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We study the asymptotic behavior of the solutions to evolution equations of the
form 0 # u* (t)+�f (u(t), =(t)); u(0)=u0 , where [ f ( } , =): =>0] is a family of strictly
convex functions whose minimum is attained at a unique point x(=). Assuming that
x(=) converges to a point x* as = tends to 0, and depending on the behavior of the
optimal trajectory x(=), we derive sufficient conditions on the parametrization =(t)
which ensure that the solution u(t) of the evolution equation also converges to x*
when t � +�. The results are illustrated on three different penalty and viscosity-
approximation methods for convex minimization. � 1996 Academic Press, Inc.

1. Introduction

Let H be a real Hilbert space with scalar product and norm denoted by
( } , } ) and | } | respectively. Given a convex, lower semicontinuous (lsc),
proper function f : H � R _ [+�], we consider the minimization problem

min[ f (x): x # H] (P)

and we assume that the (closed convex) set of optimal solutions is non-
empty

S(P) :=[x # H: f (x)=inf
H

f ]{<.
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As a matter of fact, we are specially interested in cases where (P) has multi-
ple optimal solutions (the function f is not assumed to be strictly convex).
This corresponds to some important situations as linear programming and
semi-coercive minimization problems.

For each =>0, let us consider the approximate minimization problem

min[ f (x, =): x # H] (P=)

where f ( } , =) is strictly convex, lsc and proper, and let us assume that

{There exists a unique solution x(=) of (P=).
The filtered sequence [x(=); = � 0] norm converges to some x* # S(P).

This is a common feature of all the viscosity approximation methods, see
Tikhonov and Arsenine [23] and Attouch [3] for a recent survey on the
``viscosity selection principle''. In linear mathematical programming, this
property is satisfied by most of the barrier methods, as well as the exponen-
tial penalty method recently studied by Cominetti and San Mart@� n [12].

Our goal is to construct a general dynamical method which allows to com-
pute the particular solution x*. The computation of x* is of interest since the
solution obtained by the regularization-approximation method usually
enjoys nice geometrical or variational properties, see [1], [3], [12].

When considering the initial problem (P), it is a classical result that the
trajectory defined by the (generalized) steepest descent method

(SD) {u* (t)+�f (u(t)) % 0
u(0)=u0

weakly converges to some element u� # S(P) as t goes to +�, see Bre� zis
[8, 9], Bru� ck [10]. The limit u� depends on u0 and it is quite difficult to
characterize, see Lemaire [17] for recent results in this direction.
Moreover, the computation of the trajectory t � u(t) may become involved
because of the operator �f. For instance, when f is an extended real-valued
function (taking the value +� because of the constraints), �f is a multi-
valued operator which is not defined everywhere.

The idea to be developed in this paper is to take advantage of the
regularizing properties of the approximations (P=), and to consider the
``Descent and Approximation Dynamical Asymptotical'' method

(DADA) {u* (t)+�f (u(t), =(t)) % 0
u(0)=u0

where =: [0, +�) � R+ is some strictly positive function decreasing to 0
with t � +�. Of particular interest are approximations (P=) defined by
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sufficiently smooth functions f ( } , =), in which case (DADA) becomes a
(nonautonomous) differential equation.

Our main concern is the asymptotic behavior of the solutions of
(DADA) as t goes to +�, which depends critically on the rate at which
=(t) goes to zero. We are specially interested in conditions ensuring the
convergence of u(t) towards the particular solution x*.

Let us illustrate this on the following elementary example:

Example. Take H=R, f #0 and f (x, =)==�2 |x| 2 (viscosity method).
Then S(P)=R, the approximate problem (P=) achieves its unique mini-
mum at x(=)=0, and x*=lim= � 0 x(=)=0. The solution u( } ) of the
dynamical approximation method

u* (t)+=(t) u(t)=0; u(0)=u0

is given by

u(t)=u0 exp _& |
t

0
=(s) ds& .

Clearly, limt � +� u(t)=x* iff �+�
0 =(s) ds=+�, in which case the limit-

ing behavior does not depend on the initial data u0 . Otherwise,
limt � +� u(t) exists but differs from x*. Note that, depending on the choice
of the time parametrization =(t), one can obtain as a limit of the (DADA)
trajectory any point on the interval [0, u0].

