or near the unit circle,

since equality usually holds in (5) and (6).
Meini [16] developed algorithms for (1) and (2) based on cyclic reduction; see [14] for a

different derivation. The convergence of the algorithms is quadratic when ρ(X−1
L A) < 1. For the

plus equation, ρ(X−1
L A) = 1 is possible. In that case, the convergence of Meini’s method is shown

in [9], and it is shown in [8] that the convergence is at least linear with rate 1
2 if all eigenvalues

of X−1
L A on the unit circle are semi-simple. It is shown recently in [3] that the convergence is at

least linear with rate 1
2 in all cases.

In general, Meini’s method is very efficient for computing XL for Eqs. (1) and (2). When the
matrix Q is ill-conditioned in (2), Meini’s method is not suitable since it uses Q−1 in the first
step. In this case, we may use Algorithm 2 with X0 = I instead to compute XL if ρ(X−1

L A) is
not too close to 1. The method usually works well if XL itself is not ill-conditioned. If ρ(X−1

L A)

is very close to 1, then the convergence of the fixed-point iteration is usually very slow and the
method proposed in [2] may be used.

Meini’s method requires 19
3 n3 flops each iteration, while the fixed-point iteration requires

7
3n3. So the fixed-point iteration may be more efficient if ρ(X−1

L A) is small and the required
accuracy for XL is not very high. It is of interest to devise an inexpensive strategy for choosing
the initial guess X0 such that the fixed-point iteration has faster convergence. Such an attempt is
made in [13]. The main purpose of this note is to show that, while the strategy in [13] improves
the convergence in general, significant improvement happens only when A is normal or nearly
normal.

2. Preliminaries

We start with a review of the main results in [13].
For the plus equation (3), it is assumed in [13] that A ∈ Cn×n satisfies ‖A‖ � 1

2 . This condition
on A is a sufficient condition for the existence of positive definite solutions of (3), and it is a
necessary and sufficient condition when A is a normal matrix [4]. When Algorithm 1 is applied
to (3), the initial matrix is X0 = I . It is shown in [13] that the convergence of the fixed-point
iteration can be improved by using other initial matrices. The algorithm proposed in [13] is the
following.

Algorithm 3

X0 =γ I, (7)

Xk =I − A∗X−1
k−1A, k = 1, 2, . . . , (8)

where good choices of the parameter γ are suggested by the following result (see Theorems 2.4
and 2.5 in [13]).
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Theorem 1. Let A have singular values σ1, σ2, . . . , σn with 1
2 � σ1 � σ2 � · · · � σn � 0, and

assume the numbers α, β ∈
[

1
2 , 1

]
are such that α(1 − α) = σ 2

n and β(1 − β) = σ 2
1 . Then

(i) For γ ∈ [α, 1], the sequence {Xk} in Algorithm 3 is monotonically decreasing and converges
to the maximum positive definite solution XL of (3), and the fastest convergence is achieved
for γ = α.

(ii) For γ ∈
[

1
2 , β

]
, the sequence {Xk} in Algorithm 3 is monotonically increasing and con-

verges to XL, and the fastest convergence is achieved for γ = β.

(iii) If γ ∈ (β, α) and σ1 < 1
2 , then the sequence {Xk} in Algorithm 3 converges to XL.

Based on Theorem 1 (i) and (ii), it is recommended in [13] that γ = α or γ = β be used in
Algorithm 3. A few remarks are now in order. First, the best performance of Algorithm 3 may
be achieved for some γ ∈ (β, α) in special cases. This will be illustrated by one example in
Section 5. In general, however, the use of γ = α or γ = β may still be recommended. Now the
question is which one would be better. The answer is that we should use γ = β for Algorithm 3.
There are several reasons for this recommendation. First, when A is singular we have α = 1, so
Algorithm 3 with γ = α is the same as Algorithm 1. When A is nonsingular we have α < 1 and
Theorem 1 (i) says the fastest convergence is achieved for γ = α when γ ∈ [α, 1] (in the sense
that X(γ )

k > X
(α)
k � XL for all k and all γ ∈ (α, 1]). However, the asymptotic rate of convergence

may remain the same and the improvement in convergence may not be significant, even when
the matrix A is normal. This will be illustrated by examples in Section 5. On the other hand,
the use of γ = β has a distinct advantage. We will show in Section 3 that linear convergence of
Algorithm 3 is guaranteed for γ = β even when ρ(X−1

