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Abstract

A ten-dimensional supersymmetricE8 gauge theory is compactified over six-dimensional coset spaces, establishing further
our earlier conjecture that the resulting four-dimensional theory is a softly broken supersymmetric gauge theory in the case that
the used coset space is non-symmetric. The specific non-symmetric six-dimensional spaces examined in the present study are
Sp(4)/(SU(2) ×U(1))non-max andSU(3)/U(1) ×U(1).  2001 Published by Elsevier Science B.V.

1. Introduction

Supersymmetry has been one of the essential ingre-
dients of most unification frameworks examined dur-
ing the few last decades. This is not a surprising fact
given that the hope of understanding in a unified man-
ner particles with different spins and the aim that such
a unified description should be free of ultraviolet di-
vergencies have been in the core of most attempts.
Supersymmetry by definition points to a fulfillment
of the first hope, while already the first of the non-
renormalization theorems in supersymmetric theories
[1] guarantees improved ultraviolet properties of such
theories. On the other hand the lack of any obvious
sign of supersymmetry in the low energy physics that
have been explored during the last decades, has risen
the question of supersymmetry breaking to a funda-
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mental issue comparable to the existence of supersym-
metry itself.

Since the early days of supersymmetry several
mechanisms such as the Fayet–Iliopoulos [2], the
Fayet–O’Raifeartaigh [3] have been proposed, while
the celebrated MSSM has been supplemented with
a soft supersymmetry breaking (SSB) sector which
was supposed to be inherited to the low energies by
supergravity [4].

Concerning higher-dimensional supersymmetric
theories, like those resulting in the field theory limit of
superstrings, mostly two mechanisms have been em-
ployed. One assumes thatN = 1 is preserved by the
compactification process and supersymmetry breaking
has its origin in the gaugino condensation taking place
in the “hidden” sector of the theory which eventually is
communicated to the observed sector. The other mech-
anism, called Scherk–Schwarz [5] breaks supersym-
metry in the process of compactification. In Ref. [6] a
new mechanism, based on the coset space dimensional
reduction (CSDR) [7–9] has been proposed as the pos-
sible origin of the SSB sector of a four-dimensional
supersymmetric theory.
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Specifically in Ref. [6] a ten-dimensional supersym-
metric gauge theory based on the groupE8 was re-
duced over the six-dimensional non-symmetric coset
spaceG2/SU(3) leading to anE6 softly broken super-
symmetric GUT in four dimensions. On the contrary
the original supersymmetry of the theory was com-
pletely broken by the dimensional reduction procedure
over the six-sphereSO(7)/SO(6) which is a symmet-
ric coset space. The conjecture of Ref. [6] was that
the above findings have a wider validity. In the present
work we establish further the conjecture of Ref. [6]
that dimensional reduction over non-symmetric coset
spaces leadsautomatically to softly broken super-
symmetric four-dimensional theories, by studying the
dimensional reduction of a ten-dimensional super-
symmetricE8 gauge theory over the rest two ex-
isting non-symmetric six-dimensional coset spaces.
We find that the dimensional reduction over the non-
symmetric coset spacesSp(4)/(SU(2)×U(1))non-max
andSU(3)/U(1)×U(1) leads to softly broken super-
symmetric gauge theories in four dimensions with a
complete SSB sector, while no other term that could
possibly spoil the ultraviolet properties of the theories
appears.

2. The coset space dimensional reduction

Given a gauge theory defined in higher dimensions
the obvious way to dimensionally reduce it is to de-
mand that the field dependence on the extra coordi-
nates is such that the Lagrangian is independent of
them. A crude way to fulfill this requirement is to
discard the field dependence on the extra coordinates,
while an elegant one is to allow for a non-trivial depen-
dence on them, but impose the condition that a sym-
metry transformation by an element of the isometry
groupS of the space formed by the extra dimensions
B corresponds to a gauge transformation. Then the La-
grangian will be independent of the extra coordinates
just because it is gauge invariant. This is the basis of
the CSDR scheme [7–9], which assumes thatB is a
compact coset space,S/R.

