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Abstract

A pursue-and-evasion game is analyzed, including almost optimal bounds on the number of
moves needed to win. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The common setting of the so-called “lion and man” problems is the following.
A man and a lion are moving within a given area (usually a subset of a plane). The
lion wins if he catches the man. The man wins if he can keep escaping for in=nite time.
Probably, the =rst version is the one with both time and space continuous, attributed
to Rado and studied, e.g., by Littlewood [3, p. 135] and Croft [1].

In the version, we analyze, time is discrete and space is continuous. This version is
attributed to Gale; it was stated as an open problem by Guy [2, Problem 31]. In this
problem, a man and a lion are moving within the non-negative quadrant of the plane.
In each round, =rst the man moves to any point in Euclidean distance at most 1 from
his current position, then the lion moves to any point in Euclidean distance at most 1
from his current position. The lion wins if he moves to the current position of the
man. The man wins if he can keep escaping for an in=nite number of rounds.

Let L0 = [x0; y0] and M0 = [x′0; y
′
0] be the initial positions and coordinates of the lion

and the man, respectively; let M0 �=L0. If either x′0¿x0 or y′0¿y0, then it is easy to
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see that the man escapes, by always moving a distance 1 horizontally or vertically
away from the origin.

We prove that, as conjectured, in the remaining case when both x′0¡x0 and y′0¡y0

the lion catches the man in a =nite number of moves. In the special case, when
both the lion and the man are on the diagonal, the bound is quadratic in the distance
of the lion from the origin. If the position of the man is close to one coordinate of the
lion, there is an additional factor quadratic in the inverse of that distance. In addition,
we prove that these bounds on the number of steps are almost optimal.

Throughout the paper �0 = (y0 − y′0)=(x0 − x′0) denotes the initial slope of the line
connecting the lion and the man. The current coordinates of the lion and the man during
the game are denoted (x; y) and (x′; y′), respectively. Finally, �= (y − y′)=(x − x′) is
the current slope.

2. Lion’s strategy

At the beginning, the lion =nds a point C on the line M0L0 such that L0 is inside the
segment M0C and the circle with center C and radius |CL0| (i.e., passing through L0)
intersects both axes; among all such points we choose the one closest to the origin.
Such a point C exists, since x′0¡x0 and y′0¡y0. The point C does not move during
the whole game.

Let M and L denote the positions of the man and the lion, respectively, before a
move. The algorithm maintains the following invariants: (i) M has both coordinates
strictly smaller than L, (ii) L is inside the segment MC, and (iii) |CL|¿|CL0|.

Let M ′ denote the point which the man moves to. If |M ′L|61, the lion moves to M ′

and wins. Otherwise the lion moves to a point L′ on the line M ′C such that |L′L|= 1;
of the two such points he chooses the one with larger distance from C. Such L′ always
exists, since L is between M and C.

2.1. Proof of e8ciency

First, we analyze one move of the game. We prove that the invariant of the algorithm
is maintained and that the distance of the lion from C increases. The last claim enables
us to prove a bound on the number of moves needed.

Lemma 1. Let r= |LC| and r′ = |L′C|. If the lion does not catch the man in the
current move then (i) M ′ has both coordinates strictly smaller than C; (ii) L′ is inside
the segment M ′C; and (iii) r′2¿1 + r2. (Note that (iii) also implies r′¿r¿|CL0|:)

Proof. If M ′ is on the line MC, the claims are trivial. So suppose M ′ is not on the
line MC. Let Y be a point on the line M ′C such that YL⊥LC. Let X be a point on
the line YL such that |L′Y |= |XY | and Y is inside the segment XL (see Fig. 1).

First, we claim that Y is inside the segment M ′C. If not, the angle between segments
LM and LM ′ is at least �=2, thus |LM ′|6|MM ′|61, and the lion catches the man.
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Fig. 1. Analysis of one move.

Since |CL|¿|CL0|, all points of the line LY in the non-negative quadrant have both
coordinates strictly smaller than C. This holds in particular for Y , thus also for M ′,
and (i) holds.

Next, we claim that Y is inside the segment L′C. Since L is inside MC, Y is inside
M ′C, and YL⊥LC, it follows that |YL|¡|MM ′|61; therefore Y is in between the
two points of distance 1 from L on the line L′C, and L′ is chosen as the one farther
from C. Last, M ′ cannot be in the segment L′Y , since then |M ′L|61 and the lion
wins. It follows that L′ is inside the segment M ′C and (ii) holds.

