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Abstract

Oil palm empty fruit bunches activated carbon of different parts (shaggy and core) were characterized as to convert waste of oil palm-based
into value added products. Conventional step processes of physical activation were performed where activation was undertaken after the
pyrolysis process (carbonization-activation process). The pyrolysis temperatures applied were 400, 450, and 500°C in inert condition under
nitrogen flow. For the activation process, 600, 700, and 800°C with the presence of 15%, 60%, and 100% CO, and holding time of 30, 60, and
120 minutes were applied. Results showed that activation temperature, CO, percentage and holding time did dictate the changes of activated
carbon yield, carbon content, and textural properties of the activated carbon core and shaggy EFB produces. The highest yield of activated
carbon was obtained from 700°C (middle temperature), 60% CO, (middle percentage), and 30 mins holding time (shortest). However, the
highest carbon content was detected from 600°C, 60% CO2, and 60 mins of activated carbon core EFB. The size of pore determined prove that
the three parameter do not correlate with each other as the bigger pore diameter was derived from 700°C, 60% of CO,, and 60 mins holding
time. Hence, the results revealed that there are differences of activated carbon properties when we separate EFB part into its core and shaggy.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICPEAM 2016

Keywords: Activated carbon; core EFB; oil palm oil empty fruit bunch; physical activation; pyrolysis; shaggy EFB

1. Introduction

Commercially available activated carbons were prepared from non-renewable and expensive which also contributed to
uncontrol air pollution. Although, the fact it can be produced from any carbonaceous materials but in the early day, most
commercialized activated carbon were coming from petroleum residues, wood, coal, lignite, and peat [1]. Nonetheless, these
materials have been employed in a wide number of applications on an industrial scale including, purification technologies,
removal of pollutants, and electrochemical devices. As activated carbon can be produced by both naturally occurring and
synthetic of carbonaceous solid precusor it has been classed based on its starting material [1]. Hence, the production of activated
carbons from waste agriculture products in particular oil palm biomass has been explored since 1996 [3,4].

Biochar is the product of thermal decomposition processes commonly by pyrolysis process with temperature below 700°C [5].
Lower pyrolysis temperature and lower heating rate process produce more char than liquid or gas product. The bio-char is used to
be an underrated material until recently when their application has been expanded from soil enrichment to activated carbon. EFB
has been used as a feedstock for bio-char production which will be applied later in different products [6-9].
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The use of oil palm based waste for activated carbon products specifically empty fruit bunches has been discussed by
researchers [10-16]. Apart of the high volume of waste, its cost, properties, and environmental friendly factors, the EFB material
different parts in specific core and shaggy have never been study as far as author knowledge. Therefore, the goal of this study
was to analyze the activated carbon produced from oil palm empty fruit bunches (EFB) of two parts specifically core and shaggy
by single step activation process after pyrolysis (carbonization process). In addition, the activated carbon properties will be
discussed for it individual part (core and shaggy) and mixture.

2. Materials and Methods

All material was obtained from Oil Palm plantation nearby university area. Two parts of empty fruit bunches (EFB) of shaggy
and core were prepared for the activated carbon feedstock (Figure 1). The pretreatment process, the material were processed by
cutting to small size (original size to chopper size) and then dried at 105°C for 24 hours. The dried EFB was grinded to and
sieved to 0.5 — 1.0 m and then stored in desiccators to preserve the moisture content (MC) which less than 10% and the later
experiment. For EFB raw material, two approximate analysis of moisture content (ASTM E871) and ash content were conducted
(ASTM D2866). Scanning electron microscope (SEM) (Model TM3030 HITACHI) was carried out for textural characteristic of
outer part of EFB.

Pyrolysis Activation

‘ ‘ Pretreated Activated
feedstock feedstock Char; Carbon

Core

Shaggy

Fig. 1. Empty fruit bunch, core and shaggy (left) and schematic diagram of activated carbon production (right).

Figure 1 shows the schematic of activated carbon production where the activated carbon started from charring of EFB. And,
the experimental design is shown in Table 1. The bio-char was derived from pyrolysis process of EFB in a drop type pyrolyzer at
450°C. The ultimate analysis was conducted for the bio-char by Series 11 CHNS/O Analyzer 42400 Perkim Elmer in particular
determination of carbon content. The textural properties of char were also determined with the same SEM instrument.

