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SUMMARY

Objective: Aging is a major risk factor for osteoarthritis (OA). Forkhead-box class O (FoxO) transcription
factors regulate mechanisms of cellular aging, including protein quality control, autophagy and defenses
against oxidative stress. The objective of this study was to analyze FoxO transcription factors in normal,
aging and OA cartilage.
Design: Knee joints from humans ages 23—90 and from mice at the age of 4—24 months and following
surgically induced OA were analyzed for expression of FoxO proteins. Regulation of FoxO protein
expression and activation was analyzed in cultured chondrocytes.
Results: Human cartilage expressed FOXO1 and FOX03 but not FOX04 proteins. FOXO1 and FOXO3 were
more strongly expressed the superficial and mid zone as compared to the deep zone and were mainly
localized in nuclei. During human joint aging, expression of FOXO1 and FOX03 was markedly reduced in
the superficial zone of cartilage regions exposed to maximal weight bearing. In OA cartilage, chondrocyte
clusters showed strong FOXO phosphorylation and cytoplasmic localization. Similar patterns of FOXO
expression in normal joints and changes in aging and OA were observed in mouse models. In cultured
chondrocytes, IL-13 and TNF-a suppressed FOXO1, while TGF- and PDGF increased FOXO1 and FOXO03
expression. FOXO1 and FOXO3 phosphorylation was increased by IL-1B, PDGF, bFGF, IGF-1, and the
oxidant t-BHP.
Conclusions: Normal articular cartilage has a tissue specific signature of FoxO expression and activation
and this is profoundly altered in aging and OA in humans and mice. Changes in FoxO expression and
activation may be involved in cartilage aging and OA.

© 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

normally®. Therefore, protein quality control mechanisms are
essential in maintaining normal biosynthetic cell functions and

The primary risk factor for osteoarthritis (OA) development is
aging, but the mechanisms by which aging contributes to OA sus-
ceptibility and progression remain to be investigated'.

The aging process, where oxygen radical production is increased
and oxidant defense mechanisms are compromised” >, is accom-
panied by a progressive accumulation of damaged molecules and
organelles, leading to the decreased ability of cells to function
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their failure plays an important role in the pathogenesis of age-
related disease’®. One of the prominent pathways involved in
turnover of cellular constituents is autophagy. Compromised
autophagy associated with a reduction and loss of ULK1, Beclin1,
and LC3 expression was observed in human OA and age-related and
surgically induced OA in mice®.

One of the major signaling pathways that regulate cellular aging
and stress resistance is the Insulin/IGF-1 signaling pathway. The
protein kinase Akt is an important upstream signaling component
in this pathway that regulates diverse cellular functions related to
longevity, cellular senescence, and metabolism. Among of the most
evolutionarily conserved targets of Akt are the forkhead-box class O
(FOXO) transcription factors'®!'!, The mammalian FOXO family
consists of three members, FOXO1, FOX03, and FOX04'>!3. Activity
of the three FOXO molecules is controlled by phosphorylation,
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which modulates their cellular localization. Akt directly phos-
phorylates FOX01, FOX03, and FOXO4 at three conserved sites,
resulting in nuclear export and subsequent degradation'”.

FOXOs regulate not only genes governing oxidative defense such
as MnSOD, catalase, and the DNA repair enzyme GADD45'>!® but also
regulate protein degradation mediated by the ubiquitin—protea-
some system'’ and the autophagic/lysosomal pathway'. Abnormal
expression and activation of FOXOs is involved in the pathogenesis of
age-related diseases affecting bone'?, muscle®’, and CNS?'.

Importantly, expression and activation of FOXO transcriptional
factors are highly context and cell-lineage specific'®~?!. The ob-
jectives of this study were to analyze protein expression and acti-
vation of FOXO transcription factors in normal cartilage and to
determine changes in aging and OA.