In the CSDR scheme one starts with a Yang–Mills–
Dirac Lagrangian, with gauge groupG, defined on
a D-dimensional spacetimeMD , with metric gMN ,
which is compactified toM4 × S/R with S/R a coset

space. The metric is assumed to have the form

(1)gMN =
[
ηµν 0
0 −gab

]
,

whereηµν = diag(1,−1,−1,−1) andgab is the coset
space metric. The requirement that transformations
of the fields under the action of the symmetry group
of S/R are compensated by gauge transformations
lead to certain constraints on the fields. The solu-
tion of these constraints provides us with the four-
dimensional unconstrained fields as well as with the
gauge invariance that remains in the theory after di-
mensional reduction. Therefore a potential unification
of all low energy interactions, gauge, Yukawa and
Higgs is achieved, which was the first motivation of
this framework.

It is interesting to note that the fields obtained us-
ing the CSDR approach are the first terms in the ex-
pansion of theD-dimensional fields in harmonics of
the internal spaceB and are massless after the first
stage of the symmetry breaking which is geometri-
cal. The effective field theories resulting from com-
pactification of higher-dimensional theories contain
also towers of massive higher harmonics (Kaluza–
Klein) excitations, whose contributions at the quan-
tum level alter the behaviour of the running cou-
plings from logarithmic to power [10]. As a re-
sult the traditional picture of unification of couplings
may change drastically [11]. Higher-dimensional the-
ories have also been studied at the quantum level
using the continuous Wilson renormalization group
[12] which can be formulated in any number of
spacetime dimensions with results in agreement with
the treatment involving massive Kaluza–Klein excita-
tions.

The groupS acts as a symmetry group on the the
extra coordinates. The CSDR scheme demands that
an S-transformation of the extrad coordinates is a
gauge transformation of the fields that are defined
on M4 × S/R, thus a gauge invariant Lagrangian
written on this space is independent of the extra
coordinates.

To see some of the details of the CDRS let us
consider aD-dimensional Yang–Mills–Dirac theory
with gauge groupG defined on a manifoldMD which
as stated will be compactified toM4 × S/R, D =
4+ d , d = dimS − dimR:
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A =
∫

d4x ddy
√−g

[
−1

4
Tr(FMNFKΛ)gMKgNΛ

(2)+ i

2
ψΓMDMψ

]
,

where

(3)DM = ∂M − θM −AM,

with

(4)θM = 1

2
θMNΛΣ

NΛ

the spin connection ofMD , and

(5)FMN = ∂MAN − ∂NAM − [AM,AN ],
whereM, N run over theD-dimensional space. The
fieldsAM andψ are, as explained, symmetric in the
sense that any transformation under symmetries of
S/R is compensated by gauge transformations. The
fermion fields can be in any representationF of G

unless a further symmetry such as supersymmetry is
required. So letξαA , A = 1, . . . ,dimS, be the Killing
vectors which generate the symmetries ofS/R and
WA the compensating gauge transformation associated
with ξA. Defining next the infinitesimal coordinate
transformation asδA ≡ LξA , i.e., the Lie derivative
with respect toξ , we obtain the following constraints
for the scalar, vector and spinor fields,

δAφ = ξαA∂αφ = D(WA)φ,

δAAα = ξ
β
A∂βAα + ∂αξ

β
AAβ = ∂αWA − [WA,Aα],

(6)δAψ = ξαAψ − 1

2
GAbcΣ

bcψ = D(WA)ψ.

WA depend only on internal coordinatesy andD(WA)

represents a gauge transformation in the appropriate
representation of the fields.GAbc represents a tangent
space rotation of the spinor fields. The variationsδA
satisfy, [δA, δB ] = f C

ABδC and lead to the following
consistency relation forWA’s,

(7)ξαA∂αWB − ξαB∂αWA − [WA,WB ] = f C
AB WC.

Furthermore theW ’s themselves transform under a
gauge transformation [8] as,

(8)W̃A = gWAg
−1 + (δAg)g

−1.

Using Eq. (8) and the fact that the Lagrangian is
independent ofy we can do all calculations aty = 0
and choose a gauge whereWa = 0.

