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Advances in modern computational methods and technology make it possible to carry out extensive molec-
ular dynamics simulations of complex membrane proteins based on detailed atomic models. The ultimate
goal of such detailed simulations is to produce trajectories in which the behavior of the system is as realistic
as possible. A critical aspect that requires consideration in the case of biological membrane systems is the
existence of a net electric potential difference across the membrane. For meaningful computations, it is
important to have well validated methodologies for incorporating the latter in molecular dynamics simula-
tions. A widely used treatment of the membrane potential in molecular dynamics consists of applying an
external uniform electric field E perpendicular to the membrane. The field acts on all charged particles
throughout the simulated system, and the resulting applied membrane potential V is equal to the applied
electric field times the length of the periodic cell in the direction perpendicular to the membrane. A series
of test simulations based on simple membrane-slab models are carried out to clarify the consequences of
the applied field. These illustrative tests demonstrate that the constant-field method is a simple and valid
approach for accounting for the membrane potential in molecular dynamics studies of biomolecular systems.
This article is part of a Special Issue entitled: Membrane protein structure and function.
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1. Introduction

The electric potential difference across biological membranes
plays a central role in many essential biological processes [1]. In living
cells, the distribution of ions on both sides of the membrane is active-
ly maintained by ion pumps and transporters, and the membrane po-
tential results from the ion concentration gradients and the relative
permeation of the membrane by the various ionic species. In the lab-
oratory, it is also possible to artificially impose a potential difference
across a membrane through the use of ion-exchange electrodes, a
technique widely used in electrophysiology. Nevertheless, whether
one is attempting to realistically model cellular processes or electro-
physiological experiments, the physical underpinning of the potential
is identical in both cases: the bulk ionic solutions remain electrically
neutral overall and the potential difference across the membrane
arises from a very small charge imbalance distributed in the neigh-
borhood of the membrane–solution interface. The membrane
responds as a classical linear capacitor and the potential difference
V arising from the net charge separation ΔQ is V=ΔQ/C. In the case
of phospholipid bilayers, a membrane potential of 100 mV corre-
sponds to a ΔQ of one elementary charge for each 250 Å×250 Å
area of membrane. Thus, a sizable potential difference across the
membrane is associated with an extremely small charge separation.
Accounting for this potential difference in simulations requires a
well defined conceptual framework.

A linearized Poisson–Boltzmann theory modified to account for
the membrane potential was formulated on the basis of a continuum
electrostatic representation [2]. The PB-V theory provides a conceptu-
ally transparent, albeit approximate, description of the membrane
potential and allows for the calculation of several quantities of inter-
est, such as the voltage profile along channels and vestibules of com-
plex irregular shapes [3,4], and the gating charge of intrinsic
membrane proteins [2,5-8]. However, the PB-V theory does not di-
rectly provide a method to include the membrane potential in all-
atom MD simulations with explicit solvent and membrane. Such MD
simulations are normally carried out under periodic boundary condi-
tions (PBC) to reduce finite-size effects. Thus, the bulk ionic solutions
on both sides of a membrane in a PBC system are actually the same
liquid phase, which poses several challenges when one tries to imple-
ment a potential difference and concentration gradients across the
membrane. For this reason, realistically incorporating the effect of
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the membrane potential in all-atom MD requires careful consider-
ation. Over the past decade a few different strategies have been de-
veloped to circumvent the issue of periodicity in all-atom MD
simulations.

The most direct approach to simulating a membrane potential
consists of constructing a system that comprises two parallel bilayer
membranes with two separate bulk phases [9,10]. Different ionic con-
centrations in each bath can be introduced to create a realistic trans-
membrane potential. The dual-membrane approach has been used to
study the initial stages of ion channel gating over a 10-ns time scale
[11] as well as electroporation of the membrane by ions [12,13].
However, this approach considerably increases the size of the
simulated systems and the computational cost. Nonetheless, the
dual-membrane method might become more popular as computa-
tional power increases and simulations of larger systems become
accessible, ultimately leading to simulations of near complete
liposome-like systems. A slightly less demanding alternative to the
dual-bilayer method consists of replacing one of the two membranes
by a vacuum slab that effectively acts as a physical barrier to separate
and isolate the two bulk solutions on both sides of the membrane
[14]. With this approach, a charge imbalance between the two sides
of a single membrane may be introduced to produce a transmem-
brane voltage [15,16]. The dual-membrane and vacuum slab methods
realistically incorporate the transmembrane electric potential in bio-
molecular dynamics simulations. In both cases, the resulting trans-
membrane potential is not known a priori, as it depends on the
specific physical characteristics of the simulated bilayer and the
imbalance of charge that is introduced in the system. Of particular
importance, the actual value of the applied transmembrane potential
may vary considerably (by hundreds of millivolts) upon a single per-
meation event [14], or if an embedded membrane protein carrying
charged residues changes its conformation. In practice, the actual
potential difference V needs to be constantly monitored and the
charge imbalance ΔQ adjusted to prevent large changes during simu-
lations. This poses some challenges because of the large membrane
capacitance. For example, the transfer of a single elementary charge
for each membrane patch of area 500 Å×500 Å is sufficient to shift
the membrane potential by about 25 mV. Lastly, the imposition of a
very small potential can become difficult, requiring the enlargement
of the simulated system to increase the area of the membrane or
the inclusion of dummy particles with a fraction of elementary
charge.

