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ABSTRACT Spheroidal high-density lipoprotein (HDL) particles circulating in the blood are formed through an enzymatic
process activated by apoA-I, leading to the esterification of cholesterol, which creates a hydrophobic core of cholesteryl ester
molecules in the middle of the discoidal phospholipid bilayer. In this study, we investigated the conformation of apoA-I in model
spheroidal HDL (ms-HDL) particles using both atomistic and coarse-grained molecular dynamics simulations, which are found
to provide consistent results for all HDL properties we studied. The observed small contribution of cholesteryl oleate molecules
to the solvent-accessible surface area of the entire ms-HDL particle indicates that palmitoyloleoylphosphatidylcholines and
apoA-I molecules cover the hydrophobic core comprised of cholesteryl esters particularly well. The ms-HDL particles are found
to form a prolate ellipsoidal shape, with sizes consistent with experimental results. Large rigid domains and low mobility of the
protein are seen in all the simulations. Additionally, the average number of contacts of cholesteryl ester molecules with apoA-I
residues indicates that cholesteryl esters interact with protein residues mainly through their cholesterol moiety. We propose that
the interaction of annular cholesteryl oleate molecules contributes to apoA-I rigidity stabilizing and regulating the structure and
function of the ms-HDL particle.

INTRODUCTION

It is well known that in humans, high-density lipoproteins

(HDL) are protective against the risk of cardiovascular dis-

ease and atherosclerosis (1). Among exchangeable apolipo-

proteins, the apolipoprotein A-I (apoA-I) is the major protein

of plasma HDL and the main carrier of excess cholesterol

from peripheral tissues to the liver in a process termed reverse

cholesterol transport (RCT) (Fig. 1). In vivo, HDL originates

as a pre-b complex of apoA-I and phospholipids that are

either secreted intracellularly in the liver and intestine, or are

formed extracellularly by the interaction of lipid-poor apoA-I

with small amounts of phospholipids. These pre-b HDLs are

highly effective acceptors of unesterified cholesterol from

cell membranes (2,3).

In the first step of RCT, the ATP-binding cassette trans-

porter A1 (Fig. 1, ABCA1) (4) assembles newly synthesized

(lipid-poor) apoA-I, phospholipids, and cholesterol to form

discoidal HDL particles. During the second step, discoidal

HDL particles function as substrates for the activation of the

enzyme lecithin:cholesterol acyl transferase (LCAT) (5,6),

catalyzed by apoA-I, which is necessary for the esterification

of cholesterol molecules in HDL. That process leads to the

conversion of cholesterol and phosphatidylcholines to cho-

lesteryl esters and lysophosphatidylcholines. The removal of

cholesterol from the surface of these discoidal complexes

promotes an important morphological change: the transfor-

mation of discoidal HDL into spheroidal HDL. The latter is

the form of HDL that circulates in the blood stream. In the

third step, spheroidal HDL particles interact with receptors,

such as the scavenger receptor type I (SR-BI) (7), leading to

cholesterol uptake by the liver and excretion into the bile,

remodeling of particles, and regeneration of lipid-free apoA-I.

Remodeling of HDL particles is also performed by other

plasma enzymes and transfer proteins, such as the cholesteryl

ester transfer protein (CETP) and the phospholipid transfer

protein (PLTP). CETP catalyzes the transfer of excess cho-

lesteryl esters from HDL to low-density lipoproteins (LDL)

and very-low-density lipoproteins (VLDL) (8). PLTP, on the

other hand, promotes the transfer of excess phospholipid

molecules from HDL to VLDL, and the conversion of HDL

into smaller and larger particles (9,10).

LCAT is a key enzyme in maintaining cholesterol homeo-

stasis and regulating cholesterol transport in the blood stream.

In cases of severeLCATdeficiency, cholesterol and cholesteryl

esters accumulate in tissues, and the level of unesterified

cholesterol increases in blood cells (11,12). Spheroidal HDL
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particles play a significant physiological role in transporting

cholesterol from peripheral tissues to the liver for excretion as

bile salts, and to steroidogenic tissues for synthesis of steroid

hormones. The size of spheroidal complexes is determined

primarily by the number of apoA-I and apoA-II molecules

per particle. Spheroidal HDL particles containing apoA-I but

not apoA-II exhibit two distinct particle sizes with Stokes

diameters of 8.5 and 10.8 nm (13), for two and three apoA-I

molecules, respectively (14,15). Spheroidal HDL particles

containing apoA-I and apoA-II in a 2:1 molar ratio show three

distinct particle sizes with Stokes diameters of 8.0, 8.9, and 9.6

nm (13). Spheroidal HDL complexes can also be reconstituted

in vitro mainly by means of ultrasound techniques (16).

Although a number of experiments have focused on the

structure and dynamics of apoA-I (17) in lipid-free form in

solution (18), and in lipid-bound form in discoidal HDL

complexes (19,20), the structure and dynamics of apoA-I

in spheroidal HDL particles has been elusive. An early study

of spherical HDL3 particles proposed that apolipoproteins

shared the surface with the polar headgroups of phospholipids

(21), whereas cholesteryl esters and triglycerides consituted

the hydrophobic core. In spheroidal HDL, the apoA-I am-

phipathic a-helices probably interact with the acyl chains of

lipids (22). This structural view of spheroidal HDL is also

similar to that proposed by Hevonoja et al. to describe the

structure of spheroidal LDL (23). Sparks and colleagues

showed that the structure and stability of apoA-I are a function

of particle size for discoidal complexes but not for spheroidal

particles (16). Moreover, they found that the valence of apoA-I

on in vitro reconstituted spheroidal HDL (r-HDL) is ;1.5

negative charge units less than that for apoA-I on discoidal

r-HDL. This result suggests that these two morphological states

of HDL may be characterized by different surface charges.

Using nuclear magnetic resonance (NMR), the same authors

(24) also showed that the apoA-I conformation is sensitive to

changes in HDL size and shape.

The above studies, and a more recent surface plasmon

resonance study (25), confirm that apoA-I’s secondary struc-

ture undergoes a significant conformational change during the

transition from discoidal to spheroidal HDL. This observation

has also been supported by the adaptation of the x-ray crystal

structure of D43 apoA-I (26) to a model spheroidal HDL in

which the enlarged gap between helices 10 of apoA-I should

allow the insertion of another apoA-I dimer and, eventually,

other apolipoproteins (27). However, studies of the apoA-I

structure on discoidal and spherical HDL by fluorescence

resonance energy transfer (FRET) (28,29) indicate that the

apoA-I registry can also vary.