The detailed analysis of the constraints (6) given
in Refs. [7,8] provides us with the four-dimensional
unconstrained fields as well as with the gauge in-
variance that remains in the theory after dimen-
sional reduction. Here we present only the results.
The componentsAµ(x, y) of the initial gauge field
AM(x,y) become, after dimensional reduction, the
four-dimensional gauge fields and furthermore they
are independent ofy. In addition one can find that they
have to commute with the elements of theRG sub-
group ofG. Thus the four-dimensional gauge group
H is the centralizer ofR in G, H = CG(RG). Simi-
larly, theAα(x, y) components ofAM(x,y) denoted
by φα(x, y) from now on, become scalars at four di-
mensions. These fields transform underR as a vec-
tor v, i.e.,

S ⊃ R,

(9)adjS = adjR + v.

Moreover φα(x, y) act as an intertwining operator
connecting induced representations ofR acting onG
andS/R. This implies, exploiting Schur’s lemma, that
the transformation properties of the fieldsφα(x, y)

under H can be found if we express the adjoint
representation ofG in terms ofRG ×H :

G ⊃ RG ×H,

(10)adjG = (adjR,1)+ (1,adjH)+
∑

(ri, hi).

Then if v = ∑
si , where eachsi is an irreducible

representation ofR, there survives anhi multiplet
for every pair(ri , si), whereri and si are identical
irreducible representations ofR.

Turning next to the fermion fields [7,8,13–15], sim-
ilarly to scalars, they act as intertwining operators be-
tween induced representations acting onG and the
tangent space ofS/R, SO(d). Proceeding along simi-
lar lines as in the case of scalars to obtain the represen-
tation ofH under which the four-dimensional fermi-
ons transform, we have to decompose the representa-
tionF of the initial gauge group in which the fermions
are assigned underRG × H , i.e.,

(11)F =
∑

(ti , hi),

and the spinor ofSO(d) underR

(12)σd =
∑

σj .
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Then for each pairti and σi , where ti and σi are
identical irreducible representations there is anhi

multiplet of spinor fields in the four-dimensional
theory. In order however to obtain chiral fermions
in the effective theory we have to impose further
requirements. We first impose the Weyl condition in
D dimensions. InD = 4n+2 dimensions which is the
case at hand, the decomposition of the left-handed, say
spinor underSU(2)× SU(2)× SO(d) is

(13)σD = (2,1, σd)+ (1,2, σ̄d).

So we have in this case the decompositions

(14)σd =
∑

σk, σ̄d =
∑

σ̄k.

Let us start from a vector-like representationF for the
fermions. In this case each term(ti, hi) in Eq. (11) will
be either selfconjugate or it will have a partner(t̄i , h̄i ).
According to the rule described in Eqs. (11), (12) and
consideringσd we will have in four dimensions left-
handed fermions transforming asfL = ∑

hL
k . It is

important to notice that sinceσd is non-selfconjugate,
fL is non-selfconjugate too. Similarly from̄σd we
will obtain the right handed representationfR =∑

h̄R
k but as we have assumed thatF is vector-

like, h̄R
k ∼ hL

k . Therefore there will appear two sets
of Weyl fermions with the same quantum numbers
under H . This is already a chiral theory, but still
one can go further and try to impose the Majorana
condition in order to eliminate the doubling of the
fermionic spectrum. Clearly if we had started with
F complex, we should have again a chiral theory
since in this casēhR

k is different fromhL
k (σd non-

selfconjugate). Nevertheless starting withF vector-
like is much more appealing and will be used in the
following along with the Majorana condition. The
Majorana condition can be imposed inD = 2,3,4 +
8n dimensions and is given byψ = C(ψ̄)T , where
C is the D-dimensional charge conjugation matrix.
Majorana and Weyl conditions are compatible inD =
4n + 2 dimensions. Then in our case if we start with
Weyl–Majorana spinors inD = 4n+2 dimensions we
forcefR to be the charge conjugate tofL, thus arriving
in a theory with fermions only infL. Furthermore ifF
is to be real, then we have to haveD = 2 + 8n, while
for F pseudorealD = 6+ 8n.

Starting with an anomaly free theory in higher di-
mensions, in Ref. [16] was given the condition that has

to be fulfilled in order to obtain anomaly free theories
in four dimensions after dimensional reduction. The
condition restricts the allowed embeddings ofR into
G [8,17]. ForG = E8 in ten dimensions the condition
takes the form

(15)l(G) = 60,

where l(G) is the sum over all indices of theR
representations appearing in the decomposition of the
248 representation ofE8 underE8 ⊃ R × H . The
normalization is such that the vector representation in
Eq. (9) which defines the embedding ofR into SO(6),
has index two.