Since Y is inside the segment L′C, using two triangle inequalities and Pythagoras’
theorem, we obtain (iii)

r′ = |L′C| = |L′Y | + |YC| = |XY | + |YC|¿|XC|;
|XL| = |XY | + |YL| = |L′Y | + |YL|¿|L′L| = 1

and

r′2¿|XC|2 = |XL|2 + |LC|2¿r2 + 1:

Theorem 2. Let (x0; y0) and (x′0; y
′
0) be the initial positions of the lion and the man;

respectively; and let �0 = (y0 − y′0)=(x0 − x′0). Suppose that x′0¡x0 and y′0¡y0. Then;
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using the strategy described above; the lion catches the man in the number of moves
bounded by

max{(x0 + y0(�0 +
√

1 + �2
0))2; (y0 + x0(�−1

0 +
√

1 + �−2
0 ))2}

= O(x2
0 + y2

0 + x2
0�

−2
0 + y2

0�
2
0):

Proof. First, we compute the coordinates of the point C = [xC; yC]. Since it is on the
line M0L0 and L0 is between M0 and C, we have, for some t¿0,

xC = x0 + t;
yC = y0 + �0t:

The point C is chosen such that |CL0|= max{xC; yC}. We analyze the case |CL0|=yC ,
the case |CL|= xC is symmetric. In this case, we have

(y0 + �0t)2 = y2
C = |CL|2 = t2(1 + �2

0):

Solving the quadratic equation for t yields

t = y0(�0 +
√

1 + �2
0):

Since |CL|2 increases by 1 in each step and |CL0|=yC , the number of moves is at most

|CO|2 − |CL0|2 = x2
C + y2

C − |CL0|2 = x2
C = (x0 + t)2

= (x0 + y0(�0 +
√

1 + �2
0))2 = O(x2

0 + y2
0�

2
0):

In the symmetric case, the same calculation shows that the number of moves is at most

(y0 +x0(�−1
0 +

√
1 + �−2

0 ))2 = O(y2
0 +x2

0�
−2
0 ). Thus the number of moves is at most the

maximum of the two quantities.

In the special case, when both the man and the lion are on the diagonal, our bound
is quadratic in the distance of the lion from the origin, namely (2 +

√
2)2x2

0¡11:7 · x2
0 .

If in the initial con=guration one of the coordinates of the man approaches that of
the lion, then C moves to in=nity; asymptotically the number of moves is quadratic in
�0 or 1=�0. This corresponds to the intuition that if the man moves straight up and the
y-coordinate of the lion is almost equal to that of man, then the lion must move also
almost straight up, decreasing the x-coordinate only very slightly in each move and
thus taking long time to catch the man. In the next section, we show that our lion’s
strategy is never far from optimal.

3. Man’s strategy

In this section, we prove that the lion’s strategy presented above is almost optimal.
To do this, we present a strategy for the man that enables him to survive for the
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appropriate number of steps. We start by a simple strategy which is suPcient to prove
that the optimal number of steps is quadratic if both players start on the diagonal.
Then, we re=ne the strategy for the case when the slope � is small or large.

In the simple strategy, the man tries to keep large the product x′y′, i.e., the area of
the rectangle between his position and the origin. In each move, he moves distance 1
in a direction perpendicular to the line connecting him and the lion, and of the two
directions he chooses the one that has the invariant x′y′ larger. Such a move is legal
as long as the invariant is non-negative, and it is clear that the lion cannot catch the
man after the move.

Next, we bound the number of steps. Let a; b¿0 be such that (a; b) is a unit vector
parallel with the line from man to lion, i.e., �= b=a. The man moves to one of the
points (x′+b; y′−a) and (x′−b; y′+a). The sum of the invariants for the two possible
new positions is (x′ + b)(y′ − a) + (x′ + b)(y′ − a) = 2(x′y′ − ab). Consequently, for
one of the new positions the invariant is at least x′y′−ab. Since (a; b) is a unit vector,
we have ab= �=(1+�2)6 1

2 , where equality is achieved for �= 1. It follows that using
this strategy, the man keeps escaping for at least 2x′y′ moves.

This bound is fairly tight if the man and the lion start on the diagonal close to each
other; as they get closer, the ratio between the upper and lower bounds approaches
3 + 2

√
2¡6.