The structure of apoA-I in discoidal r-HDL particles has

also been studied through atomistic molecular dynamics

(MD) simulations using the picket fence (30,31) and the

double belt (32–34) models. Segrest et al. (30) proposed a

double belt model for discoidal HDL. The model consists of

lipid-associating domains of apoA-I arranged as continuous

antiparallel amphipathic helices around a bilayer disc con-

taining 160 palmitoyloleoylphosphatidylcholine (POPC) mole-

cules to form a 106 Å-diameter particle. Although that model

depends upon certain features of the x-ray crystal structure of

the lipid-associating domain of apoA-I (26), the general

features of the double belt model have been confirmed by

different experimental methods (35–37).

Recently, we also showed that in silico the sequential de-

pletion of POPC molecules from a discoidal particle pro-

duced dramatic conformational changes in the protein’s

structure and novel morphologies of HDL particles (38). The

particles with POPC/D40 apoA-I molar ratios of 100:2 and

50:2 assumed prolate ellipsoidal shapes. These results were

confirmed experimentally by Li et al. (37), who used non-

denaturing gradient gel electrophoresis (NDGGE) to show

that reconstituted discoidal HDL particles containing two

apoA-I and variable amounts of dimyristoylphosphatidylcho-

line (DMPC) molecules, called R2 complexes, display sizes

with maximal Stokes diameters of 98 Å (R2-1), 106 Å

(R2-2), 110 Å (R2-3), 114 Å (R2-4), and 120 Å (R2-5). They

also observed, using NDGGE and negative-stain electron

microscopy (EM), that a particle even smaller than the R2-1

particle, a particle of Stokes diameter 78 Å, termed R2-0,

results when apoA-I particles are reconstituted in vitro using

POPC rather than DMPC (L. Li, J. Chen, F. Gu, J. C.

Patterson, A. Catte, and J. P. Segrest, unpublished results).

Since the three-dimensional shapes of the 100:2 and 50:2

particles approached a sphere, this result suggests that these

two particles could be considered intermediates in the for-

mation of cholesteryl-ester-containing HDL particles with a

conformation of apoA-I approximating that in spheroidal

circulating HDL. More recently, coarse-grained (CG) MD

simulations have also been employed to study the assembly

of lipoprotein particles (39,40). Although the structure of the

lipoprotein core of cholesteryl esters has been studied by

means of atom-scale MD simulations (41), in silico studies of

these systems in the presence of apolipoproteins are lacking.

To explore the structure and dynamics of spheroidal HDL

particles, we use MD simulations of model spheroidal HDL

(ms-HDL) with molar ratios similar to spheroidal r-HDL (16).

FIGURE 1 Assembly of discoidal and spheroidal HDL in the reverse

cholesterol transport.
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Atomistic and CGMD simulations of ms-HDL particles were

performed at the physiological temperature (310 K), and also

at 410 K. The initial particle, which was previously simulated

over 1 ns, with a D40 apoA-I double belt surrounding a

saddle-shaped POPC bilayer with 80 lipid molecules (38),

was subjected to removal of 24 POPC molecules from the

center. That was followed by the insertion of a cluster of

16 cholesteryl oleate molecules (CO), generating a starting

model with a POPC/CO/D40 apoA-I molar ratio of 56:16:2

(Fig. 2). This stoichiometry is representative for subspecies

coming from the native HDL3 subclass (42). In both atom-

istic and CGMD simulations at 310 K, the ms-HDL particles

assume prolate ellipsoidal shapes, approaching a spheroidal

shape in the all-atom simulation.

The rest of this article is organized as follows. In the next

section, we describe the computational details, force fields,

and analytical parameters.In Results and Discussion, we

perform a comparison of atomistic and CG simulations, and

show and discuss the main results. We close this work with a

Summary and Conclusions.

MATERIALS AND METHODS

Atomistic force field details

Parameterization of cholesteryl oleate molecules

The initial configuration for a single CO molecule was prepared from co-

ordinate files for cholesterol and POPC by working interactively with the

molecular modeling program ArgusLab 4.0.1. (43). Using an approach

similar to Heikelä et al. (41), the cholesterol molecule was esterified by at-

taching the oleoyl chain obtained from a POPC molecule to an OH group. In

this way, the double bond between C9 and C10 carbon atoms was parame-

terized using the double-bond region of the oleoyl chain of POPC (Supple-

mentary Material, Fig. S1). The force field for CO molecules was generated

from existing CHARMM force fields for cholesterol (44) and POPC (45).

System setup

To prepare the system, we proceeded as follows: first, we generated and

simulated a hydrophobic core of CO molecules. Then, we inserted it into a

previously simulated model discoidal HDL particle depleted of an adequate

number of POPC molecules to allow the insertion of the simulated cluster of

CO molecules. Finally, the hydrophobic core was inserted to generate a

starting ms-HDL particle. The details of the system setup are described below.

Generation of the CO hydrophobic core

To create a hydrophobic core of CO molecules, a system of 16 CO molecules

was built up in a stepwise fashion using the packing ofCOmolecules in an x-ray

crystal structure at 123K (46) as a reference. First, four isolatedmolecules were

aligned using the Visual Molecular Dynamics (VMD) software to form a

starting building block (47). Then it was replicated and four copies of it were

aligned. The final structure, containing 16 CO molecules, was subjected to

energy minimization first without and then with water. The energy minimiza-

tionwithwaterwas done after solvating the structurewith the Solvate plug-in of

VMD in a cubic periodic water box extending at least 12 Å beyond every CO

molecule. The TIP3P water model was used (48). The system was then sim-

ulated for 2 ns using periodic boundary conditions in all directions.

Generation of model spheroidal HDL particles

The starting structure consisted of a previously simulatedD40 apoA-I double

belt surrounding a saddle-shaped POPC bilayer with 80 lipid molecules (38).

A total of 24 POPC molecules, half from each monolayer, were removed

from the center of the particle. Then, a cluster of 16 CO molecules was

inserted to generate a starting model with a POPC/CO/D40 apoA-I molar

ratio of 56:16:2 (Fig. 2).

Coarse-grained force field details

The atomistic initial structure was coarse-grained using prerelease versions

of the MARTINI force field for lipid molecules (49) and of a CG force field

for protein molecules (Monticelli, L., S. Kandasamy, X. Periole, R. G.

Larson, D. P. Tieleman, and S. J. Marrink, unpublished).

Parameterization of solvent molecules and ions

Four water molecules are represented as a single P-type CG particle. Ions are

represented as Q-type CG particles and their first hydration shell is included

in the CG representation (49).