This example suggests that when =(t) goes to zero ``slowly'', then
limt � +� u(t)=x* and the (DADA) trajectory asymptotically approaches
the trajectory = � x(=) of approximate solutions. We shall refer to this
situation as case (A). On the other extreme case, if =(t) goes to zero ``fastly''
with t, the (DADA) trajectory stays close to the steepest descent trajectory.
This is case (B).

As we already said, in this paper we shall be mostly interested in case
(A), where =(t) decays ``slowly''. We shall find, in a fairly general setting,
precise estimates on the decay of =(t) ensuring that lim u(t)=x*. As far as
we know, this is a new approach1 for studying the asymptotics of the
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1 After this paper was accepted for publication, the reference A new approach to the
investigation of evolution differential equations in Banach spaces by Ya. I. Alber, appeared in
Nonlinear Analysis, Theory, Methods and Applications, Vol. 23, No. 9, 1994, pp. 1115�1134.
This reference studies the asymptotic convergence of solutions to non-autonomous differential
equations governed by strongly maximal monotone operators (and not only subdifferentials
as we do), but assuming strong monotonicity and uniqueness of the solution for the limit
problem (in our context, uniqueness and strong convexity of (P)). In this sense the results are
complementary, while one may find some similarities between both approaches.
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trajectories defined by (DADA). There is certainly some analogy with
numerical discretizations of evolution equations where one has to control
the respective size of the time and space discretizations.

In contrast, case (B) is in some sense more natural: the error made when
replacing f by f ( } , =(t)) is controlled so that one may adapt to this situa-
tion the standard proof of the asymptotic behavior for the steepest descent.
In this direction, let us mention the work of Furuya, Miyashiba and
Kenmochi [14], and for the discretized implicit version (proximal method)
the works of Lemaire [16], Tossings [22], Moudafi [19].

Let us finally notice that it is an open problem to know if, for an
arbitrary parametrization t � =(t) (decreasing to zero as t increases to
+�), the limit of u(t) as t goes to +�, exists or not.

2. Basic Assumptions

We consider a Hilbert space H and a family of strictly convex, proper,
lsc functions [ f ( } , =): =>0] such that the minimum

min[ f (x, =): x # H] (P=)

is attained at a unique point x(=). We assume the optimal trajectory x(=)
is absolutely continuous on every compact interval [=1 , =2] with
0<=1�=2<+�, and that it converges towards some x* # H when = � 0.
Notice that we have excluded the case =1=0 so that we allow |dx�d= (=)| to
diverge when = goes to 0.

Let us mention that this absolute continuity property is satisfied for a
number of specific approximations schemes as illustrated in the examples
presented later on. Roughly speaking, such a property may be established
by using variants of the implicit function theorem. In the simplest case,
when the mapping (x, =) � f (x, =) is of class C2 and the Hessian of f ( } , =)
is non-singular at x(=), the trajectory = � x(=) turns out to be of class C1

for =>0, hence absolutely continuous on each compact interval of the form
[=1 , =2]. Situations with weaker differentiability assumptions on the data,
as Tikhonov regularization and viscosity-penalization schemes, will be
discussed in the examples.

We also consider a continuous decreasing function =: [0, +�) � R+

with strictly positive values and

lim
t � +�

=(t)=0,
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and we assume that the evolution equation

(DADA) {u* (t)+�f (u(t), =(t)) % 0
u(0)=u0

has a (necessarily unique) strong global solution, that is, there exists an
absolutely continuous function u: [0, +�) � H such that u(0)=u0 and

0 # u* (t)+�f (u(t), =(t)) a.e. in (0, +�).

The existence of global solutions for differential inclusions like the previous
one, has been studied in a number of papers. Some relevant references in
this respect are Attouch and Damlamian [4], Auchmuty [7], Kenmochi
[15], Tataru [20].

3. The ``Slow'' Parametrization

A basic property of the approximation problem (P=) which ensures the
uniqueness of the solution x(=), as well as its good numerical conditioning,
is the strong convexity of the function f ( } , =). Equivalently, in terms of
subdifferential operators, we consider the strong monotonicity property: for
every =>0 there exists a constant ;(=)>0 such that

(u&v, x&y) �;(=) |x&y| 2 (H)

for all x, y # H and u # �f (x, =), v # �f ( y, =).
Since nonuniqueness of problem (P) is a central issue in this paper, the

function ;(=) is allowed to go to zero as = tends to zero. The rate at which
;(=) goes to zero plays a crucial role in the following results, since it
measures the attraction of the curve of approximate solutions over the
(DADA) trajectory.