L A) = 1, if the matrix A is normal. For all
examples in [13] where dramatic improvement of convergence happens with γ = β, the matrices
A are normal. So our main result in Section 3 will reveal the underlying reason for the dramatic
improvement. When A is nearly normal, this dramatic improvement of convergence will be more
or less maintained, as shown by an example in Section 5. When A is a general non-normal matrix,
however, the improvement offered by γ = β is not expected to be very significant despite the
conclusion in Theorem 1(ii).

For the minus equation (4) the following fixed-point iteration is studied in [13].

Algorithm 4

X0 = γ I,

Xk = I + A∗X−1
k−1A, k = 1, 2, . . .

It is shown in [13] that the convergence of Algorithm 4 will be faster if one uses special values
for γ , as compared to the conventional choice γ = 1. Some good choices of the parameter γ are
determined from singular values of A. Let A have singular values σ1 � σ1 � · · · � σn. Then one
may take γ = α or γ = β, where α is the real number with

α(α − 1) = σ 2
n , α � 1 (9)

and β is the real number with

β(β − 1) = σ 2
1 , β � 1. (10)

To allow comparison, we denote the sequence {Xk} from Algorithm 4 by {X(γ )

k }, and compare

the three sequences {X(1)
k }, {X(α)

k }, {X(β)
k }.
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Proposition 2 [13, Theorems 3.4 and 3.5]. Let A be nonsingular. Then

(i) For each k � 0

‖X(α)
k − A∗(X(α)

k )−1A − I‖ < ‖X(1)
k − A∗(X(1)

k )−1A − I‖. (11)

(ii) If

σ 2
n (σ 2

n + 1) � σ 2
1 , (12)

then for each k � 0

‖X(β)
k − A∗(X(β)

k )−1A − I‖ < ‖X(1)
k − A∗(X(1)

k )−1A − I‖. (13)

When σn is small, the condition (12) is very restrictive. We will prove a result that is slightly
weaker than (13), but without any assumption on A.

Proposition 3. For each k � 0

‖X(β)

k+1 − A∗(X(β)

k+1)
−1A − I‖ � ‖X(1)

k − A∗(X(1)
k )−1A − I‖

and strict inequality holds when A is nonsingular.

Proof. The proof is a small modification of that of [13, Theorem 3.5]. Let

f (X) = I + A∗X−1A.

Then X
(β)

k+1 = f (X
(β)
k ) with X

(β)

0 = βI , and X
(1)
k+1 = f (X

(1)
k ) with X

(1)
0 = I . Since X

(β)

0 � X
(β)

1

by the choice of β, we have X
(β)

1 � X
(β)

2 . Since X
(β)

1 � X
(1)
0 , we have X

(β)

2 � X
(1)
1 . Thus

X
(1)
0 � X

(β)

1 � X
(β)

2 � X
(1)
1 .

Since f reverses the order, we have for each k � 1

X
(1)
2k−2 � X

(β)

2k−1 � X
(β)

2k � X
(1)
2k−1, X

(1)
2k � X

(β)

2k+1 � X
(β)

2k � X
(1)
2k−1.

It follows that ‖X(β)

k+1 − X
(β)

k+2‖ � ‖X(1)
k − X

(1)
k+1‖ for each k � 0. If A is nonsingular, we have

X
(β)

2k < X
(1)
2k−1 for each k � 1, and thus ‖X(β)

k+1 − X
(β)

k+2‖ < ‖X(1)
k − X

(1)
k+1‖ for each k � 0. �

We see from Propositions 2 and 3 that the convergence of {Xk} for γ = α, β should be no
worse than that for γ = 1. As for the plus equation, we recommend the use of γ = β, since we
can show that with this choice the convergence of Algorithm 4 is improved significantly when A

is a (nearly) normal matrix.