A different approach to account for the membrane potential in MD
simulations consists of introducing a uniform electric field E through-
out the entire simulated periodic cell containing the membrane sys-
tem [17-19]. This gives rise to a force qi ⋅E that applies to all charges
qi in the simulation. The electric field is directed perpendicular
to the membrane plane and must have a magnitude E=V/Lz, where
Lz is the length of the PBC simulation box in that direction. Thus, the
value of the applied voltage V is known a priori and the magnitude
of the applied field depends only on the size of the simulation box
Lz, with no need for a dual bilayer or an enlarged system with a
vacuum slab. The pioneering application of the constant electric
field approach in Aksimentiev and Schulten [20] demonstrated its
ability to quantitatively determine the conductance of a membrane
channel from only its X-ray structure. This approach has also been
successfully used in many other applications studying ion conduction
[21-26], voltage-regulated water flux [27-29], insertion of peptides
into membranes [30], electroporation [31-34], translocation of DNA,
ions, and large biomolecules through nanopores [35-37,33,38-40],
and induced conformational changes of membrane proteins [41-43].

The theoretical foundation of the constant field method has been
clarified previously: it represents the influence of two aqueous salt
bath solutions held at different voltages via an electromotive force
(EMF) on a subsystem of interest [44]. Nevertheless, the method
retains a certain appearance of artificiality that may be cause for
confusion and concern. For example, it is not immediately apparent
that the actual potential V imposed across a membrane in MD simula-
tion in which a constant uniform electric field E is applied is truly
equal to E ⋅Lz, regardless of the shape of the protein/membrane inter-
face. Furthermore, the constant field method adds a constant force,
qiV/Lz, acting on all the charges in the system, regardless of their po-
sition. However, it is understood that the transmembrane potential
arises from a microscopic charge separation and that the net average
electric field in the aqueous region should be very small.

It is the goal of this brief review to address the aforementioned
concerns and to clarify the application of the constant electric field
method. To help illustrate the significance of the constant field meth-
od, we carried out a number of MD simulations based on simple
model systems composed of a low-dielectric pseudo-membrane slab
with different fixed geometries. It is shown that applying an external
electric field is, indeed, a valid method for generating a potential dif-
ference across a membrane in MD simulations. We also examine po-
tentially subtle issues of system size dependence, both in terms of
how one calculates the potential from the applied field and how
that dependence is manifested in equilibrium and non-equilibrium
properties of the system.

2. Results

2.1. Applied constant electric field in the context of periodic boundary
conditions

The presence of a potential difference across a membrane un-
avoidably breaks periodicity. Nevertheless, the equivalence of the
forces arising from the constant applied electric field across the
boundary ensures that there is no discontinuity in the force acting
on a given particle when crossing it. The net result of a particle cross-
ing the periodic boundary is akin to passing through a virtual circuit
with an embedded EMF, i.e., a battery [44]. This virtual EMF provides
the work that gives rise to the bulk phase polarization (and slight
charge imbalance if there are mobile ions) across the simulation
cell, which causes the potential difference. To understand how the
membrane potential difference relates to the periodic boundaries, it
is helpful to observe how it is realized in various systems.

As visualized in Fig. 1, a constant applied electric field generates a
linear potential across the entire unit cell. However, what matters is
the total potential difference across the membrane, which is the pre-
dominant quantity underlying biologically relevant events and the
quantity that one typically desires to control in a simulation. A uni-
form medium such as an aqueous salt solution will naturally self-
organize to reduce as much as possible the magnitude of any net av-
erage electric field. This behavior is akin to good conductors that
expel all electric fields from their interior. The rearrangement of the
bulk medium to a non-uniform distribution generates its own reac-
tion field that, when summed with the external field, gives the result-
ing, total field. Because the change in potential must take place
somewhere within the system, it becomes naturally concentrated at
an immobile insulating membrane, regardless of its shape or size,
with a characteristic decay away from it. Despite the non-
periodicity of the total potential, the force experienced by a charged
atom across the periodic boundary (computed from the first deriva-
tive of the total potential) is continuous.

To demonstrate concretely the conceptual arguments made above,
we begin with the simplest system, a uniform hydrophobic slab 20-Å
thick in the center of an aqueous NaCl salt solution extending approx-
imately 27 Å above and below (see Fig. 2A). The electric field,
constant in the z direction and zero in the x and y directions, is deter-
mined from the desired potential difference, V=500 mV here, across
the entire unit cell through the equation Ez=V/Lz. In this equation, Lz
refers to the size of the entire periodic cell, including membrane and
water (~75 Å). The resulting potential for the entire system, averaged
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Fig. 1. Schematic description of the constant electric field methodology. In the periodic
system, the applied constant field is associated with a linear potential, which is com-
bined with the reaction potential from the electrostatic forces treated via particle
mesh Ewald (PME) to generate the resulting total potential. Even though the total elec-
trostatic potential is non-periodic, the reaction potential computed during the simula-
tion (PME), as well as the forces (slopes of curves) from both the applied and total
potential are compatible with periodic boundary conditions.
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over a 10-ns simulation and shown in Fig. 2B, is clearly focused to the
region of the slab, despite the constant external field applied. Thus,
the entire 500-mV potential drop occurs across the membrane only,
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Fig. 2. Membrane slab systems. (A) Full simulation system for the simple membrane slab sh
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along the z-axis for the system in A (black) and in C (red).
with the potential difference in the bulk regions above and below
being zero.