Some approximation schemes f ( } , =) may fail to satisfy the strong
monotonicity condition (H) over the whole space H, but they may satisfy
this assumption over bounded sets, namely, for every =>0, K>0 there
exists a constant ;K (=)>0 such that

(u&v, x&y) �;K (=) |x&y| 2 (HK)

for all x, y # H with |x|�K, | y|�K and u # �f (x, =), v # �f ( y, =).
Before using this local form of strong monotonicity for the asymptotic

analysis of the (DADA) trajectory u(t), one must somehow ensure that u(t)
stays bounded, that is, we must find an a priori bound K>0 such that
|u(t)|�K for all t>0. In the next subsection 3.1, we will show that this is
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the case when the optimal path = � x(=) has a finite length, giving rise to
our first result on the asymptotic convergence of u(t), Theorem 3.2.

In Sect. 3.2 we consider the case of a long optimal path = � x(=), where
no a priori bound on u(t) is at our disposal and convergence of u(t)
towards x* will be derived on the basis of the global strong monotonicity
property (H) (which implies a fortiori that u(t) stays bounded).

3.1. The case of a ``short'' optimal trajectory.

For the reader's convenience we present the following simple lemma
which shall be used several times in the forthcoming proofs.

Lemma 3.1. Let m, %: [t0 , t1] � [0, +�[ with m integrable and %
absolutely continuous, such that

%4 (t)�m(t)- %(t) a.e. on [t0 , t1]. (1)

Then, for all t # [t0 , t1] we have

- %(t)�- %(t0)+ 1
2 |

t

t0

m(s) ds.

Proof. For each :>0 the function %:(t)=- :+%(t) is absolutely con-
tinuous and from (1) we have %4 :(t)�m(t)�2 almost everywhere on [t0 , t1].
After integration we get for all t # [t0 , t1]

%:(t)�%:(t0)+ 1
2 |

t

t0

m(s) ds,

and the conclusion follows by letting : � 0. K

The following is our first result on the asymptotics of (DADA).

Theorem 3.2. In addition to the basic assumptions in Sect. 2, let us sup-
pose that the optimal trajectory x(=) has finite length, that is to say, for each
=0>0 we have

|
=0

0 } dx
d= } d=<+�.

Suppose that for all K>0 condition (HK) holds, the function ;K ( } ) is
measurable, and the function =(t) satisfies

|
+�

0
;K (=(s)) ds=+�.

Then the solution u(t) of (DADA) norm converges to x* as t � +�.
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Proof. Since x(=(t)) converges to x*, it suffices to show that the
function .(t) := 1

2 |u(t)&x(=(t))| 2 converges to 0 as t goes to +�. This
function is absolutely continuous and for almost all t # (0, +�) we have

.* (t)=�u* (t)&=* (t)
dx
d=

(=(t)), u(t)&x(=(t))�
�(u* (t), u(t)&x(=(t)))&=* (t) } dx

d=
(=(t))} |u(t)&x(=(t))|. (2)

Since we have &u* (t) # �f (u(t), =(t)) a.e. and 0 # �f (x(=(t)), =(t)), the
monotonicity of the subdifferential implies

.* (t)�&=* (t) } dx
d=

(=(t))} |u(t)&x(=(t))|=&=* (t) } dx
d=

(=(t))} - 2.(t).

Using Lemma 3.1. we deduce

- .(t)�- .(0)&
1

- 2 |
t

0 }
dx
d=

(=(t)) } =* (t) dt

=- .(0)+
1

- 2 |
=(0)

=(t) }
dx
d= } d=

�- .(0)+
1

- 2 |
=(0)

0 } dx
d= } d=

from which it follows that the (DADA) trajectory u(t) stays bounded.
Let K>0 be such that |u(t)|�K and |x(=(t))|�K for all t # [0, +�).

Invoking assumption (HK) and using (2) we get

.* (t)�&;K (=(t)) |u(t)&x(=(t))| 2&=* (t) } dx
d=

(=(t)) } |u(t)&x(=(t))|

that is to say

.* (t)+2;K (=(t)) .(t)�&- 2=* (t) } dx
d=

(=(t))} - .(t).