Table 1. An experimental design for the activated carbon of oil palm EFB bio-char (Pyrolysis- 450°C).

Type / Activation Temperature (°C) CO, % Activation time (mins)

600 60 60
700 60 60
800 60 60
700 15 60

Core & Shaggy 700 60 60
700 100 60
700 60 30
700 60 60
700 60 120

Activation process was performed by a tube furnace for EFB pyrolized bio-char as Figure 2. The boat was loaded with 1.5g of
bio-char then activated with the desired temperature (600, 700, and 800°C). Heating rate was set to a rate of 20°C/min and
nitrogen gas (N,) flow. A carbon dioxide gas (CO,) was introduced to activate the sample at 15%, 60%, and 100% with different
activation time, 30, 60, and 120 mins. After the activation step, solid samples were left in the reactor for cooling step to room
temperature under N, gas flow. Further analysis were conducted for these samples for it physical properties, their yield and
morphology characteristic (SEM image). In term of activated carbon yield (Y %), it is calculated based on mass (dry weight, g)
of the final activated carbon product (W) over the initial mass of char precursor (dry weight, g) (W,) times 100 (Y = W,/ W, x
100). In addition, Fourier Transform Infrared (FT-IR) spectroscopy analysis to determine its surface functional groups of raw and
activated carbon EFB (potassium bromide-KBr accessory, spectrum range 500-4000 cm™).
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Fig. 2. Drop type pyrolyzer (left) and tube furnace (right).

3. Results and Discussion

The results of the proximate analysis of raw EFB were comparable for both core and shaggy with 3.8% moisture content and
ash content were 1.4% and 1.3% respectively [7,8]. EFB-char ultimate properties are shown in Table 2 with C, H, and N
composition [9]. The samples were obtained randomly from different spot of core and shaggy materials as cited by numbering
(e.g. C1 and S1). Shaggy char showed lower carbon content compare to core parts underwent 450°C. These values were higher
compare to Abu Sari et al. (54.08% C, pyrolysis 500°C) and comparable to Sukiran et al. (65% C, 400 and 500°C) however
slightly lower than Shariff et al. (72.23% C, pyrolysis 550°C) [7,8]. This could be due to the relationship between ash and carbon
contents but the differences of carbon content is not significance when the ash content is lower than 10%. Although the
percentage of carbon content did showed an increment with reduction of ash content of the char EFB precursor as reported by
Shariff et al. [8].

Table 2. Properties of EFB char, core-c and shaggy-s (Pyrolysis- 450°C).

Char Percentage (%)

Sample Carbon, C Hydrogen, H Nitrogen, N
C1 71.43 3.50 0.72

C2 69.47 3.21 0.61

C3 71.81 3.17 0.70

S1 62.13 4.49 0.90

S2 65.21 3.54 0.89

S3 62.71 3.96 0.80

3.1 Activated carbon

With temperature different for pyrolysis, the results in Table 3 show that C, H, and N % also changed for both shaggy and
core for same activation process parameter (700°C, CO, 60%, 60 mins activation time). For shaggy samples, the carbon content
(C%) were 41.16, 41.11, and 41.56% for 400, 450, and 500°C, respectively. Meanwhile for core sample, the C% was slightly
higher 48.74, 51.52, and 53.29% with the same ascending pyrolysis temperature. Wirasnita et al. recorded relatively high carbon
content 71.23% in comparison to our finding at substantially lower activation temperature 500°C and Hidayu et al. reported
68.32% carbon content of 765°C [12,16]. Based on these two studies it could be concluded that the lower carbon content may be
a result of pyrolysis process acting as double process of heating the material (carbonization-activation process). In which, the
core part showed even lower than shaggy as proving process contribute to the changes of carbon content in activated carbon
material.

Table 3. Effect of different pyrolysis temperature with similar activation condition on carbon content (%).