3. Convergence analysis for the normal case

In this section we assume that A is a normal matrix and that ‖A‖ � 1
2 for the plus equation. Even

though we have explicit formulas for the maximal solutions of (3) and (4) for normal matrices,
convergence analysis of Algorithms 3 and 4 with γ = β for normal matrices (where β is given in
Theorem 1 and (10), respectively) will help us to understand their rapid convergence for nearly
normal matrices, where the formulas are no longer valid.
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Since A ∈ Cn×n is a normal matrix, it is unitarily diagonalizable (see [12], for example). Let
U = [u1u2 . . . un] be a unitary matrix such that

U∗AU = � = diag(λ1, . . . , λn). (14)

So the vectors u1, . . . , un are orthonormal eigenvectors of A corresponding to its eigenvalues
λ1, . . . , λn. We assume that the eigenvalues are arranged such that

|λ1| = · · · = |λp−1| > |λp| � · · · � |λn|. (15)

3.1. The plus equation

For the plus equation (3) with a normal matrix A, Engwerda conjectured in [4] and Zhan and
Xie proved in [18] the formula for the maximal solution:

XL = 1

2

[
I + (I − 4A∗A)

1
2

]
. (16)

From (16) and (14), we get

XL = 1

2
U
[
I + (I − 4|�|2) 1

2

]
U∗, (17)

and then

X−1
L A = Udiag(η1, . . . , ηn)U

∗, (18)

where

ηi = 2λi

1 +√
1 − 4|λi |2

, i = 1, . . . , n. (19)

Thus, u1, . . . , un are orthonormal eigenvectors of X−1
L A corresponding to its eigenvalues

η1, . . . , ηn. In view of (15) and (19), we have

|η1| = · · · = |ηp−1| > |ηp| � · · · � |ηn|. (20)

To determine the rate of convergence for Algorithm 3, let

Ek = XL − Xk, k = 0, 1, . . . .

As in the proof of Theorem 2.3 in [10], for each k � 1 we have

Ek = (X−1
L A)∗Ek−1(X

−1
L A) + (X−1

L A)∗Ek−1X
−1
k−1Ek−1(X

−1
L A). (21)

Lemma 4. Let A in (3) be a normal matrix, and u1, . . . , un be the orthonormal eigenvectors of
A corresponding to its eigenvalues arranged as in (15). Then for Algorithm 3 with γ = β, where
β is defined in Theorem 1, we have

Ekui = 0, i = 1, . . . , p − 1, k = 0, 1, . . .

Proof. From (16) we get

E0 = XL − βI =
(

1

2
− β

)
I + 1

2
(I − 4A∗A)

1
2 .

Since β ∈
[

1
2 , 1

]
and β(1 − β) = σ 2

1 = |λ1|2, we have for i = 1, . . . , p − 1
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E0ui =
(

1

2
− β + 1

2

√
1 − 4|λ1|2

)
ui =

(
1

2
− β + 1

2

√
(1 − 2β)2

)
ui = 0.

Since X−1
L Aui = ηiui , it follows from (21) that Ekui = 0 for any k � 0. �

We can now prove our main result for the plus equation, which is similar in nature to Theorem 16
in [15].

Theorem 5. Let A in (3) be a normal matrix and η1, . . . , ηn be the eigenvalues of the matrix
X−1

L A, arranged as in (20). Then the rate of convergence of Algorithm 3 with γ = β is

r = lim sup
k→∞

k
√‖Ek‖ = |ηp|2.

Proof. As in [10], for any ε > 0 there exist a k0 such that for all k � k0

EkX
−1
k Ek � εEk. (22)

Combining (21) and (22) we have

0 � Ek � (1 + ε)k−k0((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0 .

