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The boundaries of embryonic stem cell (ESC) research have extended considerably in recent years in
several important ways. Alongside a deeper understanding of the pluripotent state, ESCs have been
successfully integrated into various fields, such as genomics, epigenetics, and disease modeling. Significant
progress in cell fate control has pushed directed differentiation and tissue engineering further than ever
before and promoted clinical trials. The geographical distribution of research activity has also expanded,
especially for human ESCs. This review outlines these developments and future challenges that remain.
Introduction
The isolation of mouse embryonic stem cells (mESCs) from

mouse blastocysts three decades ago dramatically advanced

the field of mouse genetics, resulting in the groundbreaking

technology of gene targeting. The impact of the derivation of

human ESCs (hESCs; Thomson et al., 1998) almost two decades

later was just as dramatic, placing the study of pluripotent stem

cells at the forefront of biomedical research. Indeed, in recent

years as the ethical constraints associated with hESC research

have become a less prominent topic of debate, the scientific

boundaries of this field have expanded considerably. In this

Perspective, we cover several aspects of this ‘‘expansion’’ and

discuss the major issues that have occupied the field in recent

years.

In the past 5 years, ‘‘core research’’ on ESCs, i.e., re-

search into their self-renewal and differentiation capacities,

took advantage of state-of-the-art genome-wide technologies

to extend our understanding of the pluripotent state. This

increasing understanding has allowed the ESC field to reach

beyond the boundaries of the laboratory, toward the fulfillment

of its promise for regenerative medicine, with increasing

numbers of preclinical and, more recently, clinical trials per-

formed with ESC-derived cells. This maturation, in turn, facili-

tated the entry of new players into the ESC field. A growing

number of physicians, regulatory agencies, and industrial com-

panies are joining the academically driven journey of ESCs

toward the clinic. During the past few years, ESCs have also

gone beyond their traditional role as a tool for studying pluripo-

tency and have become a fundamental player in various

domains of molecular biology; more and more studies make

use of mESCs and hESCs for answering general questions in

genetics, epigenetics, and cell biology and for developing novel

technologies whose applications may go beyond pluripotent

cells. The boundaries of ESC research have also spread in the

literal geographic sense across political borders, with laborato-

ries from all over the world making significant contributions to

the field.

The Global Village: ESC Research Worldwide
Recent years have seen increasing interest in ESCs throughout

the world. In the past 5 years, laboratories from 50 different

countries published papers about ESCs, more than doubling

the total output of original research papers in the field, relative
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to the prior 5 years. This increase is even more impressive

when considering research on hESCs: between 2007 and

2011, laboratories from 41 countries published papers using

hESCs, compared to only 27 countries between 2002 and

2006 (Figure 1), more than tripling the number of papers on these

cells. This expansion can probably be attributed, at least in part,

to the establishment of clear guidelines for hESC research in

many countries.

Although the increase in the total number of publications and

in the number of countries involved is especially remarkable for

hESCs, there is a similar trend for nonhuman ESC research,

mostly on mESCs, which also expanded considerably over the

same time frame (Figure 1). Importantly, this growth cannot be

credited merely to the breakthrough of induced pluripotent

stem cells (iPSCs), as papers that involve iPSCs were not

included in this analysis.

The growing global interest in ESC research is also reflected

by the relative contribution coming from various parts of the

world. While the United States is still the most prolific country

in the field, the relative ‘‘share’’ of papers published by laborato-

ries from Europe and Asia has become much more significant

(Figure 1). For example, China has doubled its share in the total

publication count, in both human and nonhuman ESC-related

research. In summary, the increasing number of articles that

come out every year, the number of contributing countries, and

the relative contribution of these countries all suggest that ESC

research is on the rise.

Inside the Network: Understanding Pluripotency
When examining the pluripotency literature from the last few

years, one is overwhelmed by the quantity and quality of

genome-wide studies performed in attempts to deconstruct

the pluripotent state. It seems that no cutting-edge tech-

nology has gone unnoticed by the ESC field, which harnessed

these state-of-the-art tools to uncover the global state of plu-

ripotency (e.g., its genome, transcriptome, proteome, methyl-

ome, etc.), in what could be aptly described as ‘‘the ‘Omics’

era of ESC research’’ (Loh et al., 2011). The large-scale

genome-wide studies exposed complex and dynamic multi-

layered regulation involving transcriptional networks, chromatin

modifications, and posttranscriptional regulation (Ng and

Surani, 2011; Orkin and Hochedlinger, 2011; Young, 2011)

