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The three sequences mentioned in the title are Ramanujan’s T-function, the 
coefficients c,, of Klein, Fricke, and Shimura, and the sequence a, of Ap&y 
numhers. In the first note, it is shown that c,, = +)(mod 11). In the second note 
it is shown that for a prime p, a,+l = 25 + 60p(modpa). 

A CONNECTION BETWEEN r(n) AND THE COEFFICIENTS c, OF KLEIN, FRICKE, 
AND SHIMURA 

Recall that Ramanujan’s T-function is defined by 

il +> xn = x fi (1 - x*)24, 
T&=1 

and that Klein and Fricke defined the c, by 

5 c,xn = x njj (1 - X”)2 (1 - X11fi)2. (2) 
n=1 

Shimura (Crelle’s J., 1965) made a beautiful application of the c, to reciproc- 
ity laws in nonsolvable extensions of the field of rational numbers. 

Both c, and 7(n) are known to be multiplicative. For a primep, Hasse has 
shown that 

1 cg I < 2p1’2 (3) 

and only recently Deligne has established that 

I T(P)1 < 2p1”2. 

In this note it is observed that c, = I (mod 11) and it is shown that this 
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congruence when combined with other known congruences, allows one to 
easily compute for a prime p, the values of c, from the values of T(P) up to 
at least p = 757. 

PROPOSITION. c, = I (mod 11). 

Proof. For power series f(x) and g(x) with integral coefficients, write 
f(x) = g(x) (mod n), if for each nonnegative integer k, the coefficients of xk 
inf(x) and g(x) are congruent (mod n). Since 1 - xlln E (1 - xn)ll (mod 1 l), 
from (2) 

c c,xn E x n (1 - x~)~ (1 - xn)zz (mod I 1). 

But by (l), the right side is C 7(n) x”. 
Other known congruences for c, when the modulus is 2 or 5 are as follows: 

S. Chowla and M. J. Cowles (Crelle’s J., 1977) proved that for a prime 
p # 11, (a) ifp = 2, 6, 7, 8, or 10 (mod 1 l), then 2 1 c, ; and (b) if p = 1, 3, 
4, 5, or 9 (mod 1 l), then 2 j c, if and only if there are integers u and v such 
that p = u2 + 1 I+‘. It is also know that for a prime p f 11, c, = p + 1 
(mod 5). Curiously enough it seems hard to get a reference for this last result 
although it is well known to those acquainted with the theory of modular 
forms. 

As an example of a computation of c, from T(P), take p = 251. Since 
251 = 9 (mod 11) and 251 # ua + llu2, from (b) above, c251 is an odd 
integer. Also c, = 2 (mod 5) and from (3), j csl 1 < 31. Hence c251 is one 
of the numbers: -23, -13, -3, 7, 17, and 27. Now from D. H. Lehmer’s 
table (Duke Math. J., 1943) for 7(n) (n < 300), ~(251) = 12983053545252. 
Since(2+2+4+3+0+8+2)-(5+5+5+5+3+9+1)~10 
(mod ll), c251 G ~(251) = 10 (mod 11). Thus czl = -23. In this way one 
can verify Trotter’s table for c, (p < 2000) in Shimura’s paper (Crelle’s J., 
1965) up top = 757. This method of determining the values of c, from those 
of T(p) (found by Lehmer for p < 10,000, but not published) could be 
extended if congruences for moduli other than 2, 5, and 11 were known. 

A CONGRUENCE ON AP&RY NUMBERS 

Apery introduced the numbers a, (n 3 0) defined by the recurrence 
relation 

and 

a, = 1, a, = 5, 

n3a, - (34n3 - 51n2 + 27n - 5) a,-, + (n - 1)” anA = 0 (4) 



86 JOHN COWJSS 

in his proof of the irrationality of ((3) = Cz=‘=, (I/@. One of the startling 
facts established by Apery is that all of the u,‘s are integers. In [l] it is shown 
that 

for all primes p, a9 = 5 (modp2) (5) 

In this note it is shown that for all primes p, 

a P+l = 25 + 6Op (mod ~“1 

LEMMA. For n 3 2, anfl = (5 + 12n) a, (mod n2). 

ProojI From (4), 

(n + 1)3G2+l - [34(n + l)s - 51(n + 1)2 + 27(n + 1) - 51 a, 

+ naa,-, = 0. 

Then 

(3n + 1) anfl - [34(3n + 1) 
- 51(2n + 1) + 27(n + 1) - 51 a, E 0 (mod n2); 

and so (3n + 1) a,+1 = (5 + 27n) a, (mod n2). Multiply both sides by 
1 - 3n and use the fact that 1 - 9n2 = 1 (mod n2), thus obtaining: 
a n+l = (5 + 12n) a, (mod n2). 

PROPOSITION. For all primes p, ap+l = 25 + 6Op (modp2). 

ProoJ: By the lemma, a,,, = (5 + 12~) a, (modp2) and from (5), 
a, = 5 (modp2). 

COROLLARY. For all primes p, a,,, E 25 (mod p). 
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