If the initial positions of the man and the lion are very diQerent, it is important to
know if the correct bound is quadratic in x2

0 or only in x′0
2, which may be signi=cantly

smaller. The following easy argument shows that for any starting positions on the
diagonal, the lion’s initial coordinate is more relevant: The man =rst moves to a point
on the diagonal with coordinates at least x=2 − 1, where (x; x) is the starting position
of the lion, and then follows the simple strategy above. This gives a lower bound of
R(x2) for any starting positions on the diagonal.

If the initial positions are not on a diagonal, the upper and lower bounds may diQer
signi=cantly, even when the man =rst moves to a point advantageous for him. For
example, assume that the man starts at the origin and the lion starts at point (x0; 1).
Then �0 = 1=x0 and the upper bound is x4

0 . To use the simple lower bound, the man
=rst moves away from the origin to a point with coordinates approximately (x0=4; x2

0 =2)
(he chooses a point with integral distance from the origin); it is easy to verify that
this is safe. Now the simple lower bound gives R(x3

0 ), still a factor of x0 away from
the upper bound. To decrease this gap, an additional improvement is needed.

3.1. A re;ned strategy

The simple bound above is asymptotically tight as soon as � is bounded by a positive
constant both from below and from above. In this section, we improve the bound for
the remaining cases. We assume that �0¿1; the case of �0¡1 is symmetric. For �0¿1,
the upper bound is O(x2

0 + �2
0y

2
0 ).

The key observation is that in the analysis of the simple strategy, if � is large, the
area x′y′ actually decreases only by approximately 1=�. If we could obtain a lower
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bound of �x′y′, then after moving the man =rst to an optimal safe starting point, this
would be suPcient to conclude an asymptotically tight lower bound.

However, the lion can decrease the value of � during the game. In fact, suppose that
the man starts at the position (�0; 1), for a large �0, using the simple strategy above,
and at the same time the lion starts very close, at the slope �0 above the man, and
keeps decreasing � in the optimal way. Then it can be shown that the trajectory of
the man is dominated by the curve y= �0=x; in O(�0) steps it reaches a point close to
(
√
�0;

√
�0) from which the lion can catch the man in O(�0) steps. The total number

of steps is only O(�0), while the upper bound is O(�2
0) in this case.

We modify the man’s strategy to achieve a bound of R((x2
0 + �2

0y
2
0 )=��0), for any

constant �¿0. This shows that the lion’s strategy is asymptotically almost optimal.
For the example of the man starting at the origin and the lion starting at (x0; 1), the
bound is R(x4−�

0 ), improving the simple lower bound of R(x3
0) and almost matching

the upper bound of O(x4
0 ). (However, the constant hidden in the asymptotic notation

depends on �, so we cannot claim a matching bound.)
The strategy works in a constant number of phases, their number increases as the

desired � approaches 0. In each phase, the man =rst moves to a safe point on the line
satisfying x= �y, for the current value of �, as far from the origin as possible. Then
he follows the simple strategy modi=ed as if the origin was at the point (z; 0), for
some z¿0. If � stays within the same order of magnitude or larger, by the analysis
of the simple strategy, we obtain the desired lower bound. If � decreases by a signif-
icant factor, we start a new phase; choosing appropriate z above guarantees that the
coordinates of the man are still large enough.

3.2. Formal description of the strategy

Let �i = �1−i�
0 . Let M and L denote the current position of the man and the lion,

respectively.
(i) The man moves (in several steps) to a point M ′ = (x′; y′) satisfying (i) x′ = �y′

(with the current �), (ii) the distance |M ′M | is integral, and (iii) |M ′M |¡|M ′L|;
among all points satisfying (i)–(iii) choose the one maximizing |M ′O|. Set xi = x′

and yi =y′.
(ii) If �¡�i and i¡1=�, we increase i by 1 and go to step (i) (start a new phase).

Otherwise the man moves to a point M ′ = (x′; y′) such that M ′M is perpendicular
to ML and |M ′M |= 1; among the two such points the one with smaller value of
(x′ − xi=2)y′ is chosen. If this invariant would become negative, the game ends
(the man gives up).