2.2. System size and resulting membrane potential

How should the applied field be treated if the system size is
doubled while the thickness of the membrane is kept constant as
illustrated in Fig. 2C? According to the relation Ez=V/Lz, if Lz is
doubled, then the external applied field Ez ought to be divided by
two in order to maintain the same value of V. Again, this concept is
illustrated by considering the simple membrane slab under a reduced
applied field. As explicitly demonstrated by the simulation, the
resulting average potential throughout the system is identical to
that for the smaller system (compare Fig. 2D to Fig. 2B and the curves
in Fig. 2E). As before, the expected potential difference of 500 mV is
focused to the region of the membrane only.

To further illustrate that the applied field necessary to enforce a
given voltage depends only on the size of the simulation box and is
independent of the shape of the membrane, we consider the same
hydrophobic slab but with a central part cut out. This cutout reaches
halfway into the membrane, sloping inward to the thinner part of the
membrane (see Fig. 3A). The resulting trapezoidal-cutout slab was
simulated under the same conditions as the uniform slab, namely
two system sizes and an expected potential difference of 500 mV
across the entire unit cell. As before, the resulting time-averaged
potential throughout the system is identical for the two system
sizes provided that the applied Ez is halved for the larger system
(see Fig. 3B, C). In particular, the full potential difference V is typically
focused to the insulating membrane alone, despite its variations in
thickness.

Taking the reduction in membrane thickness to its extreme limit, a
membrane was prepared in which a central box-shaped region is re-
moved such that only a single layer of hydrophobic atoms separates
the two bulk regions (see Fig. 3E–H). Although the applied field is
uniform, in both the smaller and larger systems the resulting electro-
static potentials are identical, with the potential difference being fo-
cused to the fixed membrane only. This focusing tightly couples the
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potential difference to the membrane shape, and can thus generate
large electric fields in the thinnest regions, such as the single fixed
layer in the system in Fig. 3E. All these examples demonstrate that
the resulting potential difference in any system depends only on the
applied field and the size of the simulation unit cell, not on the partic-
ular membrane size or geometry. The microscopic details of the shape
and size of the molecule system are irrelevant and do not determine
the potential difference imposed by the constant field method.

2.3. Non-equilibrium dissipative finite-size effects

The results displayed in Figs. 2 and 3 show that the average mem-
brane potential profile across the system is not very sensitive to the
size of the simulated system (as long as E is given by V/Lz). Another
finite-size effect, though not specifically relevant to the situation con-
sidered here with an applied external electric field, is associated with
the system's periodicity and the planar membrane geometry [45,46].
It arises from the difference in self-interaction between the ion and its
periodic images when the ion is located in the low-dielectric mem-
brane region (or inside a channel), where its field is not as efficiently
shielded as when the ion is located in the high-dielectric bulk solution
[45,46]. The magnitude of such a spurious self-interaction in periodic
systems can be estimated, for example, by using a continuum electro-
statics approximation [45-47]. However, based on the size of the sys-
tems simulated here (at least 44 Å between images), the correction is
expected to be negligible [48].

Such relative lack of sensitivity of the results on the size of the
simulated system must, however be considered with caution. The ro-
bustness of average equilibrium properties is largely predetermined
by the gross structural features of the systems, in qualitative accord
with continuum electrostatics. Once the system reaches thermody-
namic equilibrium, the spatial distribution and orientation of the
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water molecules and mobile ions is rearranged to essentially cancel
out the applied external field in the bulk phase regions and, as a re-
sult, the potential drop occurs mainly across the non-conducting
low-dielectric insulating regions. However, non-equilibrium proper-
ties, such as ion fluxes through membranes or the rate of conforma-
tional transitions, might be more sensitive to the size of the system.

To illustrate the possibility of size-dependent effects on transport
phenomena, we examine the rate of ion permeation through a mem-
brane slab with a generic pore in two systems of different sizes. To
simulate ion conduction, a 20-Å-diameter cylindrical pore was cut
through the fixed membrane slab and the resulting system was sub-
jected to an external electric field of 500 mV in one set of simulations
and 1 V in another set (see Fig. 4A–C). In one system the length of the
bulk salt solution is larger such that the simulation box is twice as
long in the z direction compared to the other, with Lz=154 Å and
Lz=74 Å, respectively. In all other aspects, the membrane slab and
pore are identical. Any atomic charge movement in the microscopic
system is associated with a detectable current going through the vir-
tual EMF circuit [44]. It follows, then, that the steady-state ionic flux
through this model pore under an applied voltage can be calculated
from the total displacement current [20],

I tð Þ ¼ 1
Lz

∑
all atoms

qi żi tð Þ; ð1Þ

where ż(t) is the velocity of particle i in the z-direction. Alternatively,
it is possible to consider the integrated form of Eq. (1),

Q tð Þ ¼ 1
Lz

∑
all atoms

qi zi tð Þ−zi 0ð Þ½ �; ð2Þ

where zi(t) represent the continuous “unwrapped” coordinates of
the atoms, i.e., not folded back into the periodic box. The average cur-
rent, I(t), can then be evaluated as the limiting value of Q(t)/t as t→∞
[44]. We note that because of the fixed membrane, there is no net
drift of the system, which otherwise might need to be removed [20].