FIGURE 2 Generation of the model spheroidal HDL particle. From top to

bottom, the steps for the generation of the model spheroidal HDL initial

structure constituted by twoD40 Apo A-I molecules, 56 POPC lipids, and 16

CO molecules are shown using stereo views of the starting 80:2 particle (A),

the intermediate 56:2 particle (B), and the final model with a POPC:CO:D40

apoA-I molar ratio of 56:16:2. ApoA-I molecules are shown as ribbons in

blue. POPCmolecules are in black for the acyl chains and in red for the polar

headgroups. Cholesteryl oleate molecules are shown in green. Prolines are

represented in yellow.
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Parameterization of cholesteryl oleate molecules

The initial coarse-grained configuration of a single COmolecule was built as

follows: the cholesterol moiety of the COmolecule was mapped by eight CG

particles using the same approach Marrink et al. employed for cholesterol

(49). Then, a standard oleoyl chain was attached to a standard cholesterol

moiety, changing the headgroup particle of the cholesterol into a Na-type

particle. The detailed parameters of cholesterol and oleoyl CG configurations

can be found in the recently published MARTINI force field (49) and in the

previous CG force field for lipids (50).

Parameterization of protein molecules

Most amino acids are mapped onto single standard particle types in a way

similar to that used recently by other groups (39,51). The mapping chosen in

our case reproduces the experimentally determined oil/water partitioning free

energy of the amino acid side chain analogs to within 2 kT. The apolar amino

acids (Leu, Pro, Ile, Val, Cys, andMet) are represented as C-type particles, the

polar uncharged amino acids (Thr, Ser, Asn, and Gln) by the class of P-type

particles, and the small negatively charged side chains (Glu and Asp) as

Q-type particles. The positively charged amino acids (Arg and Lys) are

modeled by a combination of a Q-type and a C-type particle. The bulkier ring-

based side chains are modeled by three or four (His, Phe, and Tyr, without or

with Trp, respectively) beads of the special class of ring particles. The Gly and

Ala residues are only represented by the backbone particle. The type of the

backbone particle depends on its secondary structure: when free in solution or

in a coil or bend, the backbone has a strong polar character (P-type); as part of a

helix or beta-strand, the interbackbone hydrogen bonds reduce the polar

character significantly (N-type). The bonded interactions involving amino acid

side chains and the peptide backbone were parametrized based on reproducing

distributions directly from the protein databank for a large set of membrane

proteins. The amount of data is so large that statistically very accurate dis-

tributions can be obtained for all the required bonded interactions. Using this

procedure, bonded parameters were derived for the backbone (BB) potentials,

namely the BB-BB bonded potential, the BB-BB-BB angle potential, and the

BB-BB-BB-BB dihedral potential. The last two terms are used to enforce the

secondary structure of the backbone, which is therefore an input parameter in

the CGmodel. Different dihedral and angle parameters are used to distinguish

a helix, a strand, or a random coil. It is therefore not possible to study realistic

folding-unfolding events at this stage. Furthermore, for each amino acid, side-

chain (SC) distributions were obtained for the BB-SC bonded potential, the

BB-BB-SC angle potential, and the intra-SC potentials for amino acids con-

tainingmore than one CGparticle. Details of the parametrization of the protein

force field can be found elsewhere (Monticelli, L., S. Kandasamy, X. Periole,

R.G. Larson, D. P. Tieleman, and S. J. Marrink, unpublished).

Simulation protocol

Energy minimization

Each ms-HDL particle was subjected to conjugate gradient energy minimi-

zation. Then, the ms-HDL particle was solvated using the Solvate plug-in of

VMD (47) in a cubic periodic water cell extending at least 25 Å beyond the

lipid headgroups and the protein molecules. To preserve overall charge

neutrality and to have physiological ionic strength (I¼ 0.15 M), sodium and

chloride ions were placed randomly using the Autoionize plug-in of VMD.

The solvated system was then subjected to an additional conjugate gradient

energy minimization to reduce steric contacts between the water molecules

and the lipoprotein complex. The final model system had ;222,000 atoms

(including hydrogens).

Molecular dynamics simulations

Initially, a 10-ns atomistic MD simulation of the ms-HDL particle at 310 K

and 1 atm was performed. Both the apoA-I double belt conformation and the

packing of lipid molecules changed slightly compared to the starting struc-

ture (Supplementary Material, Fig. S2). Then, three different approaches

were employed to favor the formation of a better packing of POPC and CO

molecules. In the first approach, a 25-ns atomistic MD simulation of the

starting model was performed at 310 K and 1 atm. In the second approach, to

increase the mobility of POPC molecules for speeding up the coverage of the

core of COmolecules, the temperature of the system simulated at 310 K for 10

ns was raised to 410Kwithout restraints. The resulting structure was subjected

to two unrestrained MD simulations of 5 and 10 ns at 410 K and 1 atm.

A temperature higher than the physiological one was also used in the

experiments of Sparks et al., who sonicated a mixture of POPC, CO, and

apoA-I molecules to reconstitute in vitro spheroidal HDL particles of dif-

ferent sizes (24). After the temperature jump, all ms-HDL particles were

cooled down to 310 K, with a velocity reassignment carried out every 1 ps

during a 20-ps simulation, and simulated for at least 10 ns at the physio-

logical temperature. After mapping the starting model with CG beads, the

third approach involved a long CG simulation of 1 ms at 310 K and 1 atm.

All atomistic MD simulations were performed using NAMD (52). The

CHARMM 22 (53,54) and modified CHARMM 27 (45,55) force fields were

used for protein and lipid molecules, respectively. Nonbonded van derWaals

and electrostatic interactions were truncated using a cutoff distance of 12 Å.

We confirmed that the use of truncation did not result in artificial ordering at

the truncation distance (Supplementary Material, Figs. S3 and S4). Salt-

bridge interactions were treated reliably by the force field in all simulations of

ms-HDL particles (56). Velocity reassignment was carried out every 1 ps

during the first 30 ps of simulation, increasing the temperature from 30 to

310 K. After that the temperature was kept constant using the Berendsen

temperature bath (57). Coordinate trajectories were updated every 10 ps of

simulation and all structures were used for analysis. The particle mesh Ewald

(PME) (58) treatment of long-range electrostatic interactions was used for all

model spheroidal HDL particles. The pressure was held constant at 1 atm for

all MD simulations using the Berendsen barostat (57).

CG simulations were performed using GROMACS (59). Prerelease ver-

sions of the MARTINI force field and a recently developed CG force field

were used for lipid (49) and protein molecules, respectively. The majority of

protein residues had a-helical conformation and the remaining residues were

in a b-turn conformation.