Methods
Human knee joints

Human knee joints from individuals ages 23—90 were obtained
at autopsy under approval by the Scripps Human Subjects Com-
mittee. The entire femoral condyles of young normal knee joints
were harvested from six donors (age 23—48 years,
mean + SD = 36.0 & 9.6, OA grade I, Mankin score = 0) having no
history of joint disease. Aged normal knee joints were also obtained
at autopsy from four donors having no history of joint diseases or
overt OA (age 68 to 76, mean + SD = 72.5 £ 3.6, OA grade I-II,
Mankin score = 1-3). Human OA joints were obtained from four
donors (age from 64 to 90, mean + SD = 81.5 + 10.3, OA grade IlI—
IV, Mankin score = 7—8). Articular surfaces were graded macro-
scopically according to a modified Outerbridge scale’’. Osteo-
chondral slabs (5 mm thickness) were harvested from the central
part of medial femoral condyle for histomorphologic analysis.
Subsequently, the slabs were cut into six tissue blocks from the
anterior to the posterior condyle [Fig. 1(B)]. Each block was fixed in
10% zinc-buffered formalin for 2 days, decalcified in TBD-2 for 7
days, followed by paraffin embedding. Serial sections (4 um each)
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were cut, stained with Safranin O-fast green, and graded according
to Mankin scoring system?>>.,

Cell and protein isolation from human cartilage

Human chondrocytes were isolated and cultured as described
previously”*. For protein isolation directly from cartilage tissue, the
cartilage strips obtained from patients undergoing total knee
arthroplasty were separated based on the extent of degradation
and frozen in liquid nitrogen. Normal cartilage samples were
collected from young donors having no history of joint disease. The
frozen tissues were crushed and homogenized. Samples were
incubated in TRIzol (Invitrogen) at room temperature. After addi-
tion of chloroform, samples were vortexed vigorously and centri-
fuged for 15 min at 12,000x g at 4°C. The interphase and organic
phase was collected, followed by addition of 100% ethanol. After
centrifugation, the supernatant was collected for protein isolation.
Proteins were precipitated by the addition of isopropanol and
diluted in 6M Urea, 2% SDS.

Human chondrocyte cultures

The isolated chondrocytes were plated at high density in DMEM
with 10% CS and antibiotics and allowed to attach to the culture
flasks. The cells were incubated at 37°C in a humidified gas mixture
containing 5% of CO, balanced with air. The chondrocytes were
used in the experiments at confluence (2—3 weeks in primary
culture).

Human chondrocytes were seeded in six-well plates at a density
of 4.0 x 10° cells/well. After 1 day, the cells were washed and
incubated in DMEM with 0.5% CS for 24 h. Cytokines, growth fac-
tors, tert-Butyl hydroperoxide (t-BHP), and CS were added at the
following final concentrations: IL-1p (1 ng/ml), TNF-a (10 ng/ml),
IL-6 (10 ng/ml), TGF-B1 (10 ng/ml), BMP-7 (100 ng/ml), bFGF2
(25 ng/ml), PDGF-AA (25 ng/ml), IGF-1 (100 ng/ml), t-BHP (25 uM
and 250 uM), and 10% CS. Cells were harvested after 30 min, 60 min,
1 day, 2 days, and 5 days of incubation.
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Fig. 1. FOXO protein expression in human articular cartilage. A. Protein extracts from articular cartilage were analyzed by western blotting using antibodies to FOXOs as indicated.
Graph shows the results of a total of five normal and five OA donors. B. Photograph of osteochondral slab from the central region of the medial femoral condyle showing regions that
were used to cut sections from the most proximal (1) to the most distal (6) location. C. Inmunohistochemistry was performed for FOXO1 and FOX03. Numbers of sections

correspond to the regions in panel B. Magnification 40x.
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Mouse knee joints

All animal experiments were performed according to protocols
approved by the Institutional Animal Care and Use Committee
(IACUC) at The Scripps Research Institute. In the spontaneous
aging-related OA model, C57BL/6] mice were kept under normal
conditions and knee joints were collected at 4, 12 and 24 months of
age. The surgical OA model was induced in 4 months old C57BL/6]
mice by transection of the medial meniscotibial ligament and the
medial collateral ligament (MMTL + MCL) as described®” and ani-
mals were euthanized 10 weeks later.

Knee joints from both murine models were resected from both
hind legs, fixed in 10% zinc-buffered formalin for 2 days, decalcified
in TBD-2 for 24 h. Serial sections (4 pm each) were cut, and expres-
sion of FoxO proteins was analyzed by immunohistochemistry.