Denoting E(t)=�t
0 ;K (=(s)) ds (we may always assume that ;K is bounded

from above so that the integral is finite) and multiplying the above
inequality by exp (2E(t)) we get

d
dt

[e2E(t).(t)]�&- 2eE(t) } dx
d=

(=(t))} =* (t)- e2E(t) .(t)
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so we may use Lemma 3.1 with %(t)=e2E(t).(t) in order to deduce for all
0�t0<t<+�

eE(t)
- .(t)�eE(t0)

- .(t0)&
1

- 2 |
t

t0

eE(s) } dx
d=

(=(s)) } =* (s) ds. (3)

Multiplying by exp (&E(t)) and noting that E( } ) is increasing we get

- .(t)�e&(E(t)&E(t0))
- .(t0)&

1

- 2 |
t

t0

e&(E(t)&E(s)) } dx
d=

(=(s))} =* (s) ds

�e&(E(t)&E(t0))
- .(t0)&

1

- 2 |
t

t0 }
dx
d=

(=(s))} =* (s) ds

�e&(E(t)&E(t0))
- .(t0)+

1

- 2 |
=(t0)

=(t) } dx
d= } d=. (4)

Using the fact that E(t) � +� we obtain

lim sup
t � +�

- .(t)�
1

- 2 |
=(t0)

0 } dx
d= } d=

so that letting t0 � +� and using the finite length assumption we con-
clude

lim sup
t � +�

- .(t)=0

as was to be proved. K

Example (The Exponential Penalty Method). Consider the linear
programming problem

min
x # Rn

[c$x: Ax�b] (P)

and its nonlinear unconstrained approximation

min
x # Rn {c$x+= :

m

i=1

exp [(Aix&bi)�=]=. (P=)

Under very mild assumptions (boundedness of the optimal set) it is known
[12] that the trajectory x(=) is Lipschitz continuous on [0, =0] and that
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lim= � 0 x(=)=x* exists, x* being characterized as the ``centroid'' of the
optimal face of (P). Moreover, a direct calculation of the Hessian of f ( } , =)
yields that for each K>0 there exist constants :>0, M>0 such that
;K (=)�:�= e&M�= (notice that no ``global'' ;(=) may be found in this case).

Thus, the length of the trajectory x(=) is obviously finite and the condi-
tion �+�

0 ;K (=(s)) ds=+� is satisfied if �+�
0 1�=(s) e&M�=(s) ds=+�. This

holds for instance if =(t)=M�ln (1+t). Thus, in order to reach the centroid
x*, one has to choose a very slow parametrization =(t).

The following picture illustrates the above results ((DADA) method for
linear programming and exponential penalization).

Let us examine the different trajectories:

1. D0: It is the steepest descent trajectory (``free'' trajectory which is
orthogonal to the level sets, that is, hyperplans parallel to the optimal face
S(P), until it hits the boundary of the feasible region...). It converges to an
optimal solution u0

� of the linear program.

Trajectories Da and Db correspond to (DADA) solutions respectively in

2. Da: ``slow'' parametrization and as a consequence ``strong'' attrac-
tion of the curve t � x(=(t)) on the curve t � u(t). At time t, the curve u(t)
behaves like the steepest descent trajectory for the function f ( } , =(t)) and
is therefore attracted by its unique minimizer x(=(t)). In this case, the limit
ua

� is equal to x*.
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3. Db: ``fast'' parametrization and the attraction is ``weak''. The curve
Db ends up at a point ub

� which, a priori, may be any point of S(P). For
a proof of convergence in case (B) for the exponential penalty we refer
to [11].

3.2. The case of a ``long'' optimal trajectory.

Let us now consider the case where the trajectory = � x(=) may have an
infinite length.

Theorem 3.3. In addition to the basic assumptions of Sect. 2 let us
assume that the trajectory of approximate solutions x(=) satisfies

}dx
d=

(=) }� 1
#(=)

a.e. on ]0, +�[

for some function # possibly tending to zero as = � 0. Suppose that (H) is
satisfied with ;( } ) measurable, and let us take a parametrization =(t) such
that

(i) |
+�

0
;(=(s)) ds=+�,

(ii) lim
t � +�

=* (t)
;(=(t)) #(=(t))

=0.

Then, the (DADA) trajectory u(t) norm converges to x* as t � +�.