Next let us obtain the four-dimensional effective
action. Assuming that the metric is block diagonal,
taking into account all the constraints and integrating
out the extra coordinates we obtain in four dimensions
the following Lagrangian:

A= C

∫
d4x

(
−1

4
F t
µνF

tµν + 1

2
(Dµφα)

t
(
Dµφα

)t
+ V (φ)+ i

2
ψ̄Γ µDµψ

(16)− i

2
ψ̄Γ aDaψ

)
,

whereDµ = ∂µ − Aµ andDa = ∂a − θa − φa with
θa = 1

2θabcΣ
bc the connection of the coset space,

whileC is the volume of the coset space. The potential
V (φ) is given by

V (φ) = −1

4
gacgbd Tr

(
f C
abφC − [φa,φb]

)
(17)× (

f D
cdφD − [φc,φd ]

)
,

where,A = 1, . . . ,dimS andf ’s are the structure con-
stants appearing in the commutators of the generators
of the Lie algebra ofS. The expression (17) forV (φ)

is only formal becauseφa must satisfy the constraints
coming from Eq. (6),

(18)fD
ai φD − [φa,φi ] = 0,

where theφi generateRG. These constraints imply
that some componentsφa ’s are zero, some are con-
stants and the rest can be identified with the genuine
Higgs fields. WhenV (φ) is expressed in terms of
the unconstrained independent Higgs fields, it remains
a quartic polynomial which is invariant under gauge
transformations of the final gauge groupH , and its
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minimum determines the vacuum expectation values
of the Higgs fields [18,19].

In the fermion part of the Lagrangian the first
term is just the kinetic term of fermions, while the
second is the Yukawa term [20]. Note that sinceψ

is a Majorana–Weyl spinor in ten dimensions the
representation in which the fermions are assigned
under the gauge group must be real. The last term in
Eq. (16) can be written as

LY = − i

2
ψ̄Γ a

(
∂a − 1

2
fibce

i
γ e

γ
a Σ

bc

− 1

2
GabcΣ

bc − φa

)
ψ

(19)= i

2
ψ̄Γ a∇aψ + ψ̄V ψ,

where

(20)∇a = −∂a + 1

2
fibce

i
γ e

γ
a Σ

bc + φa,

(21)V = i

4
Γ aGabcΣ

bc,

and we have used the full connection with torsion [8]
given by

θacb = −f a
ibe

i
αe

α
c −

(
Da

cb + 1

2
Σa

cb

)
(22)= −f a

ibe
i
αe

α
c −Ga

cb

with

(23)Da
cb = gad 1

2

[
fdb

egec + fcb
egde − fcd

egbe
]

and

(24)Σabc = 2τ (Dabc +Dbca −Dcba).

We have already noticed that the CSDR constraints
tell us that∂aψ = 0. Furthermore we can consider the
Lagrangian at the pointy = 0, due to its invariance
underS-transformations, and as we mentionedeiγ = 0
at that point. Therefore Eq. (20) becomes just∇a = φa

and the termi
2ψ̄Γ a∇aψ in Eq. (19) is exactly the

Yukawa term.
Let us examine now the last term appearing in

Eq. (19). One can show easily that the operatorV an-
ticommutes with the six-dimensional helicity opera-
tor [8]. Furthermore one can show thatV commutes
with theTi = −1

2fibcΣ
bc (Ti close theR-subalgebra

of SO(6)). In turn we can draw the conclusion, exploit-
ing Schur’s lemma, that the non-vanishing elements of
V are only those which appear in the decomposition of
bothSO(6) irreps 4 and4, e.g. the singlets. Since this
term is of pure geometric nature, we reach the conclu-
sion that the singlets in 4 and4 will acquire large geo-
metrical masses, a fact that has serious phenomeno-
logical implications. In supersymmetric theories de-
fined in higher dimensions, it means that the gauginos
obtained in four dimensions after dimensional reduc-
tion receive masses comparable to the compactifica-
tion scale. However as we shall see in the next sections
this result changes in presence of torsion. We note that
for symmetric coset spaces theV operator is absent
since in that casef c

ab vanish by definition.