Immunohistochemistry

For antigen unmasking, the tissue sections were incubated with
2.5 mg/ml of hyaluronidase for 60 min at 37°C. After washing with

phosphate buffered saline (PBS), sections were blocked with 10%
goat serum for 1 h at room temperature. This condition was ob-
tained after optimization and provided specific positive staining
without non-specific signals. Anti-FOXO1A (1:50 dilution), Anti-
FOXO1A (phospho S256) (1:100 dilution), Anti-FOXO3A (1:100
dilution), Anti-FOXO3A (phospho S253) (1:100 dilution), and
negative control rabbit IgG (1 pg/ml) were applied with 0.1% Tween
20 and incubated overnight at 4°C. All primary antibodies were
purchased from Abcam. Incubation with secondary antibody, sub-
strate and hematoxylin were performed as described® [Fig. 1(C)].

Quantification and localization of positive cells in human cartilage

FOXO localization in each cartilage zone was assessed system-
atically by counting positive cells in three pictures under 40x
magnification starting from the cartilage surface to the deep zone®.
The identification of each zone [Fig. 2(A)] was based on previously
reported characteristics that comprise cell shape, morphology,
orientation, and pericellular matrix deposition®®. The percentages
of positive cells for total FOXO and phosphorylated FOXO were
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Fig. 2. Zonal distribution of total and phospho-FOXO in human articular cartilage. Cartilage sections from maximal and minimal weight bearing regions were stained with anti-
bodies to total FOXO and phospho-FOXO. Representative images for nuclear and cytoplasmic localization of FOXO1 and zonal distribution are shown in panel A. Images for cellular
localization are 100x, for zonal distribution is 10x magnification. Results are shown as % positive cells for FOXO1 in panel B and for FOXO3 in panel C. Values are the median and
quartile. Data are representative of six normal donors.” = P < 0.05 vs each zone; & = P < 0.05 vs maximal weight bearing.



Y. Akasaki et al. / Osteoarthritis and Cartilage 22 (2014) 162—170 165

determined independent on cellular localization. Cells were coun-
ted as positive for cytoplasmic p-FOXO when staining was pre-
dominantly cytoplasmic positive staining on sections that were
counter-stained with hematoxylin [Fig. 2(A)]. The frequency of
positive cells was expressed as a percentage relative to the total
number of cells counted in each zone.

Quantification of FoxO immunoreactivity in mouse knee joints

Cartilage cellularity in C57BL/6] mice was quantified by counting
the chondrocytes in a microscopic field?”. Three pictures were
taken under 40x magnification, representing the center of the
femoral condyle that is not covered by the meniscus as well as the
anterior and posterior femoral condyles covered by the meniscus.
Then, the total numbers of cells and FoxO positive cells were
counted in each section.

Quantitative western blotting

Quantitative western blotting was performed with the LiCor
immunofluorescence detection system (Licor, Lincoln, NE). Primary
antibodies from Cell Signaling were used: Anti-FOXO1A (1:1000
dilution), Anti-FOXO1A (phospho S256) (1:1000 dilution), Anti-
FOXO3A (1:1000 dilution), Anti-FOXO3A (phospho S253) (1:1000
dilution), Anti-Akt (phospho S473) (1:1000 dilution), and GAPDH
(1:5000) in 1/2x Odyssey buffer in PBS with 0.1% Tween 20. After
washing in TBST, secondary antibodies goat anti-rabbit — IRDye 800
(1:5000 dilution) for FOXOs and goat anti mouse — IRDye 680
(1:10,000 dilution) for GAPDH, diluted in 1/2x Odyssey buffer in
PBS with 0.1% Tween 20 and 0.01% SDS, were applied. Blots were
washed in PBS and then water before acquisition on the LiCor
Odyssey. In-lane background was removed (Median: Top/Bottom)
before analysis with the Odyssey software version 3.0 (LiCor). In-
tegrated intensity values (K counts) for each protein of interest
were normalized to those of GAPDH.

Statistical analysis

Statistically significant differences between three groups were
determined with Kruskal Wallis H-test and Friedman test. When a
significant differences were found among three groups, Mann—
Whitney U test and Wilcoxon signed-rank test were used to analyze
the specific sample pairs for significant differences. The results are
reported as median and quartile 25%—75%. P values less than 0.05
were considered significant.