Proof. Proceeding as in the proof of Theorem 3.2 with ;( } ) instead of
;K ( } ) we obtain (see (4))

- .(t)�e&(E(t)&E(t0))
- .(t0)&

1

- 2
e&E(t) |

t

t0

eE(s) } dx
d=

(=(s))} =* (s) ds

where E(t)=�t
0 ;(=(s)) ds. Defining

h(t0)=sup
s�t0

|=* (s)|
;(=(s)) #(=(s))

and since E4 (s)=;(=(s)), it follows that

- .(t)�e&(E(t)&E(t0))
- .(t0)+

1

- 2
e&E(t) h(t0) |

t

t0

eE(s);(=(s)) ds

=e&(E(t)&E(t0))
- .(t0)+

1

- 2
e&E(t) h(t0)[eE(t)&eE(t0)]

�e&(E(t)&E(t0))
- .(t0)+

1

- 2
h(t0).
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Using (i) we obtain

lim sup
t � +�

- .(t)�
1

- 2
h(t0)

and since by (ii) we have h(t0) � 0 when t0 � +�, we conclude

lim sup
t � +�

- .(t)�0

achieving the proof. K

Example (The Viscosity Method). We consider for simplicity the
classical Tikhonov regularization: f is a closed proper convex function with
Argmin f{<, and f (x, =)=f (x)+=�2 |x| 2, so that x(=) is uniquely deter-
mined by

�f (x(=))+=x(=) % 0. (5)

It is a classical result that x(=) is bounded iff Argmin f{< which is our
basic assumption, and in that case

lim
= � 0

x(=)=projS(P)0=x*.

In other words, x* is the element of minimal norm in S(P)=Argmin f.
In order to study the differentiability properties of the mapping = � x(=),

we give two proofs of independent interest.

(a) The first one, which is the simplest, relies on the implicit function
theorem for equations governed by possibly multivalued operators, see
Aubin [6]. We do not enter into the details, just say that a formal calcula-
tion gives a bound for |x* (=)| which can be further justified. So, let us
assume that f is smooth (C2 for example) and let us differentiate (5) to
obtain:

{2
x f (x(=)) x* (=)+=x* (=)+x(=)=0.

Multiplying this equation by x* (=) we get

({2
x f (x(=)) x* (=), x* (=)) += |x* (=)| 2+(x(=), x* (=))=0.

By convexity of f the first term above is nonnegative, so that

= |x* (=)| 2�&(x(=), x* (=))
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and then

|x* (=)|�
1
=

|x(=)|.

Finally, since the trajectory x(=) is bounded we obtain that for some con-
stant C>0

}dx
d=

(=) }�C
=

.

(b) The second proof relies on the resolvent equation. Note that

x(=)=\I+
1
=

�f +
&1

(0)=J1�=(0)

where J* x=(I+*A)&1 x is the resolvent of index *>0 of the maximal
monotone operator A. Here A=�f is the subdifferential of the convex lsc
proper function f.

From the resolvent equation,

\*, +>0 J* x=J+ \ +
*

x+\1&
+
*+ J*x+

we infer

J* x&J+x=J+\ +
*

x+\1&
+
*+ J*x+&J+x.

Since x � J+ x is a contraction we have

|J* x&J+x|� }1&
+
* } |x&J*x|=|+&*| }x&J*x

* } .
Going back to x(=)=J1�=(0) we obtain

|x(=)&x(=$)|=|J1�=(0)&J1�=$(0)|� } 1=&
1
=$ } = |x(=)|

so that there exists a constant C>0 such that

|x(=)&x(=$)|�
C
=$

|=&=$|.
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Hence x(=) is locally Lipschitz on ]0, +�[ and

}dx
d=

(=) }�C
=

almost everywhere.

Let us now return to the corresponding conditions for the parametriza-
tion =(t) in order to have lim u(t)=x*. We can take ;(=)== so that the
conditions in Theorem 3.3 turn into

(i) |
+�

0
=(s) ds=+�

(ii) lim
t � +�

=* (t)�=(t)2=0.

If we take for instance a function of the form =(t)=1�t:, these conditions
are fulfilled as far as 0<:<1. We summarize the previous discussion in the
following statement.

Proposition 3.4. For every u0 # dom f and each 0<:<1, the solution of

{u* (t)+�f (u(t))+1�t: u(t)=0
u(0)=u0

tends to x* the element of minimal norm in Argmin f as t � +�.

Remark. One can take in fact u0 # dom f (cf. regularization effect,
Bre� zis [8]).