3. Soft supersymmetry breaking by dimensional
reduction over non-symmetric coset spaces

Recently a lot of interest has been triggered by
the possibility that superstrings can be defined at the
TeV scale [21]. The string tension became an arbitrary
parameter and can be anywhere below the Planck
scale and as low as TeV. The main advantage of
having the string tension at the TeV scale, besides
the obvious experimental interest, is that it offers
an automatic protection to the gauge hierarchy [21],
alternative to low energy supersymmetry [22], or
dynamical electroweak symmetry breaking [23–25].
However the only vacua of string theory free of all
pathologies are supersymmetric. Then the original
supersymmetry of the theory, not being necessary in
four dimensions, could be broken by the dimensional
reduction procedure.

The weakly coupled ten-dimensionalE8 × E8 su-
persymmetric gauge theory is one of the few to possess
the advantage of anomaly freedom [26] and has been
extensively used in efforts to describe quantum gravity
along with the observed low energy interactions in the
heterotic string framework [27]. In addition its strong
coupling limit provides an interesting example of the
realization of the brane picture, i.e.,E8 gauge fields
and matter live on the two 10-dimensional boundaries,
while gravitons propagate in the eleven-dimensional
bulk [28].

In the following sections we shall be reducing a
supersymmetric ten-dimensional gauge theory based
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on E8 over the six-dimensional coset spacesSp(4)/
(SU(2) × U(1))non-max andSU(3)/U(1) × U(1) and
examine the consequences of the resulting four-
dimensional theory mostly as far as supersymmetry
breaking is concerned.

3.1. Supersymmetry breaking by dimensional
reduction over Sp(4)/(SU(2)×U(1))non-max

In the present study we start with a ten-dimensional
supersymmetric gauge theory based on the groupE8
and reduce it over the non-symmetric cosetSp(4)/
(SU(2) × U(1))non-max. Therefore in the terminol-
ogy of Section 2 we have chosenG = E8, B =
Sp(4)/(SU(2) × U(1))non-max, D = 10 and Weyl–
Majorana fermions belonging in the adjoint ofG. We
start by giving the decompositions to be used,

E8 ⊃ SU(3) ⊃ SU(2)×U(1)×E6.

The decomposition of 248 ofE8 underSU(3)×E6 is
given by

248= (8,1)+ (1,78)+ (3,27)+ (3,27),

while under(SU(2)× U(1))× E6 is the following:

248= (30,1)+ (10,1)+ (10,78)+ (23,1)

+ (2−3,1)+ (21,27)+ (2−1,27)

(25)+ (1−2,27)+ (12,27).

In the present caseR is chosen to be identified with
theSU(2)×U(1) of the latter of the above decomposi-
tions. Therefore the resulting four-dimensional gauge
theory is based on the group

H = CE8

(
SU(2)×U(1)

) = E6 ×U(1),

where theU(1) appears since theU(1) in R cen-
tralizes itself. TheR = SU(2) × U(1) content of
Sp(4)/(SU(2) × U(1))non-max vector and spinor are
21 + 2−1 + 12 + 1−2 and 21 + 10 + 1−2, respectively.
Thus applying the CSDR rules (9), (10) and (11), (12)
we find that the surviving fields in four dimensions
can be organized in aN = 1 vector supermultipletV α

which transforms as 78 ofE6, a N = 1 U(1) vector
supermultipletV and chiral supermultiplets (Bi , Ci ),
transforming as(27,1), and(27,−2) under the gauge
groupE6 ×U(1).

We find that the potential of the four-dimensional
theory, in terms of the physical scalar fieldsβi , andγ i

is given by

V
(
βi, γ j

)
= const− 6

R2
1

βiβi − 4

R2
2

γ iγi

+
[
4

√
10

7
R2

(
1

R2
2

+ 1

2R2
1

)
dijkβ

iβjγ k + h.c.

]

+ 6
(
βi

(
Gα

)j
i
βj + γ i

(
Gα

)j
i
γj

)2

+ 1

3

(
βi

(
1δji

)
βj + γ i

(−2δji
)
γj

)2

+ 5

7
βiβjdijkd

klmβlβm

(26)+ 4
5

7
βiγ j dijkd

klmβlγm.