Results
FOXO protein expression in young normal human cartilage

Articular cartilage from normal human knee joints expressed
predominantly FOXO1 and FOXO3 proteins but not FOX04 as
detected by western blotting [Fig. 1(A)]. Both non-fibrillated and
fibrillated OA cartilage showed significant FOXO1 and FOXO3
reduction compared to normal cartilage [Fig. 1(A)]. Immunohisto-
chemistry was used to determine the distribution and phosphor-
ylation of FOXO1 and FOXO03. Locations in the knee joint differ in
regard to exposure of articular cartilage to weight bearing and
susceptibility to OA. To determine regional changes in FOXO protein
expression, adjacent cartilage sections representing the entire
femoral condyle (n = 6 per condyle) were analyzed [Fig. 1(B)]. The
most proximal and the most distal sections (#1 or 2 and # 5 or 6)
are exposed to minimal, while the central sections (#3 or 4) are
exposed to maximal weight bearing [Fig. 1(C)]. We also assessed
differences in FOXO among the superficial, mid and deep zone

[Fig. 2(A)]. FOXO1 and FOXO03 proteins (n = 6 donors each) were
more highly expressed in the superficial and middle than the deep
zone [Fig. 2(B), (C)]. When determining nuclear/cytoplasmic
localization with FOXO by counter-staining of hematoxylin, FOXO1
and FOXO3 were found mainly in the nuclei [Fig. 2(B), (C)]. Com-
parison of areas of cartilage exposed to minimal vs maximal weight
bearing showed that FOXO3 protein in the deep zone was more
strongly expressed in areas exposed to minimal weight bearing.

Phosphorylated FOXO1 and FOXO3 (n = 6 donors each) were
detected at higher levels in the superficial and middle zones as
compared to the deep zone. The levels of total FOXO proteins and
phosphorylated FOXOs were significantly greater in the nucleus as
compared to cytoplasm [Fig. 2(B), (C)].

In summary, among the FOXO isoforms, FOXO1 and FOXO03
proteins are most strongly expressed in normal cartilage. Overall,
their protein expression is higher in the superficial and middle zone
as compared to deep zone. In regard to regional differences, only
FOXO3 protein in the deep zone was more strongly expressed in
areas exposed to minimal weight bearing. Nuclear localization of
FOXO proteins indicates that most cells in the superficial and mid
zone express activated FOXO1 and FOXO3 proteins.

Aging and OA-associated changes in FOXO protein expression in
human cartilage

For the analysis of aging and OA cartilage, we selected repre-
sentative maximal weight bearing regions [#3 or as shown in
Fig. 1(B)]. OA cartilage had no superficial zone in maximal weight
bearing areas.

In aged donors, FOXO1 and FOXO3 (n = 4 donors each) were
significantly decreased in the superficial zone compared with young
normal cartilage (Fig. 3).In contrast, FOXO1 and FOXO3 in OA cartilage
(n = 4 donors each) were significantly increased in the middle zone
compared with normal cartilage. In terms of nuclear/cytoplasmic
localization, FOXO1 and FOXO3 in the middle zone of OA cartilage
were stronger in the cytoplasm compared with normal cartilage
[Fig. 3(B)]. Moreover, phosphorylated FOXO1 and FOXO3 were
significantly stronger in the middle zone compared with normal
cartilage. This increase was due to the cell clusters localized in the
middle zone in OA cartilage (Fig. 3). These cell clusters showed strong
protein expression and phosphorylation of FOXO1 and FOXO3. These
results indicate an age-related reduction in FOXO1 and FOXO3 pro-
tein expression in the superficial zone and increased phosphorylation
and cytoplasmic localization in the OA cluster chondrocytes.

FoxO protein expression in normal, aging and OA mouse cartilage

Two different types of OA models in mice were used, including
aging-related OA and mechanical overload induced OA in order to
mitigate their limitations and to correlate with aging and OA-
related changes in human knee cartilage. Both mouse models
showed cartilage degradation with only small variations in OA
severity.