Example (The Penalization-Viscosity Approximation). Let us start
with the constrained convex minimization problem

min[ f0(x): x # C] (P)

where C{< is a closed convex subset of H, and f0 is a convex Lipschitz
continuous function on H. Let us assume that the set of solutions
S(P)=ArgminC f0 is non empty and consider, for each =>0, the
approximate minimization problem (%>0 is a positive parameter)

min{ f0(x)+
1

2=% dist(x, C)2+
=
2

|x| 2: x # H=. (P=)

This approximation procedure combines the exterior penalty method and
the viscosity method, see Torralba [21] for more details on this method
(note the analogy with the exponential penalty method).
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(a) Let us examine the existence and convergence of an optimal tra-
jectory x(=). For each =>0, the function x � f0(x)+1�2=% dist(x, C)2+
=�2 |x| 2 is strictly convex, continuous and coercive, so there exists a unique
solution x(=) of (P=). Let us prove that

lim
= � 0

x(=)=projS(P) (0)=x*

the element of minimal norm in S(P). By definition of x(=), for all =>0 we
have

f0(x(=))+
1

2=% dist(x(=), C)2+
=
2

|x(=)| 2�f0(x*)+
=
2

|x*|2. (6)

If k is a Lipschitz constant for f0 then

f0(x(=))�f0(projC x(=))&k dist(x(=), C)�f0(x*)&k dist(x(=), C)

from which we deduce

1
2=% dist(x(=), C)2+

=
2

|x(=)| 2�k dist(x(=), C)+
=
2

|x*|2.

Hence

dist(x(=), C)2&2=%k dist(x(=), C)+=%+1 |x(=)| 2�=%+1 |x*| 2.

Since s2&2=% ks�&(=%k)2 holds true for any s�0, we obtain

=%+1 |x(=)| 2�=%+1 |x*| 2+k2=2%

so that

|x(=)|2�|x*| 2+k2=%&1. (7)

We conclude that for %�1 the sequence x(=) is bounded and then, using
(6), any weak limit point minimizes f0 on C. Moreover, when %>1 we
obtain from (7) that the only possible weak limit point is x* and also

lim sup
= � 0

|x(=)|�|x*|

so that convergence occurs in the strong sense.
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(b) Let us now study the differentiability properties of the trajectory
x(=). Let us denote f1(x)=1�2 dist(x, C)2 which is a convex C1, 1 function.
The optimality condition for (P=) is

{f0(x(=))+
1
=% {f1(x(=))+=x(=)=0

which can be rewritten as

=%{f0(x(=))+{f1(x(=))+=%+1x(=)=0.

Let us take =1>0, =2>0 and denote x1=x(=1), x2=x(=2). We obtain

(=%
1&=%

2) {f0(x1)+=%
2({f0(x1)&{f0(x2))+({f1(x1)&{f1(x2))

+=%+1
1 x1&=%+1

2 x2=0.

Multiplying by (x1&x2) and using the monotonicity of {f0 and {f1 we get

(=%
1&=%

2)({f0(x1), x1&x2) +(=%+1
1 x1&=%+1

2 x2 , x1&x2)�0

from which it follows that

=%+1
1 |x1&x2 | 2�|=%

1&=%
2| |{f0(x1)| |x1&x2 |+|=%+1

1 &=%+1
2 | |x2 | |x1&x2 |.

Since the trajectory x(=) is bounded we may find a constant C>0 such that

|x(=1)&x(=2)|�
C

=%+1
1

( |=%
1&=%

2|+|=%+1
1 &=%+1

2 | ).

It follows that x(=) is absolutely continuous, and we obtain a bound of the
form

}dx
d=

(=) }� C
=%+1 [%=%&1+(%+1) =%]t

1
=2 .

(c) Let us examine the corresponding conditions on the parametriza-
tion =(t). Note that the length of = � x(=) may be infinite, so we are in the
situation covered in Theorem 3.3.

We may take ;(=)== and #(=)==2. Therefore, in order to obtain that
limt � +� u(t)=x*=projS(P) 0, the parametrization t � =(t) has to satisfy
the following conditions:

(i) |
+�

0
=(s) ds=+�

(ii) lim
t � +�

=* (t)�=(t)3=0.
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For instance, when taking =(t)=1�t: these conditions hold iff 0<:<1�2.
We summarize the above results in the following statement.

Proposition 3.5. Let f0: H � R be a Lipschitz continuous function, and
C/H a closed convex subset of H. For any u0 # C, for all %>1 and
0<:<1�2, the solution of

{u* (t)+{f0(u(t))+t%:(u(t)&projC u(t))+1�t: u(t)=0
u(0)=u0

converges as t � +� to x* the element of minimal norm of ArgminC f0 .