At V=500 mV, the current Iavg.=−3.06±0.11 e/ns for the smal-
ler system (74 Å long) while Iavg.=−2.91±0.04 e/ns for the larger
system (154 Å long). The current in each of the two systems was
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estimated from Eq. (2) by averaging the value of Q(t)/t over the
final 2 ns of simulation. Although the currents are close, there is a
small apparent difference. As a further test of potential size-
dependent effects, the voltage difference was increased to 1 V. The re-
sults are shown in Fig. 4E, F for the two systems. The currents at 1 V
are −6.13±0.16 e/ns and −4.69±0.08 e/ns for the smaller and
larger systems, respectively. Here, the difference is clearly more
important, showing that there is a size dependence of the current in
these systems. Based on these currents, the total resistance extracted
from the MD simulations at 500 mV is 1.02±0.04×109 Ω for the
smaller system, and 1.07±0.01×109 Ω for the larger system, yielding
an increase of 0.05×109 Ω in the total resistance (~5%). The increase
in total resistance extracted at 1 V is 0.31×109 Ω, which is even larger
(~26%).

One may try to rationalize the observed size-dependence of the
simulated ionic currents on the basis of simple macroscopic argu-
ments. Assuming that the bulk solutions and the pore act as resistors
connected in series, the total resistance is expressed according to
Ohm's law as Rtot=Rpore+Rbulk [49]. If the resistance associated
with the pore Rpore remains the same in both systems, then the in-
crease in the total resistance should be explained by the increase in
resistance in the bulk region. It is tempting to estimate the latter
using the simple macroscopic approximation, Rbulk=ρL/A, where L
and A are the length and the cross-sectional area of the bulk, respec-
tively, and ρ is the bulk resistivity of the solution. However, this sim-
ple macroscopic expression assumes all ions flow to the pore along
lines parallel to z, ignoring the complexities introduced by the mem-
brane, bulk, and pore geometries. For instance, in the limit of a ther-
modynamically large system, an explicit dependence of the
resistance on the system's length, L, persists, which would be incon-
sistent with single channel experiments [1]. The more relevant form
of Rbulk that should be considered is known as the “access resistance”
[1,50-52],

Raccess≈2∫
a

l dr
ρ

2πr2
¼ ρ l−að Þ

πal
; ð3Þ

where a is the pore radius (10 Å) and l is the distance from the pore to
the box edge, i.e., l=L/2; as l→∞, Raccess converges properly to a finite
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value. The resistivity of a 300 mM NaCl solution for the current force
field is about 19.1 Ω ⋅cm [53]. The length of the bulk region is 54 Å
and 134 Å for the smaller and larger systems, respectively. Using
these values, the access resistance is estimated to be 0.038×109 Ω
for the smaller system, and 0.052×109 Ω for the larger system,
which yields an increase of about 0.014×109 Ω. This value is consid-
erably smaller than the changes of 0.05×109 Ω at 500 mV and
0.31×109 Ω at 1 V observed in the simulations, indicating that such
a macroscopic argument does not explain the change in the observed
resistance in the system fully. Changes in Raccess can also be estimated
from the voltage drop outside the pore (see Fig. 4D for the 1V case).
At 500 mV, Raccess increases by a factor of 1.3 when comparing the
larger to the smaller system, but only 1.12 at 1 V. For comparison,
Rpore is 1.08 times greater at 500 mV and 1.12 times at 1 V, although
it should be independent of system size and applied potential. How-
ever, the dependence on both factors indicates the presence of an ad-
ditional size-related effect that is also sensitive to the strength of the
field, which is greatest inside the pore.

These considerations suggest that the size-dependency of the
ionic current in the simulations must arise from more subtle factors.
This is best explained in the context of the effective dynamics of the
permeating ions based on the Generalized Langevin equation [54].
Within such reduced dynamics, the basic ingredients controlling the
rate of ion permeation are the potential of mean force (PMF), the
membrane potential, and the effective friction. The latter is related
to the rapidly fluctuating excess force, δF(t)=F(t)− 〈F〉, acting on
a permeating ion inside the pore according to the fluctuation–
dissipation theorem [55],

γ ¼ 1
kBT

∫∞

0
dt M tð Þ ð4Þ

where M(t)= 〈δF(t)δF(0)〉 is the memory function.
To quantify these effects, we calculated 〈Ftot〉, M(t), and γ for a

chloride ion inside the pore under a potential difference of 1 V. Both
the PMF and the membrane potential are equilibrium properties,
and we have shown above that the latter is insensitive to the size of
the simulated system. For the sake of completeness, the PMF for the
ion in the absence of an applied field was also computed. The PMF,
shown in Fig. 5, is largely flat at the pore's center, confirming that
there is no systematic size-dependence of the mean force. In other
words, 〈F〉 should be essentially equal in both the larger and smaller sys-
tems. Indeed, thiswas found to be the case: 〈Ftot〉=0.595 kcal/mol•Å for
the larger system and 〈Ftot〉=0.562 kcal/mol•Å for the smaller one.
However, it is expected that the memory function M(t) will display
some size dependence because a larger fraction of the total force F(t)
in the case of the smaller system is a constant component, qEz, from
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the applied external field. Conversely, the fluctuating component of
the force, which contributes directly to the effective friction via
Eq. (4), makes up a larger fraction of the total force F(t) in the case of
the larger system. In the larger system, the force due to the external
field, qE=0.150 kcal/mol•Å, is 27% of the total force, whereas in the
smaller system, qE=0.312 kcal/mol•Å is more than half of the total
mean force. As a result, the effective friction is expected to be larger in
the larger system, a size-dependent effect that should be apparent in
the simulations. Shown in Fig. 6A, the force autocorrelation function
rapidly decays toward zero within a few hundred femtoseconds (fs)
for both systems. The friction coefficient γ, however, diverges within
3 ps in the two systems,with the ion in the smaller system experiencing
a lower friction. As the time-independent force q⋅Ez approaches the
total mean force 〈Ftot〉, its quantitative impact on transport properties
will become increasingly apparent.