From the potential (26) we can determine theF -,
D- and the scalar soft terms which break softly
the supersymmetric theory obtained by CSDR over
Sp(4)/(SU(2) × U(1))non-max. Specifically we find
that theF -term contributions to the potential (26)
come from the superpotential

(27)W
(
Bi,Cj

) =
√

5

7
dijkB

iBjCk.

Similarly the D-term contributions to the potential
(26) are given by the sum

(28)
1

2
DαDα + 1

2
DD,

where

Dα = √
12

(
βi

(
Gα

)j
i
βj + γ i

(
Gα

)j
i
γj

)
and

D =
√

2

3

(
βi

(
1δji

)
βj + γ i

(−2δji
)
γj

)
corresponding to the vector supermultiplets ofE6 ×
U(1). The remaining terms in the potential (26) are the
soft breaking mass and trilinear terms and they form
the scalar SSB part of the Lagrangian,

Lscalar SSB=
− 6

R2
1

βiβi − 4

R2
2

γ iγi

(29)

+
[
4

√
10

7
R2

(
1

R2
2

+ 1

2R2
1

)
dijkβ

iβjγ k + h.c.

]
.
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The gaugino mass has been calculated in Ref. [20] to
be

(30)M = (1+ 3τ )
R2

2 + 2R2
1

8R2
1R2

.

We note that the chosen embedding ofR = SU(2) ×
U(1) in E8 satisfies the condition (15) which guaran-
tees the renormalizability of the four-dimensional the-
ory, while the absence of any other term that does not
belong to the supersymmetricE6 × U(1) theory or to
its SSB sector guarantees the improved ultraviolet be-
haviour of the theory. Finally note the contribution of
the torsion in the gaugino mass (30).

3.2. Supersymmetry breaking by reduction over
SU(3)/(U(1)×U(1))

In this model the only difference as compared to
the previous one is that the chosen coset space to
reduce the same theory is the non-symmetricB =
SU(3)/U(1) × U(1). The decompositions to be used
are

E8 ⊃ SU(2)×U(1)×E6

⊃U(1)1 ×U(1)2 × E6.

The 248 ofE8 is decomposed underSU(2) × U(1)
according to (25) whereas the decomposition under
U(1)1 × U(1)2 is the following:

248= (0,0;1)+ (0,0;1)+
(

3,
1

2
;1

)
+

(
−3,

1

2
;1

)

+ (0,−1;1)+ (0,1;1)+
(
−3,−1

2
;1

)

+
(

−3,−1

2
;1

)
+ (0,0;78)+

(
3,

1

2
;27

)

+
(

−3,
1

2
;27

)
+ (0,−1;27)

(31)

+
(

−3,−1

2
;27

)
+

(
3,−1

2
;27

)
+ (0,1;27).

In the present caseR is chosen to be identified with the
U(1)1 ×U(1)2 of the latter decomposition. Therefore
the resulting four-dimensional gauge group is

H = CE8

(
U(1)1 × U(1)2

) = U(1)1 ×U(1)2 ×E6.

Again the twoU(1)’s appear becauseR (= U(1)1 ×
U(1)2) centralizes itself. TheR = U(1) × U(1) con-
tent of SU(3)/U(1) × U(1) vector and spinor are
(3, 1

2) + (−3, 1
2) + (0,−1) + (−3,−1

2) + (3,−1
2) +

(0,1) and(0,0)+ (3, 1
2)+ (−3, 1

2)+ (0,−1), respec-
tively. Thus applying the CSDR rules (9)–(12) we find
that the surviving fields in four dimensions are three
N = 1 vector multipletsV α,V(1), V(2) (whereα is an
E6, 78 index and the other two refer to the twoU(1)’s)
containing the gauge fields ofU(1)1 × U(1)2 × E6.
The matter content consists of threeN = 1 chiral mul-
tiplets (Ai , Bi , Ci ) with i anE6, 27 index and three
N = 1 chiral multiplets (A, B, C) which areE6 sin-
glets and carryU(1)1 ×U(1)2 charges.

We find that the unconstrained scalar fields trans-
form underU(1)1 ×U(1)2 ×E6 as

αi ∼
(

3,
1

2
;27

)
, α ∼

(
3,

1

2
;1

)
,

βi ∼
(

−3,
1

2
;27

)
, β ∼

(
−3,

1

2
;1

)
,

(32)γi ∼ (0,−1;27), γ ∼ (0,−1;1).