Therefore,

r = lim sup
k→∞

k
√‖Ek‖

� lim sup
k→∞

k

√
‖(1 + ε)k−k0((X−1

L A)∗)k−k0Ek0(X
−1
L A)k−k0‖

= (1 + ε) lim sup
k→∞

k

√
max‖v‖2=1

‖((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0v‖2

= (1 + ε) lim sup
k→∞

k

√
‖((X−1

L A)∗)k−k0Ek0(X
−1
L A)k−k0v(k)‖2,

where ‖v(k)‖2 = 1. Write v(k) as a linear combination of the orthonormal vectors u1, . . . , un:
v(k) = ∑n

i=1 a
(k)
i ui with

∑n
i=1 |a(k)

i |2 = 1. Then

r � (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=1

‖((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0ui‖2.

Using (21), (8), and the fact X−1
L Aui = ηiui, i = 1, . . . , n, we can prove by induction that the

ui’s are eigenvectors of Ek and Xk for all k � 0. Let Ek0ui = biui , i = p, . . . , n. Then, applying
Lemma 4, we obtain

r �(1 + ε) lim sup
k→∞

k

√√√√ n∑
i=p

|bi‖ηi |2(k−k0)‖ui‖2

�(1 + ε) lim sup
k→∞

k

√√√√|ηp|2(k−k0)

n∑
i=p

|bi |

= (1 + ε)|ηp|2.
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Since ε is arbitrary, we have r � |ηp|2.
On the other hand, we have by (21)

Ek � (X−1
L A)∗Ek−1(X

−1
L A) � ((X−1

L A)∗)kE0(X
−1
L A)k.

Therefore,

r = lim sup
k→∞

k
√‖Ek‖

� lim sup
k→∞

k

√
‖((X−1

L A)∗)kE0(X
−1
L A)k‖

� lim sup
k→∞

k

√
‖((X−1

L A)∗)kE0(X
−1
L A)kup‖2

= lim sup
k→∞

k

√
|ηp|2k|cp|‖up‖2

= |ηp|2,

where we have used E0up = cpup for cp = 1
2 − β + 1

2

√
1 − 4|λp|2 > 0. Thus r = |ηp|2. �

For all three cases in Theorem 1, where A is not necessarily a normal matrix, we can show
as in [10] that the iterates produced by Algorithm 3 satisfy (5). Theorem 5 says that when A is
normal the rate of convergence of Algorithm 3 with γ = β is not determined by the square of
ρ(X−1

L A), but by the square of the next largest modulus for the eigenvalues of X−1
L A. This is the

underlying reason for the faster convergence. The improvement of convergence will be dramatic
(from sublinear to linear) if ρ(X−1

L A) = 1.

3.2. The minus equation

For the minus equation (4) with a normal matrix A, we know from (14) that the unique positive
definite solution XL is given by

XL = 1

2
U
[
I + (I + 4|�|2) 1

2

]
U∗. (23)

So

X−1
L A = Udiag(μ1, . . . , μn)U

∗, (24)

where

μi = 2λi

1 +√
1 + 4|λi |2

, i = 1, . . . , n. (25)

Note that

|μ1| = · · · = |μp−1| > |μp| � · · · � |μn|. (26)

Let

Ẽk = XL − Xk, k = 0, 1, . . . (27)

As in [10], for each k � 1 we have

Ẽk = −(X−1
L A)∗Ẽk−1(X

−1
L A) − (X−1

L A)∗Ẽk−1X
−1
k−1Ẽk−1(X

−1
L A). (28)
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Lemma 6. Let A in (4) be a normal matrix, and u1, . . . , un be the orthonormal eigenvectors of
A corresponding to its eigenvalues λ1, . . . , λn arranged as in (15). Then for Algorithm 4 with
γ = β, where β is given in (10), we have

Ẽkui = 0, i = 1, . . . , p − 1, k = 0, 1, . . .

Proof. For i = 1, . . . , p − 1, a direct computation shows Ẽ0ui = 0. Since X−1
L Aui = μiui , it

follows from (28) that Ẽkui = 0 for all k � 0. �

The following monotonicity properties will also be needed.