Remark. One can replace the term dist(x, C)2 in the previous
example by any function g(x)2 as far as a global estimate of the form
dist(x, C)�M g(x) holds for some constant M. For instance, when
C=[x: Ax�b] one may take g(x)2=�m

i=1[(Aix&bi)
+]2 which has the

advantage of being a computable expression.

4. An Alternative Approach: Epi-Convergence and Scaling

Let us now make the connection between the ``epiconvergence and
scaling method'' and the preceding results. A major feature of the epicon-
vergence and scaling method, as developed in [3], see also Anzellotti and
Baldo [1], is that it allows to characterize which point x* # Argmin f is
obtained as a limit of the sequence [x(=); = � 0] of solutions of the
approximate problems. Let us recall the main lines of this method.

The first step is to prove that the Mosco-epilimit

f=epi-lim
= � 0

f ( } , =)

exists. This is a natural assumption ensuring the convergence of the corre-
sponding minimization problems but, in general, besides the convergence
of the infimal values it only gives that every limit point x* of the sequence
[x(=); = � 0] minimizes f.

Let us now take advantage of the strong monotonicity assumption

(�f (x, =)&�f ( y, =), x&y) �;(=) |x&y| 2

and rescale the minimization problem (P=) as follows: let

h(x, =) :=
1

;(=)
[ f (x, =)&inf f ]
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so that the point x(=) satisfies

h(x(=), =)=min[h(x, =): x # H]. (P=)

The second step is to prove that the Mosco-epilimit

h :=epi-lim= � 0 h( } , =)

exists and is proper. In this case x* is precisely the unique minimizer of h
on S(P)=Argmin f. Indeed, since

(�h(x, =)&�h( y, =), x&y)�|x&y| 2

and since the Mosco-epiconvergence of a family of convex functions implies
the graph-convergence of their subdifferentials (see [2]) it follows that

(�h(x)&�h( y), x&y) �|x&y|2.

Hence h has a unique minimizer, which belongs to S(P) since h#+� out-
side of S(P)=Argmin f.

Let us assume from now on that we have been able to prove the Epi-
Scaling property h=epi-lim= � 0 h( } , =), and show how the assumptions of
Theorems 3.2 and 3.3 can be naturally interpreted in this setting.

We rescale the dynamical system

{u* (t)+�f (u(t), =(t)) % 0
u(0)=u0

as follows

{
1

;(=(t))
u* (t)+� _ 1

;(=(t))
f ( } , =(t))& (u(t)) % 0

u(0)=u0 .
(8)

Introducing a change of variables t={(s), the new function v(s) :=u({(s))
satisfies v* (s)=u* ({(s)) {* (s), so that we are naturally led to choose {(s) such
that

{* (s)=
1

;(=({(s)))
(9)

in such a way that (8) is transformed into

{v* (s)+�h(v(s), =({(s))) % 0
v(0)=u0 .
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To find the appropriate change of variables let E(t)=�t
0 ;(=(s)) ds so that

(9) is equivalent to

E4 ({(s)) {* (s)=1

so that we obtain E({(s))=s. Clearly E is a strictly increasing function
from [0, +�[ onto [0, E�[ where E�=�+�

0 ;(=(s)) ds. In order that E
realize a bijection from R+ onto R+, we need

|
+�

0
;(=(s)) ds=+�

which is precisely the basic assumption of Theorems 3.2 and 3.3. In such
a case we have {(s)=E&1(s) with lims � +� {(s)=+�, and then

lim
t � +�

u(t) exists � lim
s � +�

v(s) exists

in which case both limits coincide.
So we are reduced to the following ``standard'' situation: denoting for

simplicity h( } , s)=h( } , =({(s))), we introduce the ``Renormalized parabolic
system''

{v* (s)+�h(v(s), s) % 0
v(0)=u0

(10)

with

{h( } , s) � h Mosco-epiconvergence as s � +�
(�h(x, s)&�h( y, s), x&y)�|x&y| 2 for all s�0, all x, y # H.

When h( } , s)#h this is the evolution governed by a strongly monotone
maximal monotone operator. It is a classical result that lims � +� v(s)=
�h&1(0). Moreover, this asymptotic behavior is stable with respect to
perturbation of the dynamics (see Bre� zis [8]). It is then natural to obtain
that for the perturbed problem (10) we still have

lim
t � +�

u(t)= lim
s � +�

v(s)=�h&1(0)=x*.

