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1. Introduction

Mack [1,2] has long advocated that Mellin transforming CFT 
correlators is useful for efficiently understanding the structure of 
these theories. The examples that have primarily been studied in 
the past have been higher dimensional CFTs where some kind 
of perturbative expansion or partial wave expansion is needed to 
solve for the nontrivial CFT correlation functions.

In the present paper, we consider a two-dimensional CFT where 
the nontrivial 4-point correlation functions have analytic expres-
sions. These expressions may be written as sums over products 
of chiral conformal blocks. The Mellin transform of these confor-
mal blocks maps naturally into Koba–Nielsen open string ampli-
tudes [3], for special values of the kinematic variables. This leads 
us to conjecture that the string theory dual to the CFT is equiv-
alent to an open string description, with many features similar 
to the KLT construction [4]. The analogs of the Mandelstam kine-
matic invariants of the boundary S-matrix of the string theory pro-
vide coordinates for Mellin space. The analytic expressions for the 
4-point functions allow us to study the transform without mak-
ing perturbative expansions, or partial wave expansions, avoiding 
subtle issues of convergence.

For the minimal model CFTs in two dimensions, we find that 
the Mellin representation of the conformal blocks has simple poles 
along a set of Regge trajectories, with residues polynomial in the 
kinematic variables. By construction the amplitude satisfies unitar-
ity, factorization and crossing symmetry. These are the necessary 
and sufficient requirements for the theory to have a dual inter-
pretation as a dual resonance model. This construction should be 
viewed as a generalization of the Veneziano approach [5] to con-
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structing open string theory from the same basic physical require-
ments.

The most economical interpretation in terms of on-shell string 
scattering comes from string theory in a three-dimensional AdS 
geometry. The general mapping of CFT amplitudes to AdS bulk 
amplitudes is described in [2]. Here the geometry is curved on 
scales of order the string length, so there is no low-energy gravity 
approximation. Nor do we have a perturbative string coupling to 
control a genus expansion. Nevertheless, the polynomial structure 
of the residues in the Mellin representation indicates the string 
representation is local in this three-dimensional spacetime.

2. Mellin transforming the CFT

For a rational two-dimensional conformal field theory, the four-
point functions can be written

〈φ1(0,0)φ2(z, z̄)φ3(1,1)φ4(∞,∞)〉 =
∑

i

Xi Ii(z) ¯Ii(z) (1)

where the sum is over the full set of primary operators, and the 
Ii are conformal blocks. Here we have used global conformal sym-
metry to fix the positions of three of the operators.

For the minimal models there exist explicit integral expressions 
for the Ii(z) derived in [6,7] using the Coulomb gas representa-
tion of the conformal field theory. These take the form of chiral 
correlators

Ii(z) =
∮
C1

du1 · · ·
∮
Cn

dun

∮
D1

dv1 · · ·
∮

Dm

dvm

〈
Vα1(0)Vα2(z)Vα3(1)

× Vα4(∞)

n∏
J−(ui)

m∏
J+(v j)

〉

i=1 j=1
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= N z2α1α2(1 − z)2α3α2

∮
C1

du1 · · ·
∮
Cn

dun

∮
D1

dv1 · · ·
∮

Dm

dvm

×
n∏

i=1

u2α−α1
i (ui − 1)2α−α3(ui − z)2α−α2

×
m∏

j=1

v2α+α1
j (v j − 1)2α+α3(v j − z)2α+α2

×
n∏

i< j

(ui − u j)
2α2−

m∏
i< j

(vi − v j)
2α2+

∏
i, j

(ui − v j)
−2 (2)

The Coulomb gas charges

αn,m = 1

2
(1 − n)α− + 1

2
(1 − m)α+

determine the operator conformal weights

�n,m = 1

4

(
(α−n − α+m)2 − (α− + α+)2

)
where

α± = α0 ±
√

α2
0 + 1

and α0 is determined by the central charge

c = 1 − 24α2
0 .

In the above N is a normalization constant. The specification of the 
contours is described in detail in [6,7]. The contours may be cho-
sen as intervals along the real axis. For a given set of operators 
V i(z) there is a minimal choice for the set of screening operators 
J± which yield non-vanishing integrals. The number of indepen-
dent contours depends on the set of V i(z).

The derivation of (1) and (2) [6,7] proceeds via an identical 
analytic continuation to the mapping of tree-level open string am-
plitudes into closed string amplitudes [4]. The mapping is guar-
anteed for worldsheets with disc topology, since the process may 
be viewed either as creation of a closed string from the vacuum 
(with other vertex operator insertions) or as an open string be-
ing created and then subsequently annihilated. This motivates the 
conjecture that the minimal model CFT can likewise be viewed as 
arising from a more fundamental chiral description.