The final analysis was performed only on the atomistic unrestrained MD

simulation at 310 K not subjected to a temperature jump, on atomistic MD

simulations at 310 K performed after the temperature jump at 410 K, and on

the CG MD simulation at 310 K.

ANALYSIS

Root mean-square deviations

The root mean-square deviations (RMSDs) of protein,

POPC, and CO molecules were used to verify the equili-

bration of each ms-HDL particle. RMSDs of all protein,

POPC, and CO molecules were measured over the entire

trajectory using the structure obtained after the first 30 ps of

the MD simulation as a reference.

We also performed structural alignments of previously

simulated model discoidal HDL particles with POPC/D40
apoA-I molar ratios of 80:2, 70:2, 60:2, and 50:2 (38) to the

ms-HDL particle simulated for 10 ns at 310 K and 10 ns at

410 K using the average position of thea-carbons from the last

20% of each trajectory (Supplementary Material, Fig. S3).

Radius of gyration

The radius of gyration (Rg) of each ms-HDL particle was

measured over the entire trajectory and averaged over the last

20% of each trajectory.

Structure of Spheroidal HDL Particles 2309
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Moments of inertia of model spheroidal
HDL particles

The moments of inertia were calculated after the alignment of

the three principal axes of each system with the x, y, and z
directions (60). The components of the moment of inertia of

an ellipsoid are given by

Ixx ¼ 1

5
Mðb2 1 c

2Þ Iyy ¼ 1

5
Mða2 1 c

2Þ Izz ¼ 1

5
Mða21 b

2Þ;

whereM is the total mass of the system and a, b, and c are the
semiaxes of an ellipsoid, respectively. In a prolate ellipsoid, a
and b, c; and in a prolate spheroid a¼ b, c. The principal
radii of each ms-HDL were obtained assuming a prolate

ellipsoidal shape (61,62).

The components of the moments of inertia of each HDL

particle were calculated by averaging every 10 ps during the

simulation. The reported results are averages over the last

20% of each trajectory, corresponding to 2 ns and 200 ns for

the atomistic and CG simulations, respectively.

Solvent-accessible surface areas

The solvent-accessible surface area (SASA) is used in MD

simulations for measuring the extent of the solvent exposure

of hydrophobic and hydrophilic domains of the simulated

system. It can also be used to detect the timescale needed for

readjustment of phospholipids and to check the equilibration

of the simulated system.

The SASAs of the ms-HDL particles were measured over

the entire trajectory and averaged over the last 20% of each

trajectory. Those calculations covered all the atoms, POPC

hydrophobic groups, represented by carbon and hydrogen

atoms of the fatty acyl chains (palmitoyl and oleoyl chains)

without including the carboxyl group, and CO molecules,

including all atoms.

Annular CO molecules in model spheroidal
HDL particles

Annular CO molecules, defined as those molecules with

any atom or bead within 8 Å of any protein atom or bead,

were monitored and averaged over the last 40% of each

trajectory, corresponding to 4 ns and 400 ns for the atom-

istic and CG simulations, respectively. A cutoff distance

of 8 Å was chosen from the radial distribution function

(RDF) of one of the two pairs of carbon atoms of the ester

bond region of the CO molecule, namely Cb-Cb (41). That

corresponds to the first minimum of the Cb-Cb RDF (see

also Supplementary Material). The average number of

contacts of three different moieties of the CO molecule

(short acyl chain, sterol ring, and oleate chain) with protein

residues was also estimated over the last 40% of each tra-

jectory.

Root mean-square fluctuations

The root mean-square fluctuations (RMSFs) of protein

a-carbons can give extremely valuable dynamical information

by highlighting domains with low and high mobility. RMSFs

of protein a-carbons can also provide structural informa-

tion, detecting different elements of the protein secondary

structure.

RMSFs of protein a-carbons were calculated over the last

40% of each trajectory to analyze the flexibility of different

helical domains of apoA-I in atomistic and CG ms-HDL

complexes.

Interhelical salt bridges

The interhelical salt bridges (ISBs) of the apoA-I double belt

were measured over the last 40% of each trajectory of at-

omistic MD simulations. The oxygen-nitrogen distance cut-

off chosen for the calculation was 4 Å. Both buried and

exposed ISBs were considered. A buried ISB is formed by

residues occupying the helical wheel position 2 (e.g., E111-

H155), whereas an exposed ISB is formed by residues in

helical wheel positions 5 and 9 (e.g., K96-E169) (34,63,64).

RESULTS AND DISCUSSION

Three approaches for generation of model
spheroidal HDL particles

Atomistic MD simulations at 310 K

After performing a short (10-ns) MD simulation of the ms-

HDL particle at 310 K, we observed slight changes in the

apoA-I conformation and packing of lipid molecules com-

pared to the initial structure (Supplementary Material, Fig.

S2). This result is in good agreement with the timescale

observed for the formation of phospholipid bilayers (65).

Next, we performed a 25-ns MD simulation at 310 K. Despite

the longer simulation time, the mutual packing of POPC and

CO molecules resulted in good coverage of the hydrophobic

core of CO molecules only in some parts of the particle (Fig.

3 A). Consequently, we paid more attention to this issue (see

below).

Atomistic MD simulations at 310 K and 410 K

To increase diffusion of POPC and COmolecules to speed up

the coverage of the core of CO molecules, the structure ob-

tained after the 10-ns simulation at 310 K was subjected to an

unrestrained temperature jump to 410 K. Since increased

temperatures lead to higher atomic velocities and thus to

enhanced molecular motion over a given simulation time, we

used the higher temperature as a ‘‘surrogate’’ for longer

simulation times. Higher temperatures, like longer simulation

times, can overcome kinetic energy barriers to lipid diffusion

and protein conformational changes. This approach, how-

2310 Catte et al.
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ever, comes with a major caveat. Temperature jumps, com-

monly used in MD-simulated annealing (MDSA) (66), have

the distinct possibility of kinetic trapping in energy states

other than the global minimum. Since MDSA is used most

often in refinement of x-ray and NMR structures (67), con-

straints are generally placed on the protein to prevent its

conformation from drifting too far from the structure under

refinement. Our rationale for not applying restraints to either

the protein or the lipids is twofold. 1), We hypothesized that

the protein surrounding the bilayer in the discoidal HDL

particles would add significantly to the stability of the sim-

ulated lipoprotein particles in response to temperature jumps.