(Figure 2).
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Figure 1. ESC Research Distribution throughout the World
World maps comparing the distribution of stem cell research throughout the world between two 5 year periods: 2002–2006 and 2007–2011. The numbers of
publications involving human and nonhuman ESCs were assessed separately and are thus presented in separate maps. Nonhuman ESCs are mostly, but not
exclusively, mouse ESCs. The maps are color-coded by the absolute number of articles published by laboratories from each country. The total number of
contributing countries during the examined years appears in the upper right side of each map. Articles dealing with iPSCs were removed from the analysis.
Quantification of articles was carried out using ‘‘ISI Web of Science’’ (http://apps.isiknowledge.com).
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Transcriptional Networks

The core transcriptional regulatory network of pluripotency was

investigated in a series of studies using various genome-wide

chromatin-IP based technologies (ChIP-on-chip, ChIP-PET,

ChiP-seq, and biochip). Whereas the first studies identified the

key players of the network and its general architecture (Boyer

et al., 2005; Loh et al., 2006), recent analyses refined our

understanding of this network, revealing a set of distinct-yet-

intimately-connected modules that cooperate and regulate

each other (Chen et al., 2008; Kim et al., 2008, 2010). These

studies divided the pluripotent network to its two main compart-

ments, the Oct4-centric and the Myc-centric modules; revealed

the interactions within and between each of these modules;

highlighted the importance of coregulation and autoregulation

for the proper function of the network; and integrated novel

signaling pathways into it. More recently, the core pluripotency

genes were also shown to control germ layer fate choice, ex-

tending the original role of the pluripotent network beyond the

maintenance of self-renewal (Thomson et al., 2011). Comparison

of the mouse and human pluripotent networks revealed, quite

surprisingly, that species-specific transposable elements have

considerably altered the transcriptional pluripotent circuitry, so

that in each species the same core factors bind a distinct set

of TF-binding sites and play distinct roles in pluripotency regula-

tion (Kunarso et al., 2010; Wang et al., 2012).

Noncoding RNAs

Another recently identified layer of pluripotency regulation is that

of noncoding RNAs: micro RNAs (miRNAs) and large intergenic
noncoding RNAs (lincRNAs). The importance of miRNAs in

ESCs was demonstrated in several studies. Like their unique

characteristic mRNA signature, ESCs exhibit a defined charac-

teristic miRNA signature (Marson et al., 2008). Global loss of

miRNAs resulted in defects in both self-renewal and differentia-

tion, whereas specific miRNAs were found to regulate ESC cell

cycle, expression of pluripotency factors, and differentiation

(Martinez and Gregory, 2010). The miRNAs themselves are,

in turn, regulated by pluripotency factors such as Lin28

(Viswanathan et al., 2008), demonstrating the crosstalk between

layers of pluripotency regulation. More recently, hundreds of

lincRNAs that are involved in the control of the pluripotent state

were also discovered (Guttman et al., 2009). Many of them were

reported to be bound by Oct4 and Nanog in their promoter

regions, directly integrating them into the core pluripotency

circuitry (Guttman et al., 2009). Specific lincRNAs were already

reported to be essential for pluripotency (Sheik Mohamed

et al., 2010), but much is left to be discovered regarding

their role.

Proteomics

Proteomic approaches have recently revealed interactions

between the core pluripotency proteins, contributing to the

growing understanding of pluripotency (Pardo et al., 2010;

Wang et al., 2006). Further studies added phosphorylation

dynamics as another layer of regulation in ESCs, identifying

significant changes in the phosphoproteome of ESCs during

their differentiation (Brill et al., 2009; Van Hoof et al., 2009). The

study of protein interactions also shed light on the important
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Figure 2. Major Achievements and
Challenges of ESC Research
A schematic representation of the main topics
in ESC research in recent years. The major ad-
vancements in each of these topics, and the
challenges that lie ahead, are elaborated in the
text.

Cell Stem Cell

Perspective
role of chromatin in pluripotency. Direct and indirect interactions

between core transcription factors and chromatin modifiers/

remodelers were shown to play a crucial part in maintaining

the ‘‘open’’ chromatin state, which is unique for pluripotent cells

(Gaspar-Maia et al., 2011). Moreover, there are direct regulatory

interactions between these transcription factors and chromatin

remodelers (Ang et al., 2011; Gaspar-Maia et al., 2009), further

stressing their importance for the pluripotent state.