Lemma 7. Let A in (4) be a normal matrix and {Xk} be the sequence from Algorithm 4 with
γ = β. Then {X2k} is a decreasing sequence, and {X2k+1} is an increasing sequence.

Proof. We only need to show X0 � X2. Let A be factored as in (14). From X0 = βI , we get after
two iterations that

X2 = Udiag

(
β + σ 2

1 + βσ 2
1

β + σ 2
1

, . . . ,
β + σ 2

n + βσ 2
n

β + σ 2
n

)
U∗.

Since σ 2
1 � · · · � σ 2

n and σ 2
1 = β(β − 1), we have

X2 � Udiag

(
β + σ 2

1 + βσ 2
1

β + σ 2
1

, . . . ,
β + σ 2

1 + βσ 2
n

β + σ 2
n

)
U∗

= βUdiag

(
1 + β − 1 + σ 2

1

β + σ 2
1

, . . . ,
1 + β − 1 + σ 2

n

β + σ 2
n

)
U∗ = βI = X0.

This completes the proof. �

We note that X0 � X2 is not always true when X0 = βI and A is not a normal matrix.
We now prove our main result for the minus equation.

Theorem 8. Let A in (4) be a normal matrix, and μ1, . . . , μn be the eigenvalues of X−1
L A,

arranged as in (26). Then the rate of convergence of Algorithm 4 with γ = β is

r = lim sup
k→∞

k

√
‖Ẽk‖ = |μp|2.

Proof. By Lemma 7 we have

Ẽ2k+1 = XL − X2k+1 � 0, Ẽ2k = XL − X2k � 0.

As in [10], for any ε ∈ (0, 1) there exists a k0, such that for all k � k0

ẼkX
−1
k Ẽk � ε(−1)k+1Ẽk. (29)

Combining (28) and (29) we have for k > k0

0 � (−1)k+1Ẽk

= (X−1
L A)∗(−1)kẼk−1(X

−1
L A) + (−1)k(X−1

L A)∗Ẽk−1X
−1
k−1Ẽk−1(X

−1
L A)
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� (1 + ε)(X−1
L A)∗(−1)kẼk−1(X

−1
L A)

� (1 + ε)k−k0((X−1
L A)∗)k−k0(−1)k0+1Ẽk0(X

−1
L A)k−k0 .

Therefore,

r = lim sup
k→∞

k

√
‖Ẽk‖

� lim sup
k→∞

k

√
‖(1 + ε)k−k0((X−1

L A)∗)k−k0Ẽk0(X
−1
L A)k−k0‖

= (1 + ε) lim sup
k→∞

k

√
‖((X−1

L A)∗)k−k0Ẽk0(X
−1
L A)k−k0v(k)‖2,

where ‖v(k)‖2 = 1. Write v(k) = ∑n
i=1 a

(k)
i ui with

∑n
i=1 |a(k)

i |2 = 1. Then

r � (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=1

‖((X−1
L A)∗)k−k0Ẽk0(X

−1
L A)k−k0ui‖2.

As for the plus equation, we can prove by induction that the ui’s are eigenvectors of Ẽk and Xk

for all k � 0. Applying Lemma 6 and setting Ẽk0ui = diui , i = p, . . . , n, we obtain

r � (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=p

|di‖μi |2(k−k0)‖ui‖2 � (1 + ε)|μp|2.

Since ε is arbitrary, we have r � |μp|2.
On the other hand, by (28) and (29) we have for k > k0

(−1)k+1Ẽk � (1 − ε)(X−1
L A)∗(−1)kẼk−1(X

−1
L A)

� (1 − ε)k−k0((X−1
L A)∗)k−k0(−1)k0+1Ẽk0(X

−1
L A)k−k0

� 0.