2), We knew, based upon MD simulations performed on

discoidal POPC/apoA-I structures using 20-ns temperature

jumps to 500 K, that both the lipid organization and protein

structure remain relatively intact under these conditions (data

not shown). We therefore reasoned that a more modest jump

to 410 K, although acting as a reasonable time ‘‘surrogate’’,

would have minimal detrimental effects on the overall or-

ganization of the lipoprotein particles being simulated. Two

sets of simulations at 410 K for 5 and 10 ns were performed,

leading to ms-HDL particles with a prolate ellipsoidal shape

(Fig. 3, B and C). Then, both final structures were cooled

down to 310 K, as described in the Materials and Methods

section, and simulated for another 10 ns.

Coarse-grained MD simulations at 310 K

To monitor the structural and dynamical behavior of the ms-

HDL particle over a considerably longer timescale, we also

performed a coarse-grained simulation for 1 ms at 310 K

using the same initial structure as in atom-scale simulations.

Equilibration of model spheroidal HDL particles

To verify the equilibration of atomistic and CG MD simu-

lation of ms-HDL particles, RMSD values for the protein,

POPC, and CO molecules were plotted as a function of time

in Figs. 4 and 5, respectively. It is apparent that RMSDs for

the ms-HDL particle simulated at 310 K increase rapidly until

1 ns, at which point the rates of change decrease, and then

tend gradually to a plateau without reaching equilibrium (Fig.

4 C). For ms-HDL particles subjected to MD simulations at

410 K, the observed rapid increase in RMSD, due to the

temperature jump, is followed by a plateau, which is reached

within a few nanoseconds (Fig. 4, A and B).
The final structures of all-atom simulations reported in

Fig. 3 show that the high-temperature simulation produced an

evidently closer packing of POPC and CO molecules (Fig. 3,

B and C) compared to that observed for the ms-HDL particle

not subjected to the temperature jump at 410 K (Fig. 3 A). It is
also worth noting that the temperature jump influenced the

phase behavior of CO molecules, but not that of POPC

molecules, as shown by RDF results for different pairs of

atoms (Supplementary Material, Figs. S4 and S5). The

RMSD plot of the CG ms-HDL particle shows a marked

increase, for POPC and CO molecules, to 200 ns, whereas

protein molecules reach a plateau within essentially the same

time frame (Fig. 5). After 200 ns, all components except for

POPC molecules of the CG model are found to be equili-

brated.

On the basis of the above findings, the following analysis

and discussion will mainly focus on equilibrated atomistic

and CG structures simulated for 10 ns at 310 K and 10 ns at

410 K, and for 1 ms at 310 K, respectively.

FIGURE 3 Different views (upper and lower) of the ms-

HDL particle constituted by two D40 apoA-I molecules, 56

POPC lipids, and 16 CO molecules after MD simulations

for 25 ns at 310 K (A), 10 ns at 310 K (5 ns at 410 K) (B),

and 10 ns at 310 K (10 ns at 410 K) (C), respectively. The
high-temperature simulation affects and improves the

packing of POPC and CO molecules even after only 5 ns

of MD simulation at 410 K. The exposure to the solvent of

the hydrophobic core of CO molecules is reduced com-

pared to the starting model simulated for 10 ns at 310 K.

ApoA-I molecules are represented in blue. POPC mole-

cules are in black for the acyl chains and in red for the polar

headgroups. Cholesteryl oleate molecules are shown in

green, and prolines are in yellow.
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Model spheroidal HDL particles assume a prolate
ellipsoidal shape

Different views of atomistic and CG particles simulated at

310 K are shown in Fig. 6. Both simulated structures are

characterized by a prolate ellipsoidal or spheroidal shape

(Fig. 6, A and B) with an average major diameter of 84 Å and

a radius of gyration of ;28 Å. These are in good agreement

with experimental values of 76 6 5 Å (from NDGGE mea-

surements) and 74 6 15 Å (from EM measurements) for the

major diameter reported by Sparks et al. (16).

The presence of a prolate ellipsoidal shape was also con-

firmed by the results computed for the moments of inertia.

The values obtained were employed to calculate the semiaxes

of each particle reported in Table 1. In atomistic models, the

values of the minor semiaxes are very similar to each other

(ranging from 30 to 35 Å) and smaller than the major semi-

axis (average value of 43 Å), indicating that the structure is

approaching a prolate spheroid shape. The CGmodel showed

also a prolate ellipsoidal shape with a major principal radius

of 46.56 0.8 Å, in good agreement with the atomistic result

(42.9 6 0.4 Å), whereas minor semiaxes were found to be

somewhat smaller (a¼ 26.46 0.9 Å) and larger (b¼ 39.86
1.3 Å) than atomistic results (a¼ 31.06 0.3 Å and b¼ 35.2

6 0.3 Å), respectively. Here, there is reason to stress the

substantially larger timescale of CG simulations, though:

when we started the CG simulation of an initial structure that

was essentially identical to the one used in atomistic simu-

lations, and simulated the CG system for a short period of 2.5

ns, we found results identical to those in the atomistic model.

Further, as Fig. 5 shows that the equilibration of these

complex particles takes on the order of several hundred

nanoseconds, the minor differences between atomistic and

CG model results are not surprising. Considering the fact

that the CG model is simulated over 1000 ns compared to the

10-ns period in the atomistic model, it is perhaps more sur-

prising to find that differences are so minor indeed. The 410

K temperature jump perhaps explains a portion of the simi-

larity between the two types of simulated structures.

Solvent-accessible surface area of model
spheroidal HDL particles

The SASA of atomistic and CG ms-HDL particles for the

entire ms-HDL particle, POPC hydrophobic chain groups,

and all CO molecules are shown in Table 2. The SASA of the

entire ms-HDL particle was found to remain almost un-

changed, each average value being within the standard de-

viation. This indicates that although there was a tendency

toward a lower value, the total exposure to the solvent was

not greatly affected by the temperature jump. Overall, this

result shows that the average solvation free energy is constant

FIGURE 5 RMSD values of apoA-I (blue), POPC (red), and CO (green)

molecules for coarse-grained MD simulations performed for 1 ms at 310 K.

RMSD values of all components show that the CG ms-HDL structure

reaches equilibrium after ;200 ns.

FIGURE 4 RMSD values of apoA-I (blue), POPC (red), and CO (green)
molecules for atomistic MD simulations performed for 10 ns at 310 K (10 ns

at 410 K (A) and 5 ns at 410 K (B), respectively) and for 25 ns at 310 K (C).