Epigenetic Control

One of themost remarkable achievements in recent pluripotency

research is its intimate involvement in groundbreaking dis-

coveries in epigenetics, elucidating novel layers of regulation in

the complex control of the pluripotent state (Meissner, 2010).

At the level of DNA methylation, various studies characterized

ESC-specific methylation profiles and linked them directly to

the core transcriptional networks of ESCs (Fouse et al., 2008;

Meissner et al., 2008). A recent study applied Methyl-seq tech-

nology to map the ESC methylome at a single-base resolution,

revealing a novel class of DNA methylation at non-CpG sites

(Lister et al., 2009). These unique non-CpG methylations are

enriched in exons of highly expressed genes (Lister et al., 2009)

but appear to be dispensable for pluripotency (Ziller et al., 2011),

so their role in regulation of gene expression is still unclear. In

another major discovery, a novel type of DNA methylcytosine

modification was recently discovered in ESCs in which the

Tet-family proteins Tet1 and Tet2 transform methylated cyto-

sines into 50-hydroximethylcytosines (5hmC) (Ito et al., 2010;

Koh et al., 2011; Pastor et al., 2011; Tahiliani et al., 2009).

This series of studies demonstrated that Tet1 and Tet2 affect

self-renewal and differentiation of mESCs.

Another layer of epigenetic regulation that has been studied

extensively in ESCs is histone modifications. ESCs are charac-

terized by bivalent domains generated by the co-occupation

of the transcription start sites of genes that control cell fate deci-

sions by the activating mark H3K4me3 and the repressive mark

H3K27me3 (Bernstein et al., 2006). This phenomenon has drawn

much interest in the field, as the bivalent domains are considered
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to ‘‘poise’’ genes for their rapid activa-

tion upon differentiation. Recent studies

have improved our understanding of

the molecular mechanism that underlies

these unique domains, demonstrating

the important role of the polycomb

group (PcG) proteins PRC1 and PRC2

(Margueron and Reinberg, 2011), and

introducing new players that participate

in the generation and maintenance of

this delicate balance of modifications

(Margaritis and Holstege, 2008; Pasini

et al., 2010; Peng et al., 2009). Other
histone modifications such as H3K9 methylation have also

been studied in ESCs (Wen et al., 2009), and together these

studies begin to decipher what seems to be an ESC-specific

‘‘histone code.’’

Having discovered elements that participate in regulating plu-

ripotency, the main challenge that lies ahead seems to be the

integration of all these ‘‘layers,’’ ‘‘modules’’ and ‘‘subnetworks’’

into a consolidated regulatory circuitry. Attempts to describe

the crosstalk between different layers of regulation have already

been reported, connecting, for example, gene expression with

DNA methylation (Bock et al., 2011), transcription with histone

modifications and protein levels (Lu et al., 2009), or DNA methyl-

ation with histone modification (Viré et al., 2006). With the

increasing focus on combinatorial regulation and on crosstalk

between network elements, we expect many more exciting

‘‘connections’’ to be revealed in the future.

One but Not the Same: Emerging Variability
of the Pluripotent State
The increasing understanding of the molecular mechanisms that

govern pluripotency inspired fruitful discussions regarding

the nature of the pluripotent state and helped refine the very

definition of the term ‘‘pluripotency.’’ The similar yet distinct

pluripotent states of various types of ESCs were coined ‘‘dif-

ferent flavors of pluripotency’’ (Buecker and Geijsen, 2010),

and as our understanding of these pluripotent states is becoming

more solid, so does our control of the transitions between them.

Developmental Identity of PSCs

The focus of investigation in this area is the difference between

mouse embryonic and epiblast stem cells (ESCs and EpiSCs,

respectively), and between mESCs and hESCs. MESCs are

derived from the inner cell mass of blastocysts, while mouse

EpiSCs are derived from postimplantation epiblasts (Brons

et al., 2007; Tesar et al., 2007); consequently, these cell types

differ in their morphology, culture requirements, developmental

potential, expression profile, and amenability to homologous

recombination. These differences led to the emergence of the
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concepts ‘‘naı̈ve’’ (or ‘‘ground-state’’) versus ‘‘primed’’ pluripo-

tent cells (Nichols and Smith, 2009). Recent work showed that

mouse cells can acquire ‘‘metastable’’ pluripotent states that

could be interconverted by endogenous genetic determinants

or by exogenous factors (Hanna et al., 2009).