Therefore,

r = lim sup
k→∞

k

√
‖Ẽk‖

� lim sup
k→∞

k

√
(1 − ε)k−k0‖((X−1

L A)∗)k−k0Ẽ0(X
−1
L A)k−k0‖

� (1 − ε) lim sup
k→∞

k

√
‖((X−1

L A)∗)k−k0Ẽ0(X
−1
L A)k−k0up‖2

� (1 − ε) lim sup
k→∞

k

√
|μp|2(k−k0)|cp|‖up‖2

= (1 − ε)|μp|2,

where we have used Ẽ0up = cpup for cp = 1
2 − β + 1

2

√
1 + 4|λp|2 < 0. Since ε is arbitrary, we

obtain r � |μp|2. Thus r = |μp|2. �
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We have shown in Theorem 8 that when A is normal the rate of convergence of Algorithm 4
with γ = β is not determined by the square of ρ(X−1

L A), but is determined by the square of the
next largest modulus for the eigenvalues of X−1

L A. This is the underlying reason for the faster
convergence. However, we cannot expect the improvement of convergence to be as dramatic as
for the plus equation, because for the minus equation we always have ρ(X−1

L A) < 1.

4. Convergence improvement of the fixed-point iteration for the matrix equation X +
BX−1A = C

We now consider the more general equation

X + BX−1A = C, (30)

where A, B, C are n × n matrices. Suppose that the equation has a solution XL and that for a
proper X0 the sequence generated by

Xk = C − BX−1
k−1A, k = 1, 2, . . .

converges to XL. Let Ek = XL − Xk . Then we have

Ek = (BX−1
k−1)Ek−1(X

−1
L A) = (BX−1

k−1) · · · (BX−1
0 )E0(X

−1
L A)k. (31)

From this we know that

lim sup
k→∞

k
√‖Ek‖ � ρ(BX−1

L )ρ(X−1
L A).

So the convergence of the fixed-point iteration is linear if ρ(BX−1
L )ρ(X−1

L A) < 1. If ρ(BX−1
L ) ·

ρ(X−1
L A) is equal or very close to 1, the convergence may be very slow. However, it is possible

to speed up the convergence by choosing X0 properly. Let X−1
L A have eigenvalues η1, . . . , ηn,

and corresponding linearly independent (generalized) eigenvectors u1, . . . , un (as they appear in
the Jordan canonical form). Suppose that

|η1| = · · · = |ηp−1| > |ηp| � · · · � |ηn|
and that X0 satisfies X0ui = XLui , i = 1, . . . , p − 1. Then E0ui = 0 for i = 1, . . . , p − 1. It
follows from (31) that

lim sup
k→∞

k
√‖Ek‖ � ρ(BX−1

L ) lim sup
k→∞

k

√
‖E0(X

−1
L A)kvk‖,

where ‖vk‖ = 1. Writing vk = ∑n
i=1 a

(k)
i ui , we get

lim sup
k→∞

k

√
‖E0(X

−1
L A)kvk‖ = lim sup

k→∞
k

√√√√‖E0(X
−1
L A)k

n∑
i=p

a
(k)
i ui‖ � |ηp|.

So

lim sup
k→∞

k
√‖Ek‖ � ρ(BX−1

L )|ηp| (32)

and the convergence is improved.
In general it is difficult to find X0 (other than XL itself) such that X0ui = XLui (i = 1, . . . , p −

1). However, an important equation from the study of recurrent quasi-birth-death processes [15]
has the form (30), with A, B, I − C elementwise nonnegative, and A + B + I − C stochastic.
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Moreover, for the desired solution XL the matrix X−1
L A is such that 1 = η1 > |η2| � · · · �

|ηn| and u1 = e, the vector of ones. So XLe = Ae. Thus X0u1 = XLu1 is satisfied by any X0
with X0e = Ae. (To apply the fixed-point iteration we need to ensure that X0 is invertible.) For
the plus/minus equations with a normal matrix A, we have shown in Section 3 that X0ui =
XLui (i = 1, . . . , p − 1) for X0 = βI , without computing XL and ui . In this case, (32) becomes
lim supk→∞ k

√‖Ek‖ � |η1ηp|. Note that we have proved in Section 3, by a refined analysis, that
lim supk→∞ k

√‖Ek‖ = |ηp|2. If A is a general non-normal matrix, however, the choice X0 = γ I is
unlikely to improve the convergence of the fixed-point iteration significantly, since X0ui = XLui

would mean that ui (i = 1, . . . , p − 1) are linearly independent eigenvectors of XL corresponding
to the same eigenvalue γ .