3.3. Analysis of the strategy

Lemma 3. Let (x0; y0) be the initial position of the lion and �0 the initial slope. Then
x1¿(x0 + �0y0)=2 − 1 = R(x0 + �y0).
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Proof. A straightforward calculation demonstrates that the point X = (a; b) = ((x0 +
�0y0)=2; (x0=�0+y0)=2) satis=es a= �0b and |XM |6|XL|. (Geometrically, X is on a line
which is perpendicular to LM and has the same distance from L as from O.) A point
satisfying all conditions (i)–(iii) in the =rst phase of the algorithm, i.e., additionally
at an integral distance from M , can be found in distance at most 1 from X .

The previous lemma also implies that it is now suPcient to prove a lower bound of
R(x2

1 =�
�
0).

Lemma 4. If the algorithm reaches phase i¿1 then xi¿xi−1=4 − 1.

Proof. Before the initial move in phase i, let M = (x′′; y′′). We have x′′¿xi−1=2,
as the invariant from the previous phase in non-negative. Now, without the integral-
ity requirement, the man could safely move to any point on the line p through M
perpendicular to ML. The point (a; b) on this line satisfying a= �b is the midpoint be-
tween the intersection of p and coordinate axes, therefore it satis=es a¿x′′=2¿xi−1=4.
Similar to Lemma 3, adding the integrality requirement can decrease the coordinate by
at most 1.

Lemma 5. If the game ends (i.e.; the man gives up) during phase i; then the number
of steps in phase i is at least x2

i =�
�
0.

Proof. During the whole phase i the value of � is at least �i, if i¡1=�. Therefore,
similarly as in the analysis of the simple strategy, the invariant decreases by at most
1=�i in each step. If i¿1=�, by the de=nition �k61, and, regardless of �, the invariant
again decreases by at most 1

261=�k in each step. In phase i, the invariant (x′− xi=2)y′

starts at value at least xiyi=2 = x2
i =(2�i−1), as the value of � is at most �i−1 when

we start phase i. The game can only end when the invariant would become negative,
therefore, the lower bound on the number of steps is �ix2

i =(2�i−1)¿x2
i =(2�

�
0).

Theorem 6. Let (x0; y0) and (x′0; y
′
0) be the initial positions of the lion and the man;

respectively; and let �0 = (y0 − y′0)=(x0 − x′0). For every �¿0 there exist a strategy
for the man which guarantees that the length of the game is at least

R

(
x2

0 + y2
0 + x2

0�
−2
0 + y2

0�
2
0

��0 + �−�0

)
:

Proof. Let k = 	1=�
. We prove the bound for �¿1, the other case is symmetric. For
the asymptotic result it is suPcient to consider the case when x1¿8k . Lemma 4 then
implies by induction that for any i6k; xi¿x1=8i−1 = R(x1), since k is a constant. The
theorem now follows from Lemma 5 applied to the phase during which the game ends
and the bounds in Lemmas 3 and 4.
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4. Generalizations

It is easy to see that the lion’s strategy above generalizes if the man and the lion
move within any wedge (an angle strictly smaller than �). Also, it generalizes to higher
dimensions; there the playing area can be any convex cone. In either case, the man wins
if the halfplane (or the halfspace, in higher dimension) of points with smaller distance
to M0 than to L0 has an unbounded intersection with the playing area. Otherwise the
lion catches the man in a bounded number of steps.

We do not give explicit bounds on the number of steps. However, we note that if
the position of the man and lion are both on a given line starting at the origin, then
both the lower and upper bounds are quadratic in the distance of the lion from the
origin. In particular, the exponent in the bound does not increase with the dimension.
The intuition is that, we can restrict our attention to the “worst” plane containing that
line. This obviously leads to a quadratic lower bound. The upper bound is quadratic
in the radius of the ball used, and the radius is proportional to the initial distance to
the origin.

5. Conclusions

We gave a simple and (in retrospect) natural strategy for lion to win the game.
Furthermore, we showed that it is very close to being optimal: If both players start on
the diagonal close to each other, the gap is smaller than a factor of 6. If the slope of
the line connecting the man and the lion is bounded away from vertical or horizontal,
the bound is asymptotically tight. Finally, in the general case the gap is very small.

It remains an open question to remove the remaining small gap of �� between the
bounds. We conjecture that the upper bound, i.e., the lion’s strategy is closer to the
truth. As noted above, the simple strategy of man is not suPcient to close the gap.

As an interesting special case, note that if the man starts at the origin and the
lion starts at (x; 1), the number of steps necessary and suPcient to catch the lion is
(close to) x4.
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