HESCs share many features with mESCs but, intriguingly,

they also share some of their characteristics with mouse

EpiSCs, suggesting that they may represent the primed ESC

state and therefore may not harbor the full developmental poten-

tial of naı̈ve ESCs. Recently, several groups reported the deriva-

tion of hESCs and hiPSCS with biological properties similar to

those of mESCs (Buecker et al., 2010; Hanna et al., 2010; Li

et al., 2009; Wang et al., 2011a). These hESCs exhibited

morphology, growth properties, expression profiles and

signaling dependence that were comparable to those of mESCs,

but they were not stable in the absence of genetic manipula-

tions. Whether these naı̈ve hESCs are indeed superior to

their primed counterparts in terms of developmental potential

remains to be determined; however, the fact that culture condi-

tions are sufficient to interconvert between pluripotent states,

both in mESCs and in hESCs, indicates that plasticity in the

pluripotent state is more widespread than was previously

appreciated.

Heterogeneity of PSCs

The variability between ESCs has received attention from

other directions as well; in recent years, ESCs were shown

to be more heterogeneous than previously thought. Both

intraculture and interculture heterogeneity exist: within undiffer-

entiated cultures of mESCs and hESCs and of mouse

EpiSCs, distinct subpopulations were identified, differing in their

expression of molecular markers and in their differentiation

potential and therefore presumed to correspond to distinct

developmental stages (Canham et al., 2010; Han et al., 2010;

MartinezArias andBrickman, 2011; Stewart et al., 2010; Toyooka

et al., 2008). Between undifferentiated hESC lines, large-scale

comparisons revealed differences in gene expression and in

differentiation, suggesting that not all ESCs lines are equally

suitable for any given purpose (Adewumi et al., 2007; Bock

et al., 2011).

ESC to Every Lab: Advances in ESC Derivation
and Propagation
The techniques for deriving, propagating, and banking ESCs

have significantly improved in recent years, and these types of

advances are key for moving ESCs toward the clinic (Figure 2).

Much progress has been made in adapting culture conditions

to enable rapid and efficient thawing, passaging, and cryopres-

ervation of hESCs. Themost notable discovery in this regard was

probably that the Rho-associated kinase (ROCK)-inhibitor

Y-27632 permits the survival of dissociated hESCs (Watanabe

et al., 2007). Follow-up studies uncovered the molecular mech-

anism that underlies the high sensitivity of hESCs to dissociation

(Chen et al., 2010; Ohgushi et al., 2010) and also utilized this

inhibitor for deriving and propagating hESCs in suspension

(Amit et al., 2010; Steiner et al., 2010).

Several groups have also directed much effort at determining

the components of defined media that would enable feeder-

free growth of hESCs (Akopian et al., 2010) and eliminating

animal products from such media, thus making it xeno-free
(Lei et al., 2007; Valamehr et al., 2011). These efforts culminated

in the generation of good manufacturing practice (GMP)

clinical-grade hESCs (Unger et al., 2008). In order to standardize

the use of hESCs in biomedical research and, eventually, in

the clinic, consensus guidelines for banking and supply of

hESCswere proposed (International StemCell Banking Initiative,

2009).

As human ESC lines are now derived on a weekly basis,

the ethnical diversity within the human ESC pool has greatly

expanded so that it currently represents dozens of different

ethnic backgrounds (Amps et al., 2011). This diversity will be

important for the study of ethnically relevant diseases, for

the removal of confounding effects due to specific genetic

backgrounds, and for the banking of hESCs that would be

compatible with as large a population as possible.

Apart from the abovementioned advances in the culture of

hESCs, derivation and culture techniques were also developed

in recent years for ESCs of various species, expanding the

repertoire of pluripotent stem cells available for research. In

addition tomouse,monkey, and human ESCs, in the past 5 years

ESC lines were derived from multiple species including rabbit,

canine, and—most importantly—rat (Martins-Taylor and Xu,

2010). These stem cell types should enhance our understanding

of the pluripotent state and, especially in the case of the rat,

enable the generation of novel model animals for studying

human disease.

Eyes on the Target: ESCs in Regenerative Medicine
Many clinical conditions such as neurodegenerative disorders,

diabetes, and some forms of heart and hepatic failure are caused

by loss of functionality or insufficient quantity of a particular cell

type. The potential of hESCs to differentiate into any cell type of

the human body raised the hope for treatment of these clinical

conditions and has thus drawn hESCs into the public spotlight.