5. Numerical experiments

In this section we compare the algorithms Alg+(γ ) and Alg+M , where Alg+(γ ) is Algorithm
3 (with X0 = γ I ) and Alg+M is Meini’s algorithm [16] for the plus equation (3). We also compare
the algorithms Alg−(γ ) and Alg−M , where Alg−(γ ) is Algorithm 4 (with X0 = γ I ) and Alg−M

is Meini’s algorithm [16] for the minus equation (4). The purpose here is to show the usefulness
as well as the limitation of Alg±(β).

Our numerical experiments are performed in MATLAB 7.3 on a Sun workstation. In all exam-
ples, each algorithm is stopped as soon as an approximation X̃ to XL satisfies

‖X̃ ± A∗X̃−1A − I‖∞ � 10−10

for the plus/minus equations. We note that Alg±(γ ) requires about 7
3n3 flops each iteration and

all singular values of A can be found in 8
3n3 flops [7] (we just need the largest and the smallest

singular value to determine β and α, respectively). Alg±M requires 19
3 n3 flops each iteration.

The first four examples are for the plus equation.

Example 1. We consider a normal matrix A ∈ Rn×n, given in [16] as follows:

(1) Choose ξ ∈ [0, 1
2 ).

(2) For i = 1, . . . , n:
(a) for j = i, . . . , n, set ai,j = i2 + j ;
(b) compute s1 = ∑i−1

j=1 ai,j , s2 = ∑n
j=i ai,j ;

(c) for j = i, . . . , n, set

ai,j = ai,j

0.5 − ξ − s1

s2
, aj,i = ai,j .

For this example, we have ‖A‖ = 1
2 − ξ . If ξ = 0 then ‖A‖ = 1

2 , ρ(X−1
L A) = 1, and the

convergence of Alg+(1) is expected to be sublinear. We take n = 100 and report in Table 1 the
number of iterations required for each algorithm and for different values of ξ . In the table, “∗”
means that the stopping criterion is not satisfied in 50,000 iterations. For this example, Alg+(β) has
the best performance. The iterates provided by Alg+(α) are slightly better than the corresponding
iterates from Alg+(1) (in agreement with Theorem 1(i)), but the number of iterations required
remains the same.
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Table 1
Number of iterations for Example 1

ξ Alg+(β) Alg+(1) Alg+(α) Alg+M

0.4 3 5 5 3
0.1 5 16 16 5
0.01 5 50 50 6
0.001 6 143 143 8
0.0001 6 396 396 9
0 6 ∗ ∗ 17

Example 2. We consider a nearly normal matrix A = QRQT, where Q is a random orthogonal
matrix and

R =
⎛⎝0.499 0.00003 0.00001

0 0.2 0.00002
0 0 0.1

⎞⎠ .

We have ‖A‖ = 0.4990, α = 0.9899, β = 0.5316. Alg+(1) and Alg+(α) need 144 iterations
each, while Alg+(β) requires only 18 iterations. Alg+M needs 8 iterations. Alg+(β) still has the
best performance, since the computational work for 8 iterations of Alg+M is roughly that for 22
iterations of Alg+(β).

Example 3 [13, Example 1]. For the non-normal matrix

A =
⎛⎝ 0.471 0.002 0.040

0.002 0.472 −0.002
−0.040 −0.001 0.471

⎞⎠ ,

we have ‖A‖ = 0.4749, α = 0.6710, β = 0.6566. Alg+(1) requires 32 iterations; Alg+(α) re-
quires 28 iterations; Alg+(β) requires 27 iterations. We have also tried Alg+(γ ) with many
different γ ∈ (β, α), the number of iteations required is either 27 or 28. Alg+M needs six
iterations. So Alg+M has the best performance.