Char Pyrolysis Percentage (%) Carbon (C%)

Sample Temp (°C)  Activation time (min) CO; (%) Temp (° C)

Core 400 60 60 700 41.16
450 60 60 700 41.11
500 60 60 700 41.56

Shaggy 400 60 60 700 48.74
450 60 60 700 51.52

500 60 60 700 53.29
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Activated carbon yield showed that as temperature increase (600, 700, 800°C) the yield decrease by less than 3% for both
shaggy and core (29.16%, 28.10%, 26.80%) as in Table 4. Although it shows that the reduction in gradually manner and may be
not even significant different at large and distinct temperature different. Interestingly, the trends were similar for shaggy and core
of EFB activated carbon samples on both AC yield and carbon content. However this activated carbon yield may not correlate
with carbon content, 70.38, 41.11, and 63.6% of shaggy sample and 60.56, 51.52, and 55.56% of core EFB samples upon
changes of activation temperature. The higher yield at low temperature may be due to slow rate of carbon and carbon dioxide
reaction with the weight loss resulted from the released of volatile matters [17]. Our results also indicated higher AC yield values
than studies by Alam et al. (25-27% AC yield) and Hameed et al. (17-21% AC yield) [10,11]. Alam et al. found that activation
temperature have the greatest effects to the activated carbon yield which opposite than our finding [11]. Nonetheless, activation
did change the activated carbon yield content in the core and shaggy samples and also altered their carbon content.

Table 4. Effect of activation temperature on activated carbon (AC) yield and carbon content (%).

AC Percentage (%) AC Yield (%) Carbon (C%)
Sample Activation time (min)  CO, (%) Temp (° C)
Core 60 60 600 29.16 70.38

60 60 700 28.10 41.11

60 60 800 26.80 63.6
Shaggy 60 60 600 33.55 60.56

60 60 700 29.22 51.52

60 60 800 28.57 55.56

Table 5 shows the effect of CO, percentage on yield of activated carbon is significant at temperature 700°C with holding time
60 mins (Table 5). CO, percentage has a control on the rate of reaction of carbon and CO, can be seen from the reduction of
activated carbon yield as discussed by Yang et al. [17]. So far author could not retrieve research on physical activation with
different CO, condition, the closes one was Alam et al. reported on several CO, flow rate which displayed very little effect on
activated carbon yield, 27.65% [11].

Table 5. Effect of CO, percentage % on activated carbon (AC) yield and carbon content (%).

AC Percentage (%) AC Yield (C%) Carbon (C%)
Sample Activation time (min)  CO, (%) Temp (° C)
Core 60 15 700 32.70 54.02

60 60 700 29.22 51.52

60 100 700 27.52 54.03
Shaggy 60 15 700 31.19 67.82

60 60 700 28.10 41.11

60 100 700 25.66 58.51

Meanwhile, the effect of holding time on the yield of activated carbon is shown in Table 6. As the holding time increase the
activated carbon yield decreased versus carbon content increased for both core and shaggy samples. This could be expected as
the longer holding time more release of volatiles matter will occurs. In addition, the extent of carbon-carbon dioxide reaction will
increase leading to higher carbon burn-off. Our activation time is longer three times than the Alam et al. highest activation time
(45 mins) [11]. Noticeably, their activated carbon yield lower content than our study which indicates that activation time plays
some role in the activation process. In addition, the carbon content showed higher value shaggy than core sample which
improved carbon properties while compromising the AC yield.

Table 6. Effect of holding time on the yield of activated carbon (AC) and carbon content (%).

AC Percentage (%) AC Yield (wt%) Carbon (C%)
sample Activation time (min)  CO, (%) Temp (° C)
Core 30 60 700 36.18 55.04
60 60 700 29.22 51.52
120 60 700 28.29 57.16
Shaggy 30 60 700 30.57 63.04
60 60 700 28.10 41.11

120 60 700 27.27 69.1
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3.2 Functional Groups of activated carbon core and shaggy EFB