Indeed, exciting recent progress is paving the hESC path into

the practice of regenerative medicine (Figure 2).

Directing Differentiation

For hESCs to live up to expectations, it will be essential to control

their differentiation course. One of the most efficient strategies

designed to control a pluripotent cell fate is the recapitulation

of developmental steps through which cells assume a specific

fate during normal development (Murry and Keller, 2008). The

first step in the differentiation of a pluripotent stem cell is

transition into one of the three embryonic germ layers: the ecto-

derm, mesoderm, and endoderm. Multiple studies that applied

knowledge of developmental biology to ESC differentiation dem-

onstrated that despite the known differences between hESCs

and mESCs (Nichols and Smith, 2009), the signaling pathways

that control primary differentiation are very similar (Cohen and

Melton, 2011; Murry and Keller, 2008).

After acquiring their initial lineage identity, application of

various growth factors and culture conditions can continue to

direct the cells along multiple differentiation paths. Recently,

small molecules have become more useful in differentiation

protocols, presenting an appealing alternative to recombinant

growth factors, especially when considering the potential for

mass production of cells for clinical use (Rubin, 2008). Small

molecules are less expensive and more stable than recombinant

proteins and can contribute to the development of fully defined
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 669
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media. They also allow for more straightforward minimization of

differences between batches of reagents, which can

reduce experimental variance and help establish reproducible

differentiation protocols. However, in some cases there are

no known chemical compounds that modulate the desired

signaling pathway. In such cases, unbiased screening offered

a potential solution. In a landmark study, thousands of

chemical compounds were screened in order to identify

molecules that can replace Activin A in the induction of defini-

tive endoderm (DE) (Borowiak et al., 2009). Two such small mole-

cules were uncovered in both mESCs and hESCs. Additional

studies used the unbiased screening approach to efficiently

produce desired ESC derivatives such as pancreatic progenitor

cells and cardiomyocytes (Chen et al., 2009; Takahashi et al.,

2003).

Advances in the genetic manipulation of ESCs (Giudice and

Trounson, 2008) have enabled the successful generation of

several fluorescent reporter hESC lines that are extremely

useful for a variety of applications. They can be used to

distinguish undifferentiated hESCs from their differentiated

derivatives (Eiges et al., 2001) or to visualize the appearance of

desired differentiated cells in culture (Lavon et al., 2004; Singh

Roy et al., 2005). Moreover, reporter cell lines enable the isola-

tion and analysis of various cell populations using fluores-

cence-activated cell sorting (FACS) even without previous

knowledge of specific cell surface markers or available anti-

bodies. The reporter cell lines are also valuable for micros-

copy-based high-throughput screening and can therefore assist

with the optimization of differentiation protocols. The engraft-

ment, survival and integration of transplanted cells can be

tracked more easily using such reporter hESCs. Although they

are mostly useful for in vitro analyses and preclinical studies,

reporter cell lines may be beneficial for determining the fate

and function of transplanted cells in clinical trials as well (Ellis

et al., 2010).

The tremendous progress in applying understanding of em-

bryognesis to differentiation protocols has enabled the genera-

tion of diverse cell types in vitro, including highly specified cells

such as retinal pigment epithelium (RPE) (Idelson et al., 2009),

mechanosensitive hair cells (Oshima et al., 2010), and primordial

germ cells (Hayashi et al., 2011). However, there are still many

challenges on the way to the ultimate goal of ‘‘cells on demand.’’

Differentiation is a stepwise process, passing through several

intermediate progenitor cells on the way to a fully-differentiated

cell of interest. The first differentiation step into the desired

germ layer is usually the most efficient step, and the dif-

ferentiation efficiency often decreases with each step of the

protocol (Cohen and Melton, 2011). As a result, the end product

is usually a heterogeneous cell population that contains only low

percentage of the specific cell type. A major challenge will there-

fore be to improve the differentiation efficacy and design reliable

methods for isolating the desired cell populations. An appealing

alternative can be to propagate intermediate progenitor cells, as

was recently demonstrated with definitive endoderm progenitor

cells (Cheng et al., 2012). Another related challenge is the re-

producibility of differentiation protocols. Different batches of

reagents and slight differences in cell culture techniques some-

time make it very difficult to recapitulate differentiation protocols

successfully and with comparable efficiency rates to those orig-
670 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
inally reported. The distinct differentiation propensity of different

hESC lines (Bock et al., 2011) adds to this complexity, because

it compromises the generalization of some differentiation proto-

cols. Of note, most ESC-derived differentiated cells are not fully

mature, and their in vitro maturation is another obstacle that

awaits a solution (though, in some cases, maturation does take

place in vivo after cell transplantation (Hayashi et al., 2011; Kriks

et al., 2011; Kroon et al., 2008)).