This is what we now consider and make precise. Let us denote for sim-
plicity x(s)=x(=({(s))) the unique minimizer of h( } , s) and let

�(s) := 1
2 |v(s)&x(s)| 2.
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We have

�4 (s)=(v* (s)&x* (s), v(s)&x(s))=(v* (s), v(s)&x(s))& (x* (s), v(s)&x(s)) .

Since a.e. we have &v* (s) # �h(v(s), s) and 0 # �h(x(s), s), we deduce

�4 (s)�& |v(s)&x(s)|2+|x* (s)| |v(s)&x(s)|

hence

�4 (s)+2�(s)�|x* (s)| - 2�(s).

Multiplying by e2s we get

d
ds

[e2s�(s)]�- 2es |x* (s)| - e2s�(s)

and from Lemma 3.1

es
- �(s)�es0 - �(s0)+

1

- 2 |
s

s0

e& |x* (&)| d&

so that

- �(s)�e&(s&s0)
- �(s0)+

1

- 2 |
s

s0

e&(s&&) |x* (&)| d&.

Let us analyze the conditions for convergence.

(a) If lims � +� |x* (s)|=0, then

- �(s)�e&(s&s0)
- �(s0)+

1

- 2
(sup

&�s0

|x* (&)| )(1&e&(s&s0)).

Hence, s0 being fixed we get

lim sup
s � +�

- �(s)�
1

- 2
sup
&�s0

|x* (&)|.

Letting s0 � +� and using the assumption lims � +� |x* (s)|=0 we obtain
the conclusion: lims � +� �(s)=0 so that lim v(s)=lim u(t)=x*.

Let us consider in more detail the assumption lim |x* (s)|=0. We have

x* (s)=
dx
d=

(=({(s))) =* ({(s)) {* (s)=
dx
d=

(=({(s)))
=* ({(s))

;(=({(s)))
.
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If we assume |dx�d= (=)|�1�#(=) as in Theorem 3.3 the assumption will hold
when

lim
s � +�

=* (s)
#(=(s)) ;(=(s))

=0.

We recover exactly assumption (ii) of Theorem 3.3.

(b) If we assume ��
0 |x* (s)| ds<+� then

- �(s)�e&(s&s0)
- �(s0)+|

s

s0

|x* (&)| d&

and from this we get lims � +� �(s)=0. This is equivalent to Theorem 3.2.

We conclude that the two approaches presented are essentially equiv-
alent.

5. Appendix

5.1. Estimation of the rate of convergence of u(t) to x*

Example. Let us return to the setting of Theorem 3.2 by assuming the
following stronger conditions. We suppose the trajectory x(=) is Lipschitz

}dx
d=

(=) }�C

so that the finite length assumption holds, and we assume that condition
(H) is satisfied with ;(=)==.

Let us analyze two cases where condition ��
0 ;(=(s)) ds=+� holds.

Case 1. Taking =(t)=(1&:)(1+t)&: with 0<:<1, we have
E(t)=(1+t)1&: and we get the estimate (see (4)),

- .(t)�exp [(1+t0)1&:&(1+t)1&:] - .(t0)

+
(1&:)C

- 2
[(1+t0) &:&(1+t) &:].

With t0=(t&1)�2 we obtain

- .(t)�exp _&\1&
1

21&:+ (1+t)1&:&- .((t&1)�2)

+
(1&:)C(2:&1)

- 2

1
(1+t): .
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Since - .((t&1)�2) tends to 0 and the exponential decays faster than 1�t:,
we get that asymptotically

- .(t)�
K
t:

for an appropriate constant K and t large.

Case 2. Taking =(t)=1�(1+t) we have E(t)=ln (1+t) and from (3)
we obtain the estimate

(1+t) - .(t)�- .(0)+
C

- 2 |
t

0

1+s
(1+s)2 ds=- .(0)+

C

- 2
ln(1+t)

so that asymptotically we get

- .(t)�K
ln(t)

t

for some constant K and t large.

5.2. Open Problems

The results presented in this paper open a number of questions, some of
which are stated below:

1. Precise the asymptotic behavior of the (DADA) trajectory.

(a) Does u* (t) � 0 as t � +�?

(b) Are the curves t � x(=(t)) and t � u(t) asymptote?

2. Does lim u(t) exist for an arbitrary parametrization =(t)?
3. What is the structure of the set of all limit points u�=lim u(t)

corresponding to different parametrizations =(t)?
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