Figure 3 shows FTIR spectra for the EFB core and shaggy activated carbon with 60 mins holding time, 600°C, and 60% CO,
activation condition. In the FTIR spectrum of raw oil palm EFB sample, a broad and strong band at 3400 cm™ for hydroxyl group
(-OH) stretching vibration was reported by Wirasnita et al. [16] however observed that the band shrunk for activated carbon
samples. Vaporization of moisture content would be the significant caused for the reduction during the activation process
[13].The disappearance of this group was also severe when compare to char sample as recorded by Abu Sari et al. (2014) [9].
Meanwhile, the absorption peaks at 2900-2850 cm™ for C-H stretching vibration of the —CHj group was totally removed from
activated carbon samples. Carbonyl groups (C=0) were observed present in the native EFB at 1740-1700 cm™ which expected
derived from lignin network [18]. However, this peak almost absence after pyrolysis and the activation process due to
vaporization of volatile matters. The peaks range in between 1200-1000 cm™ were assigned to C-O stretching as well as 830 cm’™
Si-O as a yield of silica containing minerals [9,19,20]. Hidayu et al. stated that IR spectra have proved that their prepared
activated carbon was successfully converted into carbon [12]. Indeed, this is congruent with our finding although core and
shaggy samples did showed much different in term of their functional group where core sample is not much affected with
activation condition as compare to shaggy sample.

o3

40000 3000 2000 1500 1000 500 4000

Fig. 3. FTIR spectra for EFB activated carbon of core (left) and shaggy (right) samples (600°C activation temp, 60% C.

3.3 Textural Characteristic of dried raw, pyrolysis char, and activated carbon core and shaggy EFB

Figure 3 shows the micrograph of raw EFB core and shaggy samples which the white circular craters of silica-bodies proof
the expected future problem of EFB [11]. The presence of this silica commonly complicated the pulping and bleaching
manufacture products of this material as the silica-bodies are hard. Average size of this core part from cross-section angle is
about 6-7 um pore diameter as supported by Law et al. [21]. The image of EFB char seems to be disintegrated when compare to
the original structure of core EFB (outer surface). Moreover, the small cell cavity with non-developed porosity and patches of
crack were observed as well as the cell wall breakdown. It was noticed that char average pore diameter size was wider
comparable to Abu Sari et al. [9], with slightly bigger range 10 um up till about 30pm. Nonetheless, the credit of producing
uniform pores and smooth wall surface pyrolysis process cannot be denied showed by both parts of EFB [9,10]. Upon activation
process the pore was developed further shown in the image of core EFB activated carbon. This indicates that the porosity was
expanded by activation agent and process [10,11,16]. The average size determined of pore cross section diameter was about
8um. Shaggy EFB is shown in Figure 3 (right) with white circular crater was also spotted on the raw material similar to core
sample. Its pore size of cross section determined to range between 10-14 pm which is slightly wider than core sample. However,
the pyrolysis process significantly impact the pore structure compare to core sample as indicated by the irregular cavity
developed on the outer surface of the material. Meanwhile, after activation process the average pore diameter from cross section
view was about 12.6 pm which is also larger than core sample. The images of SEM micrographs of the both core and shaggy
samples activated carbon demonstrated that carbonization by pyrolysis and activation processes created porosity and large
surface area for absorption thus aligned with the literature which is the goal in production of activated carbon.
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Fig. 3. (a) Micrograph of raw, char, and activated carbon of EFB core (left) and shaggy (right) samples.

4. Conclusion

This study has shown that both part of EFB shaggy and core char have high amount of carbon making them a good starting
materials or precursor to produce activated carbon. Carbon content of char sample from both core and shaggy EFB has showed
significant amount to be prepared as precursor for activated carbon. The activated carbon yield and carbon content (%) showed
slight differences with each other upon carbonization-activation process for both core and shaggy materials. The highest yield of
activated carbon precursor was produced at the medium activation temperature (700°C), medium CO, (60%), and shortest
holding time (30 mins). There are significant different between raw or native EFB core and shaggy samples with clear results
when compare to char and activated carbon. In addition, the generation of uniform pore and porosity of activated carbon samples
were successful for both materials as well in which the removal of volatile matter and decomposition of chemical component
occurred during the process. This proved that the materials are potential for precursor activated carbon at low price. Further, this
single step physical activation process certainly minimizing the cost of production using EFB material.
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