RMSD values of all components show that only the ms-HDL structure

subjected to the longer MD simulation at 410 K reaches the equilibration

after 5 ns.
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for all three ms-HDL particles. Moreover, it is also worth

noting that the packing of POPC molecules was slightly

better in the ms-HDL particle not subjected to a temperature

jump

The SASA values obtained for the POPC hydrophobic

chain groups are very similar to those reported in the litera-

ture by Klon et al. (32). This result is probably due to the

movement of CO molecules toward the protein and away

from the bilayer. The SASA of POPC acyl chains reaches an

average value of;49 Å2 per POPC (SD; 3 Å2) for the ms-

HDL particle not subjected to a temperature jump, indicating

that the packing of POPC molecules is as good as in our

previous model HDL complexes, in which this value ranged

from 47 Å2 to 50 Å2 (38). In ms-HDL particles subjected to a

temperature jump to 410 K, the average SASA of POPC

hydrophobic chains/POPC is;52 Å2 (SD; 3 Å2), which is

also in good agreement with our previous results.

The fact that all simulated systems are characterized by a

reasonably good packing of protein and lipid molecules is

supported by the analysis of the SASA of CO molecules.

Their contribution to the total SASA of the entire ms-HDL

particle is,2% for all three simulations, and decreases more

markedly in the ms-HDL particles that were subjected to a

temperature jump. This result shows that the protein and

POPC molecules do very well in terms of covering the hy-

drophobic core of CO molecules, and that the longer the

simulation time at 410 K, the better the overall packing of

POPC, CO, and protein molecules. In this respect, it is worth

pointing out that in the CG model, the SASAs of the entire

HDL particle and POPC hydrophobic chain groups are

smaller than the values observed in atomistic models. This is

fully understandable due to the coarse-grained nature of the

model: if several atom-scale groups are mapped together in a

manner where the interactions in the CG description are de-

scribed in a spherical fashion, the solvent accessible surface

area evidently is decreased compared with the atomistic de-

scription. This implies that it is not reasonable to compare the

quantitative SASA values given by the atomistic and CG

models. Rather, one should focus on the trends predicted by

the two descriptions. In this respect, the atom-scale and CG

models are fully consistent with one another and highlight the

substantial coverage of the hydrophobic core comprised of

cholesteryl oleate molecules. Moreover, what is also in favor

of our studies for both atomistic and CG models is the fact

that the contribution of the SASA of all CO molecules to the

TABLE 1 Components of the moments of inertia (I) and values

of semiaxes (a–c) of ms-HDL particles from atomistic and CG

MD simulations

Particle

I (kg/Å2/10�3)*

a, b, and c (Å)*

10 ns at 310 K

(10 ns at 410 K) 1 ms at 310 K

Ixx 61.1 6 0.6 23.3 6 0.8y

Iyy 55.6 6 0.6 17.8 6 0.4y

Izz 43.5 6 0.5 14.2 6 0.4y

a 31.0 6 0.3 26.4 6 0.9

b 35.2 6 0.3 39.8 6 1.3

c 42.9 6 0.4 46.5 6 0.8

*All atoms or beads of each ms-HDL particle were included in the

calculation and all values were averaged over the last 20% of the trajectory.
yThe components of the moment of inertia of the CG model are smaller

than those of the atomistic model, because the total mass of the CG model is

smaller than the corresponding total mass of the atomistic model. What is

relevant here is to compare the relative magnitudes of the different inertia

tensor components.

FIGURE 6 Different rotational views of atomistic and CG ms-HDL

particles simulated at 310 K for 10 ns (after being simulated at 410 K for

10 ns) (A) and 1 ms (B), respectively. Both simulated structures are

characterized by a prolate ellipsoidal shape with an average long diameter

of 84 Å and an average radius of gyration of 28 Å. Two of the three pseudo-

C2 axes of symmetry, which are oriented perpendicular to each other, are

also shown with the correspondent 180�-rotated structures (C and D). The

same color code was used as in Fig. 3.
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total SASA of the entire ms-HDL particle is ,1%, suggest-

ing that ms-HDL particles subjected to high-temperature

simulations are consistent with the result achieved in the

longer timescale of the CG simulation at a lower temperature.

Annular shell of CO molecules in model
spheroidal HDL particles

Annular CO molecules (defined above) of the atomistic and

CG models are shown in Fig. 7. It is remarkable that all CO

molecules are within the chosen cutoff distance in the at-

omistic simulation. Also in the CG simulation, the majority

(75%) of CO molecules can be considered annular, sug-

gesting that the intercalation of CO molecules with protein

residues could play an important structural role in the sta-

bility of spheroidal HDL particles (Fig. 7, upper row, and
Supplementary Material, Fig. S6).

The hydrophobic core ofCOmolecules, represented by those

atoms or beads that are not within the chosen cutoff of 8 Å

of any protein atom or bead, remains stable for all atomistic

TABLE 2 SASA (Å2) of ms-HDL particles from atomistic and CG MD simulations

Particle SASA (Å2) 25 ns 10 ns (5 ns at 410 K) 10 ns (10 ns at 410 K) 1 ms at 310 K

SASAms-HDL
* 36415 6 503 36390 6 360 36172 6 456 27501 6 517

SASAPOPC
y 2721 6 158 2936 6 159 2916 6 142 923 6 191

SASACO
z 678 6 83 656 6 72 569 6 87 197 6 98

Columns 1–3 are for an atomistic model and column 4 is for CG model. See text for details of the comparison. All SASA values were averaged over the last

20% of each trajectory.

*All atoms of each ms-HDL particle were included in the calculation.
yOnly the atoms of POPC hydrophobic chain groups, defined as in a previous work (38), were used for computing this parameter.
zAll atoms of CO molecules were accounted for.

FIGURE 7 Annular shell of CO molecules

and packing of the hydrophobic core of CO

molecules with POPC and apoA-I molecules.

(Upper row) Annular CO molecules, defined as

those molecules within 8 Å of any protein

atoms or beads, are shown in green for the ms-

HDL particle simulated for 10 ns at 310 K

(after 10 ns at 410 K) (A) and for the CG ms-

HDL particle simulated for 1 ms at 310 K (B),
respectively. ApoA-I molecules are in blue.

Proline residues are in yellow. Central CO

molecules were observed only in the structure

not subjected to the temperature jump (Supple-

mentary Material, Fig. S6) and in the CGmodel

(B) in purple. (Middle rows) The packing of CO

molecules in atomistic and CG ms-HDL parti-

cles shows the interdigitation and intercalation

of CO molecules with POPC and apoA-I mol-

ecules, respectively. (Lower row) Licorice and

bead representations of the atomistic and CG

CO molecule with its different moieties high-

lighted in red (short acyl chain), green (sterol

ring), and blue (oleate chain). The percentage

of the average number of contacts of different

parts of the CO molecule is also shown, with

the same color code as that used to represent the

different moieties of the CO molecule.
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structures and for the coarse-grained model (Supplementary

Material, Fig. S9). The analysis of the trajectory of the CG

simulation suggests that themotion of COmolecules toward the

protein is probably characterized by a dynamic equilibrium in

which the fast exchange between annular and central CO

molecules contributes to the stability of the hydrophobic core of

COmolecules (SupplementaryMaterial, Fig. S10 andMovie 1).