The potential of the four-dimensional theory in terms
of the unconstrained fields given in (32) is the follow-
ing

V
(
αi,βj , γ k,α,β, γ

)
= const.+

(
4R2

1

R2
2R

2
3

− 8

R2
1

)
αiαi

+
(

4R2
1

R2
2R

2
3

− 8

R2
1

)
ᾱα

+
(

4R2
2

R2
1R

2
3

− 8

R2
2

)
βiβi +

(
4R2

2

R2
1R

2
3

− 8

R2
2

)
β̄β

+
(

4R2
3

R2
1R

2
2

− 8

R2
3

)
γ iγi +

(
4R2

3

R2
1R

2
2

− 8

R2
3

)
γ̄ γ

+
[√

280

(
R1

R2R3
+ R2

R1R3
+ R3

R2R1

)
dijkα

iβjγ k

+ √
280

(
R1

R2R3
+ R2

R1R3
+ R3

R2R1

)
αβγ + h.c.

]

+ 1

6

(
αi

(
Gα

)j
i
αj + βi

(
Gα

)j
i
βj + γ i

(
Gα

)j
i
γj

)2

+ 10

6

(
αi

(
3δji

)
αj + ᾱ(3)α + βi

(−3δji
)
βj

+ β̄(−3)β
)2
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+ 40

6

(
αi

(
1

2
δ
j

i

)
αj + ᾱ

(
1

2

)
α + βi

(
1

2
δ
j

i

)
βj

+ β̄

(
1

2

)
β + γ i

(−1δji
)
γj + γ̄ (−1)γ

)2

+ 40αiβjdijkd
klmαlβm + 40βiγ jdijkd

klmβlγm

+ 40αiγ jdijkd
klmαlγm

(33)

+ 40(ᾱβ̄)(αβ)+ 40(β̄γ̄ )(βγ )+ 40(γ̄ ᾱ)(γ α).

From the potential (33) we read theF -, D- and
scalar soft terms. TheF -terms are obtained from the
superpotential

W
(
Ai,Bj ,Ck,A,B,C

)
(34)= √

40dijkA
iBjCk + √

40ABC.

TheD-terms have the structure

(35)
1

2
DαDα + 1

2
D1D1 + 1

2
D2D2,

where

Dα = 1√
3

(
αi

(
Gα

)j
i
αj + βi

(
Gα

)j
i
βj + γ i

(
Gα

)j
i
γj

)
,

D1 =
√

10

3

(
αi

(
3δji

)
αj + ᾱ(3)α

+ βi
(−3δji

)
βj + β̄(−3)β

)
and

D2 =
√

40

3

(
αi

(
1

2
δ
j
i

)
αj + ᾱ

(
1

2

)
α + βi

(
1

2
δ
j
i

)
βj

+ β̄

(
1

2

)
β + γ i

(−1δji
)
γj

+ γ̄ (−1)γ

)
,

which correspond to theU(1)1 × U(1)2 × E6 vector
supermultiplet content of the four-dimensional theory.
The rest terms are the trilinear and mass terms which
break supersymmetry softly and they form the scalar
SSB part of the Lagrangian,

Lscalar SSB

=
(

4R2
1

R2
2R

2
3

− 8

R2
1

)
αiαi +

(
4R2

1

R2
2R

2
3

− 8

R2
1

)
ᾱα

+
(

4R2
2

R2
1R

2
3

− 8

R2
2

)
βiβi +

(
4R2

2

R2
1R

2
3

− 8

R2
2

)
β̄β

+
(

4R2
3

R2
1R

2
2

− 8

R2
3

)
γ iγi +

(
4R2

3

R2
1R

2
2

− 8

R2
3

)
γ̄ γ

(36)

+
[√

280

(
R1

R2R3
+ R2

R1R3
+ R3

R2R1

)
dijkα

iβjγ k

+ √
280

(
R1

R2R3
+ R2

R1R3
+ R3

R2R1

)
αβγ

+ h.c.

]
.

Finally in order to determine the gaugino mass we
calculate theV operator appearing in Eq. (19). We find
that the gauginos acquire a geometrical mass

(37)M = (1+ 3τ )
(R2

1 +R2
2 +R2

3)

8
√
R2

1R
2
2R

2
3

.