To further highlight the nature of the long-range effects that give
rise to the size dependency, a simple charged particle with no
Lennard–Jones interactions was restrained at the center of the
membrane slab. The particle is only subject to long-range electro-
static interactions with the water molecules and the mobile ions in
the bulk phase; there are no interactions with the uncharged particles
forming the membrane slab. Both a large and a small system were
simulated with an applied field corresponding to a membrane
potential of 1 V. The calculated average forces are 1.01 and
0.993 kcal/mol•Å for the smaller and larger systems, respectively. As
shown in Fig. 6C and D, the effective friction γ in the two systems is
clearly different. In the larger system, there is a slowly decaying
component to the force autocorrelation function, with an amplitude
corresponding to a weak fluctuating force of 0.05 kcal/mol•Å
decorrelating over a relaxation time of about 22 ps. To give some
idea of the order of magnitude of such a contribution, a force of
0.05 kcal/mol•Å corresponds roughly to the force exerted by one
TIP3 water molecule (dipole of 0.48862 eÅ) on an elementary charge
at a distance of 15 Å, i.e., 332×0.48862/153=0.05 kcal/mol•Å. In
summary, a system that is too small may produce a proper trans-
membrane potential profile, yet allow artificially enhanced currents
due to the reduced dissipative effects arising from long-range
fluctuations.

3. Concluding discussion

In light of the simulations with a constant field presented here, it
is clear that the magnitude of the membrane potential is solely a func-
tion of the external field E and the length of the system Lz in the unit
cell. The result is independent of the membrane thickness and of the
shape of the low-dielectric material separating the bulk phases in the
system. The resulting membrane voltage V is always equal to E ⋅Lz.
That the resulting V is indeed equal to E ⋅Lz can be visualized directly
by mapping the average electrostatic potential from the trajectories
as shown in Figs. 2–4, and verified explicitly by calculating the free
energy for charging a test particle at different locations in the system
[44,42].

Although V=E⋅Lz is a simple prescription, there remains quite
some confusion regarding the relation between the applied field
and the resulting membrane voltage in the literature. In a number
of simulation studies aimed at incorporating the influence of a mem-
brane potential via a constant electric field E, the actual reported
value for the membrane potential V was calculated as E⋅Δz, where
Δz was the thickness of the membrane in the system [56,26]. Intui-
tively, this seems to be a reasonable choice because the average elec-
tric field is expected to be negligible throughout the high dielectric
aqueous phases, and most of the voltage drop from the membrane
potential occurs across the non-aqueous insulating regions in the sys-
tem. However, one must exercise caution in invoking arguments
based on a macroscopic representation because the correspondence
to all-atom MD simulations with explicit solvent is not as
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straightforward as it may seem. While it is true that the resulting
average membrane potential will mainly drop across the insulating
region (the membrane), it is actually incorrect to ascribe the value
of V as being equal to Ez times the effective thickness of this region
when a constant external electric field is applied to all the charged
atoms in an MD simulation. The confusion appears fairly widespread,
although only a few publications provide the necessary information
to know what was actually done (the value of the applied constant
field, the length of the periodic simulation cell, and the membrane
voltage must all be reported). A first example is a simulation study
of the Shaker channel [56]. An external field of 4 mV/Å was applied,
intended to represent a membrane potential of −100 mV, a value
which was determined by dividing 100 mV by an assumedmembrane
thickness of 25 Å. However, the length of the periodic simulation cell
in the z direction was 100 Å, which implies that the actual membrane
potential applied during the simulation was underestimated by a fac-
tor of four. A second example is a simulation study of K+ conduction
through the pore domain of the Kv1.2 channel [26]. The average ionic
current was simulated for several different values of applied electric
field to produce the I–V curve of the channel. The membrane voltage
V reported in the study was calculated as E ⋅Δz, where Δz was taken
to be equal to the length of the selectivity filter of the channel
(taken as the distance of 13.4 Å between Thr374 and Tyr377) [26].
The membrane potential that was actually applied in those simula-
tions is E multiplied by the length Lz of the periodic simulation cell,
~85 Å. Thus, the reported voltage associated with the simulated cur-
rents in the I–V curves was underestimated by a factor of about six
(~85/13.4=6.34). We do not dwell on these details as a matter of
criticism of these previous studies, but to shed as much light as possi-
ble on the most common sources of confusion concerning the rela-
tionship between the applied electric field and the resulting
membrane potential in MD simulations.

The constant electric field methodology provides an unambiguous
and simple means to apply a voltage bias in membrane simulations.
In contrast to the two alternative methodologies, namely the dual
membrane and its extension with a vacuum slab, the constant field
method allows simulations of ionic currents through biological
channels at a constant membrane potential. The method has been
implemented in several biomolecular simulation programs, which
makes it readily available for membrane simulations. Using simple
membrane slab systems, we have shown that the application of a con-
stant electric field normal to the plane of the membrane produces a
proper description of the membrane potential. In all cases, the result-
ing voltage is independent of the system being simulated and solely
depends on E⋅Lz. However, non-equilibrium properties are more sen-
sitive to the finite system size due to changes in the resistance and
long-range dissipative effects. In part owing to its simplicity, the
method has been applied in several simulation studies of membrane
systems, including ion permeation in proteins and nanopores [20-
26], electroporation [31-34], translocation of molecules through
nanopores [35-37,33,38-40], and conformational transitions in bio-
logical systems [41-43].