The packing of the hydrophobic core of CO molecules is

also characterized by the intercalation of CO molecules with

protein residues, and the interdigitation of CO molecules with

POPC molecules (Fig. 7, middle rows). The analysis of the

fraction of the average number of contacts of different moieties

of the CO molecule within 8 Å of protein residues (Fig. 7,

lower row) points out that in the atomistic model, the oleate

chain (40%) moiety interacts less with protein residues than

the cholesterol moiety (sterol ring (23%) and the short acyl

chain (37%)). A similar result is also observed in the CG

simulation, in which the oleate chain (19%) moiety shows

even less interaction with protein residues than the cholesterol

moiety of CO (sterol ring (67%) and short acyl chain (14%)).

Secondary structure of apoA-I molecules in
model spheroidal HDL particles

The protein secondary structure of the model spheroidal HDL

particle not subjected to a temperature jump and simulated

for 25 ns is mainly a-helical and punctuated with a few

b-turns and random coil domains (Supplementary Material,

Fig. S6). Although a long simulation at 410 K speeds up the

process of getting a better packing of POPC and CO mole-

cules, it also affects the secondary structure of the protein.

As shown in Fig. 7 (see Supplementary Material, Fig. S5,

for more details), the particle simulated first for 10 ns at 310

K and then for 10 ns at 410 K shows more extended b-turns
in the protein structure in two different chains (residues 47–

59 and residues 63–80 in chain B, and residues 197–219 in

chain A), a small 3- to 10-helix region (residues 60–62 in

chain B), and even two small p-helices (residues 42–46 and
residues 235–239 in chain B). The observed p-helical
conformations displayed average f/c angles of (�74, �52)

for residues 42–46 and (�73, �58) for residues 235–239,

with an average standard deviation of 4� (averages over the
last 40% of the trajectory). These values are much closer to

the values of (�75, �60), commonly observed in simula-

tions, than to the experimental values of (�76, �41). This

indicates that the formation of this structural motif was

possibly force-field-dependent, as previously reported by

Feig et al. (68).

However, similar structural changes were not observed in

the structure subjected to a 5-ns simulation at 410 K (Sup-

plementaryMaterial, Fig. S6), suggesting that the temperature-

jump procedure could be calibrated to get a protein secondary

structure similar to that observed experimentally. In fact, the

secondary structure analysis performed by Sparks and col-

leagues (16) estimated the presence of b-turns and b-sheet

regions in their reconstituted spheroidal HDL particle and also

predicted random coil domains punctuating the amphipathic

a-helical structure of apoA-I (24).

Comparison of protein fluctuations from RMSFs
of protein a-carbons

The a-helical structure of the protein exhibits very little

mobility for all atomistic ms-HDL particles and also for some

domains of the CG ms-HDL particle. This view is summa-

rized in the RMSF data of protein a-carbons reported in Fig.

8. The very small difference in flexibility among the two

protein chains is also noteworthy. The protein stays rigid,

perhaps to simply lend stability to the overall structure. The

protein tertiary structure does not change dramatically com-

pared to that in our previous ellipsoidal model HDL particles

(Supplementary Material, Fig. S3). The peaks are most often

representative of unstructured regions connecting secondary

structure (69), and the majority of them mainly correspond to

turns in a-helices that point away from the protein into the

solvent.

A good example of the above is the atomistic model that

was not subjected to a temperature jump (Supplementary

Material, Fig. S7). In that model, alanine residue 187 of chain

B belongs to a turn region of the protein and to a structural

motif GLY-GLY-ALA that connects two a-helical domains

in helices 7 and 8. In the same atomistic model in chain A,

FIGURE 8 Root mean-square fluctuation profiles for apoA-I a-carbons

(blue, chain A; red, chain B) shown for the CG simulation performed at 310

K for 1 ms (A) and the atomistic MD simulation performed at 310 K for 10 ns

(10 ns at 410 K) (B), respectively. The a-carbons are also shown, with

different-colored beads for both CG and atomistic structures to stress more

rigid (red) and more flexible (blue) domains of the protein structure (see also

Supplementary Material, Fig. S9).
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leucine residue 219 of helix 9 is in a random coil confor-

mation, connecting two a-helical domains in helices 9 and

10. These peaks are usually observed in residues of the

N-terminus and C-terminus of the protein. However, the most

meaningful interpretation of the data is obtained by exam-

ining the trends and relative flexibilities among different re-

gions of the protein dictated by the temperature jump. The

protein with structures subjected to an intermediate simula-

tion step at 410 K becomes increasingly rigid with longer

simulation times at 410 K (Supplementary Material, Fig. S7).

In particular, this feature is found in the most flexible regions

observed in the simulation of the system not subjected to the

temperature jump (Supplementary Material, Fig. S7).

It is worth noting that even in the longer timescale used in

the CG simulation, there are still extended rigid domains and

more flexibility due to the increased sampling (Fig. 8 A). The
observed rigidity is probably a dramatic consequence of the

intercalation of CO molecules with some protein residues

(70). A similar interaction among cholesterol molecules and

protein residues was also proposed by Sparks et al. (71) to

explain the contrasting changes on the surface charge of

apoA-I containing reconstituted discoidal HDL complexes

upon addition of increasing amounts of unesterified choles-

terol molecules. Since cholesterol molecules affect both the

order of POPC molecules and the stability of apoA-I mole-

cules in discoidal complexes, CO molecules might have a

greater effect on protein stability than on the orientation order

of POPC molecules in spheroidal HDL particles.

These results are also in good agreement with RMSD data

of the structural alignments to the protein of model discoidal

HDL particles with a prolate ellipsoidal shape (38) (Sup-

plementary Material, Fig. S3), which explains why the ma-

jority of the domains of the protein are rigid, suggesting that a

small apoA-I conformational change might be required to

accommodate a CO hydrophobic core in prolate ellipsoidal

HDL particles.