Normal joints from skeletally mature 4-month-old C57BL/6] mice
showed high levels of FoxO1 and FoxO3 proteins in the superficial
and upper middle zones. FoxO1 and FoxO3 were localized mainly
in the nucleus. The signals for the phosphorylated FoxOs were less
intense as compared to the total FoxOs in 4-month-old mice. At the
ages of 12 months and 24 months, there was a significant aging-
related reduction in FoxO1- and FoxO3-positive cells compared
with 4-month-old mice, as well as a significant reduction in FoxO1
and FoxO3 in 24-month-old mice compared with 12-month-old
mice [Fig. 4(B)]. In 12- and 24-month-old mice, the reduction of
FoxO protein was more marked in the meniscus non-covered re-
gions compared to the meniscus-covered regions [Fig. 4(A)].
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Fig. 3. Changes in FOXO protein expression in human cartilage from aging and OA-affected joints. A. Cartilage was collected from the femoral condyles of normal (weight bearing
regions) and OA knee joints and analyzed by immunohistochemistry with antibodies as indicated. Images are 40x, insets on the right are 100x magnification. B. Quantification of
total FOXO, phospho-FOXO in cartilage zones and cytoplasmic vs nuclear localization (shown as % cytoplasmic localization). Data are representative of six young, four aged and four

OA donors.

Articular cartilage in joints with surgical OA showed a reduction
of FoxO1-positive cells and FoxO3-positive cells compared with non-
operated 4-month-old mice. The quantitative analysis of positive
cells showed a significant reduction of FoxO1 and FoxO3 10 weeks
after surgery. In contrast, the cluster-like chondrocyte aggregates in
fibrillated lesions, showed strong expression of FoxO1 and Fox03
protein and also of the phosphorylated forms of FoxO1 and FoxO3.

Regulation of FOXO protein expression and activation in cultured
human chondrocytes

In cultured human chondrocytes, FOXO1 and FOXO3 proteins
were basally expressed, whereas FOX04 was expressed to a lesser
extent. IL-1p and TNF-« significantly repressed FOXO1 at 2 and 5
days. FOXO3 protein expression was also reduced by IL-1f at 5 days,
but to a lesser extent by TNF-a.. On the other hand, stimulation with
TGF-B1 significantly increased FOXO1 protein at 2 days. FOX03 was
also increased 2 days and 5 days after the addition of PDGF (Fig. 5).
Shorter treatment periods (30 min—48 h) did not significantly
affect expression of the FOXO proteins.

Phosphorylation of FOXO1, FOXO3, and FOX04 increased in
chondrocytes stimulated with IL-1, TNF-a, bFGF, PDGF, t-BHP, and
serum (Fig. 6). We used antibodies directed against phospho-serine
256 of FOXO1 (which cross-react with FOX04) or antibodies against
phospho-serine 253 of FOXO3. These conserved sites are phos-
phorylated by Akt, which was also activated in chondrocytes upon
these stimuli, as judged from blots with the Akt anti-phospho-
serine 473 antibody (Fig. 6).

Discussion

The present study is the first to elucidate the characteristics of
the protein expression and activation of FOXO transcription fac-
tors in articular cartilage. Our results demonstrated that among
three FOXOs, FOXO1 and FOXO3 proteins were highly expressed
in normal human and mouse cartilage, suggesting that they play
important roles in cartilage homeostasis. FOXO protein expres-
sion showed differences among cartilage zones with higher
expression in superficial and middle zones compared to the deep
zone. These findings are consistent with observations that
MnSOD, one of the major FOXO target antioxidants, was abun-
dantly expressed in the superficial but not in the deep zone of
human cartilage’.

In aged human cartilage, the protein expression of FOXO tran-
scription factors was significantly decreased in the superficial
zone of regions exposed to maximal weight bearing. Similarly, in
mouse knee joints there was an age-related reduction of FOXO
positive cells especially in the meniscus non-covered regions. In
bone, FoxO1 expression also progressively decreased with aging,
whereas Fox03 and Fox04 levels remained stable'. In muscle, the
aging-related dramatic decrease of the nuclear FoxO1 and FoxO3
was associated with muscle atrophy®®. In the present study, we
observed increased FOXO positive cells in the middle zone of hu-
man OA cartilage and in fibrillated areas and osteophytes in mouse
knees. Importantly, the cellular localization of FOXO in OA cartilage
was predominantly in the cytoplasm in contrast to normal carti-
lage, indicating inactivation of FOXO transcription factors. The
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chondrocytes in these regions formed clusters containing cells that but in fibrillated areas there are chondrocyte clusters, which
are abnormally activated and differentiated®’. represent a different cell phenotype as compared to the normal