Our interest then will be to study the Mellin transform of the 
basic chiral blocks of the minimal model CFTs in order to study 
the open string description. One may then reinterpret the two-
dimensional CFT amplitudes as a definition of a dual holographic 
theory in three-dimensional anti-de Sitter spacetime following [2]. 
The Mellin transformed amplitudes are naturally interpreted as 
boundary S-matrix elements of the bulk theory, expressed in terms 
of kinematic variables. Our goal is to study the analytic properties 
of these Mellin amplitudes, and show that the expected structure 
of a dual resonance model emerges, in particular Regge trajecto-
ries with vanishing dispersion, and interactions polynomial in the 
kinematic variables.

To define the Mellin transform of Ii(z) we follow Mack’s sug-
gestion [2], eqn (69), to consider the chiral transform

Ii(z) = 1

(2π i)2

i∞+c∫
−i∞+c

dβ12

i∞+c′∫
−i∞+c′

dβ23 z−β12(1− z)−β23 M̂i
({

βi j
})

(3)

t
c
i

s

T
K
a

i
i
t
N

u

w
f
n
3
c
i

u

f

H
a

δ

w
P
b
P
d
e

a

B

b

o define the reduced Mellin amplitude M̂i . Here c and c′ are 
onstants chosen so the integral converges. Further details of the 
nterpretation of the Mellin amplitudes can be found in [2].

Our first task is to invert the formula (3) and solve for M̂i . Con-
ider the integrand in (2),

J i(z) = z2α1α2(1 − z)2α3α2

n∏
i=1

u2α−α1
i (ui − 1)2α−α3(ui − z)2α−α2

×
m∏

j=1

v2α+α1
j (v j − 1)2α+α3(v j − z)2α+α2

×
n∏

i< j

(ui − u j)
2α2−

m∏
i< j

(vi − v j)
2α2+

∏
i, j

(ui − v j)
−2

his is a special case of the integrand that appears in the general 
oba–Nielsen expression for the (4 + m + n)-open string scattering 
mplitudes [3].

The Mellin transform of open string amplitudes has been stud-
ed by Stieberger and Taylor [8]. In order to write their expression 
n a more symmetric form, it is written as a distribution to be in-
egrated over an overcomplete set of cross-ratios. Let us label the 
= (4 + m + n) points by zi . Defining

i, j = (zi − z j)(zi−1 − z j+1)

(zi − z j+1)(zi−1 − z j)

e obtain a basis for the N(N − 3)/2 anharmonic ratios. In this 
ormula (i, j) run over pairs conjugate to the kinematic chan-
els, corresponding to the range i = 2, j = 3, · · · , N − 1 and i =
, · · · , N − 1 < j = 4, · · · , N . The notation P denotes this set of 
hannels which corresponds to the set of independent kinematic 
nvariants of the string amplitude si, j which are analogs of the 
sual flat spacetime Mandelstam variables 

(
ki + · · · + k j

)2.
The cross-ratios satisfy constraint equations, leaving only N − 3

ree variables to be integrated over. The main result found in [8] is∏
(i, j)∈P

u
ni, j

i, j θ(1 − ui, j)δ
({

uk,l
})

= 1

(2π i)m

⎛
⎝ ∏

(i, j)∈P

i∞+c∫
−i∞+c

dsi, ju
−si, j

i, j

⎞
⎠ B N

({
sk,l

}
,
{
nk,l

})

ere the ni, j are integers subject to the constraint ni, j = n j+1,i−1
nd nk,N = n1,k−1. The constraint delta function is

({
ui, j

}) =
∏

P

′δ

⎛
⎝u P − 1 +

∏
P̃

u P̃

⎞
⎠

here the prime denotes the exclusion of the (2, k) channels and 
˜ denotes the set of channels incompatible with P . Incompati-
le channels cannot appear simultaneously with a given channel 

and satisfy the condition that if u P = 0 then u P̃ = 1. For more 
etails on the definition of incompatible channels see [8] and ref-
rences therein.

The B N
({

sn,l
}
,
{
nk,l

})
are just the Koba–Nielsen open string 

mplitudes [3] written as a Mellin transform

N
({

sk,l
}
,
{
nk,l

}) =
⎛
⎝ ∏

i, j∈P

∞∫
0

dui, ju
si, j−1+ni, j

i, j θ(1 − ui, j)

⎞
⎠

× δ
({

uk,l
})

For the case at hand, considering the transform of a conformal 
lock in a minimal model, only two of the si, j are independent, 
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corresponding to the β12 and β23 of (3). The remaining si, j are 
fixed by the exponents in (2) (after performing the change of vari-
ables from zi to ui, j [8]).

From the known properties of the Koba–Nielsen amplitudes, we 
conclude the general minimal model Mellin transforms have infi-
nite towers of single poles in the independent kinematic variables. 
Moreover the residues at these poles are polynomial in the other 
variables.