Interhelical salt bridges in atomistic-model
spheroidal HDL particles

Interhelical salt bridges of atomistic ms-HDL particles, mea-

sured as described in Materials and Methods, are shown in

Table 3. The temperature jump did not have amarked effect on

the total number of ISBs. Although the high-temperature

simulation induced the loss of some salt bridges, it is remark-

able that their overall number increased in structures subjected

to MD simulations at 410 K, reaching the maximum value of

19. This increase in ISBsmight also contribute to the rigidity of

the protein as shown by RMSF data (Fig. 8). Two buried ISBs,

D89-R177 and E111-H155, are present in all three atomistic

models. Although the buried ISB E78-R188 is formed only

by glutamic acid in position 78 of chain B and arginine in

position 188 of chain A, it is lost in the structure subjected to

a 10-ns MD simulation at 410 K (Table 3).

Among the remaining exposed ISBs, there is reason to

notice the conservation of salt bridges between residues in

helices 3 and 7 (E92-R173 and K96-E169), and helices 5 and

5 (E125-K140 and E125-K133). The contribution of these

salt-bridge interactions to the overall stability of apoA-I in

spheroidal HDL particles might be important. This has been

recently observed in discoidal HDL particles as well (72). In

addition, we observed an interesting promiscuous salt bridge

TABLE 3 Interhelical salt bridges

Particle

Helix pairs* 25 ns 10 ns (5 ns at 410 K) 10 ns (10 ns at 410 K)

1 (residues 43–65) K 45 B–D 213 A K 45 A–D 213 B /

9 (residues 209–219)

2 (residues 66–87) E 70 B–K 206 A E 70 B–K 206 A

E 70 A–K 195 B K 77 A–E 191 B E 70 A–H 199 B8 (residues 187–208)
E 70 B–H 199 A E 78 A–K 195 B K 77 A–E 191 B

E 78 B–R 188 A E 78 B–R 188 A E 78 A–K 195 B

E 85 A–R 188 B E 78 B–H 199 A

E 85 A–R 188 B

3 (residues 88–98) D 89–R 177y D 89–R 177y D 89–R 177y

7 (residues 165–186) E 92 A–R 173 B E 92 B–R 173 A E 92–R 173y

K 96 B–E 169 A K 96–E 169y K 96–E 169y

4 (residues 99–120) E 111–H 155y E 111–H 155y E 111–H 155 a

6 (residues 143–164)

5 (residues 121–142) E 125 B–K 133 A E 125 B–K 133 A E 125–K 133y

5 (residues 121–142) E 125 B–K 140 A E 125 B–K 140 A E 125–K 140y

E 128 B–K 133 A

*All interhelical salt bridges were within the 4-Å cutoff over the last 40% of each trajectory.
ySalt bridges were formed on both chains.
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formed by glutamic acid in position 125 of chain B with two

lysines, in positions 133 and 140, respectively. The same salt

bridge was reported by Klon et al. (32), and its ‘‘survival’’

during the temperature jump probably means that it has an

important structural role in spheroidal HDL particles as well.

CONCLUSIONS

The esterification of the cholesterol molecules of discoidal

HDL, operated by LCAT (5,6), an enzyme activated by

apoA-I, plays an important physiological role in the transition

from the nascent form of discoidal HDL to its spheroidal

form circulating in the blood. This important morphological

change is characterized by the removal of unesterified cho-

lesterol from the surface of discoidal HDL through the phase

separation of cholesteryl esters, creating the hydrophobic

core of spheroidal HDL. To better understand the structure

and dynamics of the protein and lipid components at atomic

and molecular scales, we performed atomistic and coarse-

grained MD simulations for a model spheroidal HDL particle

containing a core of cholesteryl oleate molecules.

Both atomistic and CG MD simulations give equilibrated

protein-lipid structures that are consistent with experimental

results: the three-dimensional shapes of both atomistic and

CG ms-HDL particles shown in Fig. 6 are prolate ellipsoidal,

approaching a prolate spheroid shape in the atomistic case,

with sizes comparable to in vitro reconstituted spheroidal

HDL particles (16,24). The solvent-accessible surface area of

all ms-HDL particles remains constant within error, sug-

gesting that all systems converge to an average structure. The

SASA of POPC hydrophobic acyl chains/POPC is compa-

rable to the values reported in our previous work (38), indi-

cating that the packing of POPC molecules is as good as in

model discoidal HDL complexes. Furthermore, the small

contribution of the SASA of COmolecules to the total SASA

of our systems stresses that the apoA-I double belt and POPC

molecules do a good job in covering the hydrophobic core of

COmolecules. These results suggest that the conformation of

apoA-I in these models might approximate the conformation

of apoA-I in spheroidal circulating HDL.

The diffusion coefficients of CO molecules determined

through atom-scale simulations are found to be of the same

order of magnitude as in a previously published atomistic

simulation study of the core of lipoprotein particles (41).

Moreover, the radial distribution functions of POPC and CO

molecules in the atomistic models are also found to be in

agreement with the corresponding results of the CG model

(see Supplementary Material). The phase behavior of POPC

molecules is unaffected by the temperature jump to 410K and

remains essentially the same even on the longer timescale of

the CG simulation. However, the temperature jump to 410 K

exerts a major effect on the phase behavior of CO molecules.

The longer the simulation time at 410 K, the more dramati-

cally altered is the short-range order of CO molecules. The

high-temperature simulation disrupts the ordering of bulk CO

molecules and favors their movement toward the protein,

bringing the population of annular COmolecules of atomistic

and CGmodels to its maximum value, as shown in Fig. 7. The

analysis of the fraction of the average number of contacts of

different moieties of the CO molecule with protein residues

indicates that CO molecules interact with apoA-I molecules

mainly in their cholesterol moiety.

Furthermore, the combined effect of a simultaneous inter-

calation of CO molecules with protein residues (71), as

highlighted by the large number of annular CO molecules

shown in Fig. 7 and by RMSFs of the protein a-carbons re-
ported in Fig. 8, might also affect the orientation order of

POPC molecules. These results suggest that the intercalation

of COmolecules with protein residuesmight play an important

structural role and contribute actively to the stability and

function (e.g., the biological activities of the enzyme, LCAT,

and the exchange protein, CETP) of spheroidal HDL particles.

Ultrasound (16) and enzymatic methods (73) can be used

to produce spheroidal HDL particles that can be studied with

different experimental techniques, such as NMR, x-ray dif-

fraction, fluorescence resonance energy transfer, and cry-

oelectron microscopy, to test features of present and future

atomistic and coarse-grained models of spheroidal HDL. Our

models provide important insights for future research to in-

vestigate the structure and function of spheroidal HDL at a

molecular level to gain understanding of the conformational

changes undergone by apoA-I during the transition from

discoidal HDL to spheroidal HDL; the biological implica-

tions of the interaction among cholesteryl esters, the protein,

and phospholipid molecules; and the structural role of LCAT

in the assembly of spheroidal HDL.
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