Cell density and composition in OA cartilage are different as zone-specific chondrocytes. In non-weight bearing areas of carti-
compared to normal tissue. Cell density is reduced in some areas lage from OA joints where the superficial zone is still present and
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Fig. 5. Changes in FOXO protein expression in response to stimulation of cultured human chondrocytes. Cells were treated with the indicated stimuli for 2 or 5 days and cell lysates

were analyzed by western blotting with the antibodies indicated. Representative western blot images are shown and graphs represent quantification of western blots from three
different experiments using cells from different donors, each including all stimuli and time points.
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there are no fibrillations, there is a reduction in the total number of
cells, in the total number of FOXO positive cells and in the per-
centage of FOXO positive cells.

The activity of FOXOs is tightly controlled by a phosphorylation-
dependent shuttling system that modulates their cellular localiza-
tion'® and this is predominantly controlled by the Insulin/IGF-1
pathway acting through PI3K and Akt-mediated phosphorylation
of FOXO. Phosphorylation of FOXOs by Akt provokes their nuclear
export. In this study, we observed significantly higher levels of
phosphorylated FOXOs in the cytoplasm of OA cartilage compared
to normal cartilage. High levels of IGF-1 and IGF-1 receptor have
been found in human OA cartilage, especially in chondrocytes of the
upper zone>’ 32, However, the superficial zone of normal cartilage
had reduced IGF-1 receptor levels*® and IGF-induced activation of
Akt activation is reduced in OA chondrocytes>>. These prior obser-
vations suggest a similar pattern that may be mechanistically
related to the specific distribution of phosphorylated FOXOs seen in
this study. Mechanical load is an alternative mechanism for dys-
regulated FOXOs in OA cartilage, as shear stress downregulated
FOXO DNA-binding activity by Akt activation in muscle®s.

In cultured normal chondrocytes IL-1f and TNF-a reduced
FOXOs protein expression, and increased phosphorylation of
FOXOs. This observation is similar to synovial cells where FOXO1
and FOX04 were phosphorylated following stimulation with IL-1
and TNF-a*. Therefore, proinflammatory cytokines appear to
inhibit the activity of FOXOs. On the other hand, our results showed
that TGF-B up-regulated FOXO1 protein expression but did not

affect phosphorylation, whereas PDGF up-regulated FOXO3 and
increased phosphorylation of all FOXOs. PDGF was reported to
induce the phosphorylation and inactivation of FOXO protein in
hepatic stellate cells*®, in fibroblasts*®*’, and in vascular smooth
muscle cells*®, PDGF, FGF, and IGF-I also repressed the expression of
FOXO genes in human fibroblasts>®.

Increased intracellular ROS was reported to facilitate the local-
ization of FOXO to the nucleus where it is transcriptionally active®®,
Upon treatment with H,0;, c-Jun-N-terminal kinase (JNK) phos-
phorylates FOXO at two threonine residues (Thr447 and Thr451 in
FOX04), which are different from the Akt phosphorylation sites,
resulting in increased nuclear localization and activation of tran-
scriptional activity>* 2. In contrast, oxidative stress can increase
Akt activity and subsequent FOXO phosphorylation, dependent on
the cellular context. Our results in cultured chondrocytes stimu-
lated with t-BHP showed FOXO phosphorylation (serine 256 of
FOXO1 and serine 253 of FOXO3). The opposing forces of Akt vs JNK
signaling are considered to determine whether FOXO will direct a
transcriptional response regulating entry into quiescence or
senescence®>. To address functions of FOXO and phosphorylated
FOXO in chondrocytes, further studies with manipulating FOXO
expression are needed.

In summary, the present results suggest that attenuated FOXO
protein expression or altered FOXO activation may represent a
novel mechanism in the development of OA. In view of their central
function in aging, FOXO proteins may provide a potential molecular
target for the treatment of OA.
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