4. Model systems and simulation methodologies

The model membranes used throughout are constructed of indi-
vidual carbon atoms arranged in a body-centered cubic lattice with
a spacing of 4 Å. All membranes have six vertical layers at their max-
imum and, thus, a thickness of 20 Å, not accounting for the radius of
the atoms themselves. In each simulated system the membrane is
fully solvated above and below and ionized with Na+ and Cl− ions
at a concentration of 300 mM. System sizes for the membrane slab
and for the slab with a 20-Å pore were 44 Å×44 Å in the membrane
plane and approximately 75 Å and 150 Å perpendicular to the mem-
brane for systems of length L and 2 L, respectively. For the slabs
with a trapezoidal or square cutout, sizes were 68 Å×68 Å×75–
150 Å. Atom counts for the systems range from 11,000 to 70,000
atoms. To prevent de-wetting of the interior of the cutout, a potential
issue for hydrophobic surfaces [57], the oxygen atoms of one layer of
water molecules were lightly (k=0.5kcal/mol•Å2) restrained along
its surface. In the case of the 20-Å pore, restraints were reduced to
k=0.1kcal/mol•Å2 to minimize possible effects on the current.

All simulations were run using NAMD 2.7 [58] and the CHARMM
force field [59]. Periodic dimensions were kept fixed, and a constant



301J. Gumbart et al. / Biochimica et Biophysica Acta 1818 (2012) 294–302
temperature of 300 K was maintained using a Langevin thermostat
with damping coefficient of 1 ps−1, i.e., the NVT ensemble. A time
step of 1 fs was used. Short-range non-bonded interactions were
evaluated every other time step and were truncated at 12 Å with a
switching function applied beginning at 10 Å. Long-range electrostat-
ics were evaluated every fourth time step using the particle-mesh
Ewald method.

Electrostatic potential maps were calculated using VMD's PMEPot
plugin [60,20] along with MATLAB. The potentials of mean force given
in Fig. 5 were determined using the adaptive biasing force method as
implemented in NAMD [61,62,58]. Images were prepared using VMD
[60].

To compute the force autocorrelation function, the ion was har-
monically restrained to z=0 at the center of the 20-Å pore (force
constant k=10kcal/mol•Å2) and the total fluctuating molecular
force was taken to be that after subtracting the artificial restraint
force [63]. In Eq. (4) the force F(t) should be calculated from a fixed
particle; the restraint method used here yields equivalent results [64].

Acknowledgements

This work was supported by grants R01-GM062342 and U54-
GM087519 from the National Institutes of Health. J.G. is a Director's
Postdoctoral Fellow at Argonne National Laboratory. M.S. is an
HHMI fellow of the Helen Hay Whitney Foundation.

References

[1] B. Hille, Ion Channels of Excitable Membranes, 3rd Edition Sinauer Associates,
Sunderland, MA, 2001.

[2] B. Roux, The influence of the membrane potential on the free energy of an intrin-
sic protein, Biophys. J. 73 (1997) 2980–2989.

[3] B. Roux, S. Bernèche, W. Im, Ion channels, permeation and electrostatics: insight
into the function of KcsA, Biochemistry 39 (2000) 13295–13306.

[4] V. Jogini, B. Roux, Electrostatics of the intracellular vestibule of K+ channels,
J. Mol. Biol. 354 (2005) 272–288.

[5] M.M. Grabe, H.H. Lecar, Y.N. Jan, L.Y. Jan, A quantitative assessment of models for
voltage-dependent gating of ion channels, Proc. Natl. Acad. Sci. U. S. A. 101 (2004)
17640–17645.

[6] B. Chanda, O.K. Asamoah, R. Blunck, B. Roux, F. Bezanilla, Gating charge displace-
ment in voltage-gated ion channels involves limited transmembrane movement,
Nature 436 (2005) 852–856.

[7] V. Jogini, B. Roux, Dynamics of the Kv1.2 voltage-gated K+ channel in a mem-
brane environment, Biophys. J. 93 (2007) 3070–3082.

[8] M.M. Pathak, V. Yarov-Yarovoy, G. Agarwal, B. Roux, P. Barth, S. Kohout, F.
Tombola, E.Y. Isacoff, Closing in on the resting state of the Shaker K(+) channel,
Neuron 56 (2007) 124–140.

[9] J.N. Sachs, P.S. Crozier, T.B. Woolf, Atomistic simulations of biologically realistic
transmembrane potential gradients, J. Chem. Phys. 121 (2004) 10847–10851.

[10] A.A. Gurtovenko, I. Vattulainen, Pore formation coupled to ion transport through
lipid membranes as induced by transmembrane ionic charge imbalance: atomis-
tic molecular dynamics study, J. Am. Chem. Soc. 127 (2005) 17570–17571.

[11] E.J. Denning, P.S. Crozier, J.N. Sachs, T.B. Woolf, From the gating charge response
to pore domain movement: initial motion of Kv1.2 dynamics under physiological
voltage changes, Mol. Membr. Biol. 26 (2009) 397–421.

[12] S.K. Kandasamy, R.G. Larson, Cation and anion transport through hydrophilic
pores in the lipid bilayers, J. Chem. Phys. 125 (2006) 074901.

[13] A.A. Gurtovenko, I. Vattulainen, Ion leakage through transient water pores in
protein-free lipid membranes driven by transmembrane ionic charge imbalance,
Biophys. J. 92 (2007) 1878–1890.