Generation of Complex Differentiated Cell Types

The main focus of most directed differentiation experiments is

to maximize the derivation of one desired cell type for cell

replacement therapy. The replacement of complex tissues,

however, presents a greater challenge that involves differentia-

tion into several cell types with a three-dimensional (3D) organi-

zation. Recently, two different approaches have made progress

toward meeting this challenge. The first approach makes use

of the potential of ESCs to respond to extrinsic signals and

recapitulate developmental cell fate decisions to generate

‘‘tissues in a dish.’’ Several recent studies demonstrated that

ESCs can not only differentiate to all cell types, but also generate

organizer cells that may affect the fate of adjacent cells during

embryogenesis (Sharon et al., 2011). Moreover, the cells

possess in vitro self-organization capacity and can therefore

generate organized and complex 3D tissues, such as cortical

structures (Eiraku et al., 2008), the optic cup (Eiraku et al.,

2011), adenohypophysis (Suga et al., 2011), and intestinal tissue

(Spence et al., 2011). The second approach is the in vivo gener-

ation of tissues and organs using chimeric animals. In a remark-

able experiment, xenogeneic organ complementation was

achieved when rat pluripotent stem cells were injected into

mouse blastocysts that lacked the Pdx1 gene. As a result, the

rat-mouse chimera’s pancreas was composed exclusively of

rat cells, demonstrating the feasibility of organ generation

through interspecies chimeras (Kobayashi et al., 2010). As the

generation of viable chimeras from a nonhuman primate was

recently demonstrated (Tachibana et al., 2012), these break-

throughs raise fascinating possibilities regarding organ gen-

eration but also raise significant technical, legal, and ethical

questions.

Preclinical Evaluation

Before transplantation of differentiated cells into patients, it is

essential to conduct pre-clinical trials to demonstrate the inte-

gration capacity and functionality of the cells in animal models.

Finding an appropriate animal model and analyzing the mecha-

nism that underlies the observed improvements can be a chal-

lenging task. Demonstrating the functionality of differentiated

cells in an animal model that entirely lacks the relevant cell

type is the most stringent and straightforward approach; for

example, several groups demonstrated the potential of hESC-

derived b cells (Kroon et al., 2008) and RPE cells (Idelson et al.,

2009) to functionally replace their in vivo equivalents. Impor-

tantly, most in vivo transplantation experiments are currently

conducted in murine models, and the scalability of these assays

thus remains an open question. Tackling this issue, a recent

study demonstrated the in vivo survival, integration, and function

of hESC-derived dopaminergic neurons in rat and mouse

Parkinson’s disease models and went on to show their survival

and integration in parkinsonian adult rhesus monkeys (Kriks

et al., 2011).
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Clinical Studies

The progress in various aspects of ESC technology, discussed

above, has established a solid platform for therapeutic imple-

mentation. Although some safety issues as well as differentiation

and pre-clinical challenges are still unresolved, it seems as

though hESCs are starting to fulfill their promise, as reflected

by a couple of ongoing clinical trials. In these pioneering clinical

trials, differentiated derivatives of hESCs were transplanted

into patients suffering from various clinical conditions: spinal

cord injury, dry age-related macular degeneration (AMD), and

Stargardt’s disease (Goldring et al., 2011; Trounson et al.,

2011). This encouraging progress was hindered by the surprising

decision of Geron, the first company that took ESCs to the clinic,

to terminate all ESC-related experiments and ongoing clinical

trials. This blow, however, was somewhat balanced by the

positive preliminary report of Advanced Cell Technology (ACT),

describing the results of their first hESC-based clinical trial in

human patients (Schwartz et al., 2012). In this report, hESC-

derived RPE cells were transplanted into patients with either

AMD or Stargardt’s disease. Four months after the implantation,

the survival and engraftment of the cells, together with functional

visual improvement, were identified, whereas no signs of tumor-

igenicity or immune rejection were observed (Schwartz et al.,

2012). These preliminary clinical results, together with the

ever-improving differentiation protocols into highly specified,

complex and mature cell types, suggest that a new era of

hESC-based therapy might not be very far away.