We note again that the chosen embedding satisfies the
condition (15) and the absence in the four-dimensional
theory of any other term that does not belong to the su-
persymmetricU(1)1 ×U(1)2 ×E6 gauge theory or to
its SSB sector. The gaugino mass (37) has a contribu-
tion from the torsion of the coset space similarly to the
reduction over the other non-symmetric spaces. Con-
trary to the gaugino mass term the soft scalar terms of
the SSB do not receive contributions from the torsion
in all models. This is due to the fact that gauge fields,
contrary to fermions, do not couple to torsion.

4. Conclusions

The CSDR was originally introduced as a scheme
which, making use of higher dimensions, incorporates
in a unified manner the gauge and the ad hoc Higgs
sector of the spontaneously broken gauge theories in
four dimensions [7]. Next fermions were introduced
in the scheme and the ad hoc Yukawa interactions have
also been included in the unified description [14].

Considerable progress has also been made in at-
tempts to describe the observed low-energy world
within the CSDR framework. Among the new possi-
bilities emerged from the subsequent studies of the
CSDR scheme are the following: (a) the possibil-
ity to obtain chiral fermions in four dimensions re-
sulting from vector-like representations of the higher-
dimensional gauge theory [8,13]. This possibility can
be realized due the presence of non-trivial background
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gauge configurations which are introduced by the
CSDR constructions [29], (b) the possibility to deform
the metric of certain non-symmetric coset spaces and
thereby obtain more than one scales [8,19,30], (c) the
possibility to use coset spaces, which are multiply con-
nected. This can be achieved by exploiting the discrete
symmetries of theS/R [8,31]. Then one might intro-
duce topologically non-trivial gauge field [32] con-
figurations with vanishing field strength and induce
additional breaking of the gauge symmetry. It is the
Hosotani mechanism [33] applied in the CSDR.

In the above list recently has been added the inter-
esting possibility that the popular softly broken su-
persymmetric four-dimensional chiral gauge theories
might have their origin in a higher-dimensional super-
symmetric theory with only vector supermultiplet [6],
which is dimensionally reduced over non-symmetric
coset spaces. In the present work we have extended
the previous observations [8,13,20] and the concrete
proposal of Ref. [6] in the remaining six-dimensional
non-symmetric coset spaces, demonstrating in this
way that the claim of Ref. [6] holds more generally
and it is not just a peculiarity of the coset space that
was used.

Given the recent interest on the Scherk–Schwarz
mechanism [34], it is worth adding few comments
concerning the relation among the Scherk–Schwarz
and our mechanism. Without making any attempt to
cover the many aspects of the subject discussed over
years it seems that Scherk and Schwarz [5], were influ-
enced by the work of Forgacs and Manton [7], which
was done few months earlier and used the general-
ized reduction on which the CSDR is based on, i.e.,
they also allowed dependence of various fields on the
compact space coordinates corresponding to a gauge
transformation. Moreover in Ref. [5], among others,
they have examined the reduction of supersymmetric
Yang–Mills theories in the above sense as we do. The
real difference is that they did the reduction on a group
manifold instead of coset space, which is a limiting
case of coset space withR = I and has the obvious
problem that the resulting four-dimensional theory has
no chiral fermions. They claimed without going in the
details that supersymmetry was broken.

Schwarz more than twenty years later, in Ref. [35],
was describing the basic idea of the Scherk–Schwarz
mechanism as follows: “the idea is that in a theory
with extra dimensions and global symmetries that do

not commute with supersymmetry (R symmetries and
(−1)F are examples), one could arrange for a twisted
compactification, and that this would break super-
symmetry”. In case of ordinary reduction of a ten-
dimensional supersymmetric Yang–Mills theory one
obtainsN = 4 supersymmetric Yang–Mills theory in
four dimensions. This has a globalSU(4) R symme-
try which is identified with the tangent spaceSO(6).
In the CSDR in order to solve the constraints imposed
on the fermions one has to embedR (of S/R) into
SO(6). Moreover the four-dimensional Lagrangian re-
sulting from CSDR has an a global symmetryR (of
theS/R). Therefore the CSDR satisfies automatically
the criterion stated by Schwarz above that could lead
to supersymmetry breaking.
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