[14] L. Delemotte, F. Dehez, W. Treptow, M. Tarek, Modeling membranes under a
transmembrane potential, J. Phys. Chem. B 112 (2008) 5547–5550.

[15] W. Treptow, M. Tarek, M.L. Klein, Initial response of the potassium channel
voltage sensor to a transmembrane potential, J. Am. Chem. Soc. 131 (2009)
2107–2109.

[16] L. Delemotte, M. Tarek, M.L. Klein, W. Treptow, Intermediate states of the Kv1.2
voltage sensor from atomistic molecular dynamics simulations, Proc. Natl. Acad.
Sci. U. S. A. 127 (2011) 6109–6114.

[17] A. Suenaga, Y. Komeiji, M. Uebayasi, T. Meguro, M. Saito, I. Yamato, Computational
observation of an ion permeation through a channel protein, Biosci. Rep. 18
(1998) 39–48.

[18] Q.F. Zhong, T. Husslein, P.B. Moore, D.M. Newns, P. Pattnaik, M.L. Klein, The M2
channel of influenza A virus—a molecular dynamics study, FEBS Lett. 434
(1998) 265–271.

[19] P.S. Crozier, D. Henderson, R.L. Rowley, D.D. Busath, Model channel ion currents
in NaCl-extended simple point charge water solution with applied-field molecu-
lar dynamics, Biophys. J. 81 (2001) 3077–3089.
[20] A. Aksimentiev, K. Schulten, Imaging alpha-hemolysin with molecular dynamics:
ionic conductance, osmotic permeability, and the electrostatic potential map,
Biophys. J. 88 (2005) 3745–3761.

[21] F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Dynamics of K+ ion conduction
through Kv1.2, Biophys. J. 91 (2006) L72–L74.

[22] M. Sotomayor, V. Vasquez, E. Perozo, K. Schulten, Ion conduction through MscS as
determined by electrophysiology and simulation, Biophys. J. 92 (2007) 886–902.

[23] S.W. Siu, R.A. Böckmann, Electric field effects on membranes: gramicidin A as a
test ground, J. Struct. Biol. 157 (2007) 545–556.

[24] S. Pezeshki, C. Chimerel, A.N. Bessonov, M. Winterhalter, U. Kleinerkathöfer,
Understanding ion conductance on a molecular level: an all-atom modeling of
the bacterial porin OmpF, Biophys. J. 97 (2009) 1898–1906.

[25] C. Maffeo, A. Aksimentiev, Structure, dynamics, and ion conductance properties of
the phospholamban pentamer, Biophys. J. 96 (2009) 4853–4865.

[26] M.Ø. Jensen, D.W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M.P.
Eastwood, R.O. Dror, D.E. Shaw, Principles of conduction and hydrophobic gating
in K+ channels, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 5833–5838.

[27] J.S. Hub, C. Aponte-Santamarfa, H. Grubmüller, B.L. de Groot, Voltage-regulated
water flux through aquaporin channels in silico, Biophys. J. 99 (2010) L97–L99.

[28] J. Su, H. Guo, Control of unidirectional transport of single-file water molecules
through carbon nanotubes in an electric field, ACS Nano 25 (2011) 351–359.

[29] J.A. Garate, N.J. English, J.M. MacElroy, Static and alternating electric field and
distance-dependent effects on carbon nanotube-assisted water self-diffusion
across lipid membranes, J. Chem. Phys. 14 (2009) 114508.

[30] D.P. Tieleman, H.J. Berendsen, M.S. Sansom, Voltage-dependent insertion of
alamethicin at phospholipid/water and octane/water interfaces, Biophys. J. 80
(2001) 331–346.

[31] M. Tarek, Membrane electroporation: a molecular dynamics simulation, Biophys.
J. 88 (2005) 4045–4053.

[32] R. Böckmann, B.L. de Groot, S. Kakorin, E. Neumann, H. Grubmüller, Kinetics,
statistics and energetics of lipid membrane electroporation studied by molecular
dynamics simulations, Biophys. J. 95 (2008) 1837–1850.

[33] P.T. Vernier, M.J.Z.Y. Sun, M.A. Gundersen, D.P. Tieleman, Nanopore-facilitated,
voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in
silico, Phys. Biol. 2 (2006) 233–247.

[34] R.A. Bockmann, B.L. de Groot, S. Kakorin, E. Neumann, H. Grubmuller, Kinetics,
statistics, and energetics of lipid membrane electroporation studied by molecular
dynamics simulations, Biophys. J. 95 (2008) 1837–1850.

[35] A. Aksimentiev, J.B. Heng, G. Timp, K. Schulten, Microscopic kinetics of DNA trans-
location through synthetic nanopores, Biophys. J. 87 (2004) 2086–2097.

[36] A. Aksimentiev, Deciphering ionic current signatures of DNA transport through a
nanopore, Nanoscale 2 (2010) 468–483.

[37] Y. Xie, Y. Kong, A.K. Soh, H. Gao, Electric field-induced translocation of single-
stranded DNA through a polarized carbon nanotube membrane, J. Phys. Chem.
127 (2007) 225101.

[38] E. Cruz-Chu, A. Aksimentiev, K. Schulten, Ionic current rectification through silica
nanopores, J. Phys. Chem. C 113 (2009) 1850–1862.

[39] K. Shirono, N. Tatsumi, H. Daiguji, Molecular simulation of ion transport in silica
nanopores, J. Phys. Chem. B 113 (2009) 1041–1047.