3. Example: critical Ising model

To provide an explicit example of the above correspondence let 
us consider the conformal blocks that appear in the 4-spin corre-
lator in the Ising model. The conformal blocks [9] are

F±(x) = 1√
2

(x(1 − x))−1/8
√

1 ± √
1 − x

To define the Mellin transformed open string amplitude we 
consider the integral

B±
3 (β12, β23) =

1∫
0

dxxβ12−1(1 − x)β23−1F±(x)

This gives the expression

B+
3 = √

2	

(
β12 − 1

8

)
	

(
2β23 − 1

4

)

× 2 F̃1

(
5

8
− β12,2β23 − 1

4
;β12 + 2β23 − 3

8
;−1

)

The analytic structure is simple. The regularized hypergeometric 
functions 2 F̃1 have no poles as a function of β12 and β23. Single 
poles appear along the two Regge trajectories (with m, n positive 
integers)

β12 = 9

8
− n

β23 = 5

8
− m

2

with polynomial residues in the other variables.
For the other block we get

B−
3 = √

2	

(
β12 + 3

8

)
	

(
2β23 − 1

4

)

× 2 F̃1

(
9

8
− β12,2β23 − 1

4
;β12 + 2β23 + 1

8
;−1

)

Single poles appear at

β12 = 5

8
− n

β23 = 5

8
− m

2

with polynomial residues in the other variables. These results indi-
cate infinite towers of massive states contribute to the amplitude 
in the string theory dual.

4. Discussion

Our main result is that minimal model correlation functions can 
be viewed as a computed by a kind of open string theory with 
meromorphic Mellin amplitudes. This is in accord with Mack’s con-
jecture that all conformal field theories are dual to string theories. 
In the present paper, the string theory is to be treated at the purely 
classical level, with no sum over topologies beyond the disk. This 
may be viewed as a limit where the string coupling goes to zero. 
Alternatively, the string worldsheet theory may be viewed as a chi-
ral gravity theory.

One can nevertheless propose a duality between the minimal 
models and some theory containing gravity in three-dimensional 
anti-de Sitter spacetime. Each primary of the conformal group 
maps to a bulk field. For scalar operators, the mass of the field 
in the bulk is related to the conformal dimension via

� = 1

2
±

√
1

4
+ m2 R2 (4)

where R is the AdS radius of curvature in string units. Analogous 
formulas exist for general spin. The on-shell boundary S-matrix 
written in terms of kinematic variables for this bulk theory may 
then be identified with the Mellin amplitude of the boundary 
conformal field theory. This is described in detail in [2]. The infi-
nite sequences of poles in the chiral Mellin amplitudes considered 
above leads to the prediction that the dual bulk string theory con-
tains infinite towers of massive string states.

This leads to the dramatic conclusion that the bulk theory may 
be viewed as a local theory. The Mellin amplitudes are mero-
morphic with residues that are polynomial in the other kinematic 
variables, as is the case in the familiar critical string theory ampli-
tudes. Of course the underlying CFT structure guarantees crossing 
symmetry and factorization. But bulk locality in the sense of this 
analytic structure comes as a complete surprise. In the past, local-
ity would emerged only in a large N limit where the bulk correla-
tors have a perturbative expansion [10–12].

The minimal model CFTs have only a finite number of primary 
fields. Each of these primary fields nevertheless has an infinite 
number of descendant fields, obtained by the action of the Vira-
soro algebra. Null states and their descendants may be truncated, 
but infinite towers of states remain. The Mellin amplitude contains 
a Regge trajectory associated with each primary, with the higher 
satellite poles corresponding to the descendant states.

It has been conjectured [13] that the simplest minimal model, 
the critical Ising model, is dual to Einstein gravity in three-
dimensional anti-de Sitter spacetime. The correspondence there re-
lied on a matching of partition functions. At first sight, this seems 
surprising in the present context, because the reduced Mellin am-
plitudes have poles along entire Regge trajectories. Since the Ein-
stein gravity theory is to be studied at strong curvature and large 
Newton constant, the matching of the proposal is hard to check. 
It might be that the Einstein action is sufficient to describe black 
hole states with the properties of the Regge trajectories described 
above.

The present results should be viewed as complementary to 
the results of Mack [2,1], where an expansion in terms of Eu-
clidean partial waves leads to similar conclusions regarding the 
analytic structure of the Mellin amplitudes. The new feature in 
the present work is the fact that a conformal block sums over 
an infinite number of Euclidean partial waves. Nevertheless, the 
analytic structure is preserved. We also note our conjecture that 
the minimal models have an open string interpretation in three-
dimensional anti-de Sitter spacetime goes somewhat beyond the 
original conjecture of Mack [1], which the additional assump-
tion that the boundary CFT descended from a higher dimen-
sional CFT.

Starting with a local bulk theory with a perturbative expansion, 
it was shown in [14] that the Mellin transform provides a useful 
description of the bulk correlators. In the present work there is no 
perturbative expansion for the bulk correlators. In fact the entire 
bulk description is made largely at the level of mappings of op-
erators according to representations of the conformal group. Given 
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the AdS radius of curvature will be of order one in string units, for 
minimal model duals, there will not be a low energy limit where 
gravity decouples. However it seems likely a version of string field 
theory will be applicable, and these results indicate the interac-
tions will have a local interpretation.
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