Better Safe Than Sorry: The Tumorigenicity
and Immunogenicity of ESCs
As human ESC products get closer to the bedside, safety

issues have become a serious hurdle that must be overcome

before ESC-derived cells can be routinely injected into patients

(Goldring et al., 2011). The major safety problem the field is

currently facing is the potential tumorigenicity of the cells, mainly

due to residual undifferentiated cells. Several approaches

to selectively remove undifferentiated cells from culture have

been suggested in order to solve this problem, including the

use of genetic labeling, ablation of teratoma-specific genes,

sorting out pluripotent stem cells based on antibodies against

pluripotent-specific molecules, and specific cytotoxic anti-

bodies (Ben-David and Benvenisty, 2011). Most recently, bio-

markers unique to human pluripotent stem cells were used to

eliminate pluripotent stem cells from mixed populations (Tang

et al., 2011; Wang et al., 2011b). Concomitantly, efforts are being

made to characterize the most likely tumors, i.e., teratomas and

teratocarcinomas, in an attempt to prevent their formation (Blum

et al., 2009; for a discussion of the appropriate terminology for

these tumors, see Damjanov and Andrews, 2007; Lensch and

Ince, 2007). Although no tumor formation was reported in the

preliminary report of the first clinical trial with ESC-derived cells

(Schwartz et al., 2012), the tumorigenicity risk has not been

resolved yet and remains a concern that limits the number of

cells injected into human patients.

Another concern that may affect the safety of ESC-based

treatments is their genomic stability in culture. In recent years,

large-scale comparison studies revealed recurrent genomic

aberrations in hESCs and began to pinpoint the genes that drive

these frequent aberrations (Amps et al., 2011; Baker et al., 2007;
Mayshar et al., 2010). Some of these aberrations may be associ-

atedwith oncogenic transformation, and thuswould increase the

tumorigenicity of the cells (Baker et al., 2007; Ben-David et al.,

2011; Lefort et al., 2008). Until strategies to prevent the accumu-

lation of such genomic alterations in ESC cultures are devel-

oped, the genomic integrity of the cells needs to be monitored

carefully prior to their clinical application. It is worth noting that

the genomic instability of ESCs is deleterious for additional

reasons: it may compromise their differentiation propensity,

the functionality of the differentiated cells, and their usefulness

for disease modeling and drug screening.

The immunogenicity of ESCsandof ESC-derived cells is a third

issue related to the safety—and, obviously, to the success—of

ESC-based treatments (Kadereit and Trounson, 2011). HLA

matching is a major hurdle for hESC-based therapies, especially

for treatments of tissues that are not immune privileged. Recent

preclinical and clinical trials applied pharmacological immuno-

suppression to avoid graft rejection (Kriks et al., 2011; Schwartz

et al., 2012); however, in one case the immunosuppression was

shown to be incomplete (Kriks et al., 2011) and in another the

patient did not comply with the immunosuppression regimen

(Schwartz et al., 2012), indicating that this important issue is

not fully resolved. Although some strategies for tolerance induc-

tion have been suggested (Robertson et al., 2007), the main

strategy for circumventing this obstacle remains the assembly

of ESCs with diverse major histocompatability complex (MHC)

haplotypes in the ESC banks that are founded these days

throughout the world.

ESCaping Drug Attrition: ESCs in the Service
of Toxicology
Assuring the safe use of new drugs requires the analysis of their

safety in the developing embryo and in the adult. In recent years,

hESCs have begun to play a major role in toxicology assays

(Laustriat et al., 2010). The pluripotent capacity of the cells and

their ability to differentiate into many cell types make them

a valuable pharmacological tool in three main ways (Figure 2).

First, hESCs can be used for screening of teratogens, com-

pounds that are selectively detrimental for the embryo or the

fetus, based on the ability of hESCs to mimic early stages of

human development (Mayshar et al., 2011; West et al., 2010).

The second aspect is drug metabolism, which primarily takes

place in the liver. The capability of hESCs to differentiate into

fairly mature hepatocytes (Agarwal et al., 2008; Basma et al.,

2009) may make them a suitable tool for testing the hepatic

metabolism of potential drugs. The third aspect is tissue toxicity,

which is based on the growing ability to obtain rather pure pop-

ulations of clinically relevant cells, such as cardiomyocytes and

neurons, from hESCs. Using these differentiated cells for cardio-

and neurotoxicity screens will allow tissue-specific assessment

of drug toxicity (Mandenius et al., 2011). During the past few

years, good progress has been made in all three fronts, and it

is predicted that in the future hESCs will be routinely used by

the pharmacological industry (Wobus and Loser, 2011).