[40] K.R. Mahendran, P.R. Singh, J. Arning, S. Stolte, U. Kleinekathöfer, M. Winterhalter,
Permeation through nanochannels: revealing fast kinetics, J. Phys. Condens.
Matter 22 (2010) 454131.

[41] M. Nishizawa, K. Nishizawa, Molecular dynamics simulation of Kv channel
voltage sensor helix in a lipid membrane with applied electric field, Biophys. J.
95 (2008) 1729–1744.

[42] F. Khalili-Araghi, V. Jogini, V. Yarov-Yarovoy, E. Tajkhorshid, B. Roux, K. Schulten,
Calculation of the gating charge for the Kv1.2 voltage-activated potassium chan-
nel, Biophys. J. 98 (2010) 2189–2198.

[43] Y.S. Lin, J.H. Lin, C.C. Chang, Molecular dynamics simulations of the rotary motor F
(0) under external electric fields across the membrane, Biophys. J. 98 (2010)
1009–1017.

[44] B. Roux, The membrane potential and its representation by a constant electric
field in computer simulations, Biophys. J. 95 (2008) 4205–4216.

[45] T.W. Allen, O.S. Andersen, B. Roux, Energetics of ion conduction through the
gramicidin channel, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 117–122.

[46] T.W. Allen, O.S. Andersen, B. Roux, Molecular dynamics—potential of mean force
calculations as a tool for understanding ion permeation and selectivity in narrow
channels, Biophys. Chem. 124 (2006) 251–267.

[47] P.H. Hunenberger, J.A. McCammon, Effect of artificial periodicity in simulations of
biomolecules under Ewald boundary conditions: a continuum electrostatics
study, Biophys. Chem. 78 (1999) 69–88.

[48] T.W. Allen, O.S. Andersen, B. Roux, Ion permeation through a narrow channel: using
gramicidin to ascertain all-atommolecular dynamics potential of mean force meth-
odology and biomolecular force fields, Biophys. J. 90 (2006) 3447–3468.

[49] S. Bhattacharya, J. Muzard, L. Payet, J. Mathé, U. Bockelmann, A. Aksimentiev, V.
Viasnoff, Rectification of the current in α-hemolysin pore depends on the cation
type: the alkali series probed by molecular dynamics simulations and experi-
ments, J. Phys. Chem. C 115 (2011) 4255–4264.

[50] J.E. Hall, Access resistance of a small circular pore, J. Gen. Physiol. 66 (1975) 531–532.
[51] P. Lauger, Diffusion-limited ion flow through pores, Biochim. Biophys. Acta 455

(1976) 493–509.
[52] O. Andersen, Ion movement through gramicidin A channels. Studies on the

diffusion-controlled association step, Biophys. J. 41 (1983) 147–165.
[53] W. Jiang, D.J. Hardy, J.C. Phillips, A.D.Mackerell, K. Schulten, B. Roux, High-performance

scalable molecular dynamics simulations of a polarizable force field based on classical
Drude oscillators in NAMD, J. Phys. Chem. Lett. 2 (2011) 87–92.



302 J. Gumbart et al. / Biochimica et Biophysica Acta 1818 (2012) 294–302
[54] B. Roux, T.W. Allen, S. Bernèche, W. Im, Theoretical and computational models of
biological ion channels, Q. Rev. Biophys. 37 (2004) 15–103.

[55] R. Kubo, The fluctuation–dissipation theorem, Rev. Mod. Phys. 29 (1966)
255–284.

[56] W. Treptow, B. Maigret, C. Chipot, M. Tarek, Coupled motions between pore and
voltage-sensor domains: a model for Shaker B, a voltage-gated potassium
channel, Biophys. J. 87 (2004) 2365–2379.

[57] A.J. Patel, P. Varilly, D. Chandler, Fluctuations of water near extended hydrophobic
and hydrophilic surfaces, J. Phys. Chem. B 114 (2010) 1632–1637.

[58] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D.
Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput.
Chem. 26 (2005) 1781–1802.

[59] A.D. MacKerell Jr., D. Bashford, M. Bellot, R. Dunbrack, J.D. Evanseck, M.J. Field, S.
Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. Lau, C.
Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M.
Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D.
Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynam-
ics studies of proteins, J. Phys. Chem. B 102 (1998) 3586–3616.

[60] W. Humphrey, A. Dalke, K. Schulten, VMD—visual molecular dynamics, J. Mol.
Graphics 14 (1996) 33–38.

[61] E. Darve, A. Pohorille, Calculating free energies using average force, J. Chem. Phys.
115 (2001) 9169–9183.

[62] J. Hénin, C. Chipot, Overcoming free energy barriers using unconstrained molecu-
lar dynamics simulations, J. Chem. Phys. 121 (7) (2004) 2904–2914.

[63] B. Roux, M. Karplus, Ion transport in a gramicidin-like channel: dynamics and
mobility, J. Phys. Chem. 95 (1991) 4856–4868.

[64] B.J. Berne, M.E. Tuckerman, J.E. Straub, A.L.R. Bug, Dynamic friction on rigid and
flexible bonds, J. Chem. Phys. 93 (1990) 5084–5095.


	Constant electric field simulations of the membrane potential illustrated with simple systems
	1. Introduction
	2. Results
	2.1. Applied constant electric field in the context of periodic boundary conditions
	2.2. System size and resulting membrane potential
	2.3. Non-equilibrium dissipative finite-size effects

	3. Concluding discussion
	4. Model systems and simulation methodologies
	Acknowledgements
	References