Example 4. For the non-normal matrix

A =
⎛⎝0.1304 0.1639 −0.0437

0.0182 0.4045 0.0313
0.1661 0.1425 0.0285

⎞⎠ ,

we have ‖A‖ = 0.4757, α = 0.9970, β = 0.6539. For this example 23 iterations are needed for
Alg+(1), Alg+(α) and Alg+(β). We also note that Alg+(γ ) with γ = 0.72755 only needs nine
iterations (but this good value of γ is obtained by trial and error). Alg+M needs five iterations
and thus has the best performance for this example.

We now give a few examples for the minus equation.

Example 5. For the normal matrix

A =

⎛⎜⎜⎝
−1.8519 0.0131 0.0370 1.4361
0.0131 0.1001 −0.0797 0.1191
0.0370 −0.0797 0.2006 −0.0343
1.4361 0.1191 −0.0343 −1.2283

⎞⎟⎟⎠ ,
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we have α = 1.0093, β = 3.5530, ρ(X−1
L A) = 0.8477. Alg−(1) and Alg−(α) require 77 iter-

ations each; Alg−(β) needs 9 iterations; Alg−M takes 7 iterations. The iterates provided by
Alg−(α) are slightly better than the corresponding iterates from Alg−(1) (in agreement with
Proposition 2), but the number of iterations required remains the same. Alg−(β) has the best
performance for this example.

Example 6. We consider a nearly normal matrix A = QRQT, where Q is a random orthogonal
matrix and

R =

⎛⎜⎜⎝
0.1 0.0002 0.00003 0.00002
0 0.2 0.00001 0.00003
0 0 3.99 0.00001
0 0 0 0.499

⎞⎟⎟⎠ .

We haveα = 1.0099,β = 4.5212,ρ(X−1
L A) = 0.8825.Alg−(1) andAlg−(α)need 102 iterations

each, while Alg−(β) requires only 14 iterations. Alg−M needs 7 iterations. So Alg−(β) still has
the best performance.

Example 7. For the non-normal matrix

A =

⎛⎜⎜⎝
2.9130 11.1804 4.0826 1.5700

−0.0300 −3.1354 −14.1875 7.2807
−1.6573 0.6205 5.9407 −1.6480
7.6587 −4.8459 1.3134 −0.7988

⎞⎟⎟⎠ ,

we have α = 2.0360, β = 18.9393, ρ(X−1
L A) = 0.9317. For this example Alg−(1) requires 191

iterations; Alg−(α) requires 189 iterations; Alg−(β) requires 184 iterations. But Alg−M needs
only 8 iterations and thus has the best performance.

6. Conclusions

To compute the maximal solution XL of the matrix equation (3) with ‖A‖ � 1
2 , we can speed

up the convergence of the fixed-point iteration by using a good initial matrix. The recommended
initial matrix is X0 = βI , where β is determined by the largest singular value of A. Significant
(and sometimes dramatic) improvement is achieved by this special initial matrix if A is normal or
nearly normal. If A is a general non-normal matrix, the improvement is usually not significant.
But if ρ(X−1

L A) is small the convergence of the fixed-point iteration is fast for X0 = γ I and any

γ ∈
[

1
2 , 1

]
since (5) is always true. It is still advisable to use γ = β in this case, since it is very

likely that the number of iterations can be reduced by at least one, offsetting the computational
work required for determining β. If A is a general non-normal matrix and X−1

L A has eigenvalues
on or near the unit circle, then Meini’s algorithm [16] is the best choice we have available.

To compute the unique positive definite solution XL of the matrix equation (4), we can also use
X0 = βI to speed up the convergence of the fixed-point iteration, where β is again determined by
the largest singular value of A. Significant improvement is achieved by this special initial matrix
if A is normal or nearly normal. If A is a general non-normal matrix, the improvement is usually
not significant. But if ρ(X−1

L A) is small the convergence of the fixed-point iteration is fast for
any X0 > 0. If A is a general non-normal matrix and X−1

L A has eigenvalues near the unit circle,
then Meini’s algorithm [16] is the best choice.
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