Diseases in a Dish: Modeling Human Genetic Disorders
with ESCs
Mouse ESCs are the major tool for generating mouse models of

human diseases, and the contribution of transgenic mouse to
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 671
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understanding human disease has been tremendous. However,

in many disorders the mouse models fail to recapitulate the

human phenotypes. Therefore, hESCs represent an alternative

tool for modeling human diseases, by introducing mutations to

normal ESCs (Urbach et al., 2004) (Figure 2).

In the past 5 years, many different methodologies have been

used to manipulate the genome of hESCs, including homolo-

gous recombination by plasmids and BAC constructs (Song

et al., 2010) or by zinc finger and TALE nucleases (Hockemeyer

et al., 2009; Hockemeyer et al., 2011; Leavitt and Hamlett,

2011), and the use of RNAi to knock down specific genes (Tul-

pule et al., 2010). While both the efficiency and the specificity

of these methods have improved in recent years, off-target

activity remains a concern, as it may introduce ‘‘collateral

damage’’ that may jeopardize their applicability for disease

modeling. An alternative to induction of mutations in normal

hESCs is the isolation of genetically aberrant hESCs from blas-

tocysts carrying genetic diseases. Screening for diseased

embryos by the analysis of single blastomeres at the preimplan-

tation stage is becoming a more common methodology. Thus,

preimplantation genetic screening (PGS) is used to identify

chromosomal aberrations in human embryos, and hESCs can

be derived from such aneuploid embryos, generating in-vitro

models for chromosomal disorders such as Down syndrome

(Biancotti et al., 2010). In addition, preimplantation genetic

diagnosis (PGD) is conducted to screen for embryos that carry

monogenic disorders, and multiple ESC lines were derived

from such mutated blastocysts (reviewed in Ben-Yosef et al.,

2008).

Some of the derived disease model hESCs were analyzed

to identify disease characteristic phenotypes, either in the

undifferentiated state or after their differentiation in culture

(Colman and Dreesen, 2009). In developmental disorders,

these models also enabled the characterization of phenotypes

that are unique to the embryonic stage of the cells. Once

defining a phenotype of interest, these powerful models can

potentially serve to identify novel drugs that would enable

treatment of currently untreatable disorders. The abundance of

available cells could be exploited either for testing drugs

that target known candidate genes or for performing unbiased

high-throughput screens with libraries of varied molecular

entities.

It is clear that research on hESCs paved the way to the

analysis of human disorders using human iPSCs (Robinton and

Daley, 2012). It is also evident that the availability of somatic cells

from practically any human disorder has made the generation of

such models in human iPSCs very accessible for most labs.

There is some indication, however, that iPSC models may be

affected by an epigenetic memory from the somatic cells and

thus might be inferior to ESCs in reflecting developmental

aspects of the disease (Urbach et al., 2010). Nonetheless, iPSCs

are clearly becoming the system of choice for disease modeling,

andmost diseasemodels are already generated using this meth-

odology (Robinton and Daley, 2012).

The New Kids on the Block: Novel Types of ESCs
Traditionally, hESCs are derived from blastocysts of IVF em-

bryos and thus represent the outcome of the natural fertilization

process. Recently, however, new types of ESCs were intro-
672 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
duced, diversifying the ESC toolbox with ESCs derived from

‘‘artificially generated’’ blastocysts (Figure 2).

Somatic cell nuclear transfer (SCNT) experiments, culminating

in the cloning of Dolly the sheep, paved the way for cloning other

mammals (Wilmut et al., 1997; Wakayama et al., 1998). In

humans, there were various attempts to generate nuclear trans-

fer (NT)-derived hESCs, but the initial successful report was

found to be fraudulent (Normile et al., 2006), leading the field

to stagnation. Successful SCNT with human cells was finally

reported last year, resulting in nuclear transfer (NT)-derived

hESCs (Noggle et al., 2011). Although these ESCs were triploid,

as the oocyte genome could not be removed, this study has

revitalized interest in using SCNT for deriving ‘‘personalized’’

ESCs. Comparing these NT-ESCs to normal ESCs and to iPSCs

would eventually be necessary to determine whether important

differences exist between these pluripotent cell types.

Another type of ESCs known for a long time in mouse

was finally generated in humans as well: human partheno-

genetic ESCs derived through parthenogenetic blastocysts

(Kim et al., 2007b). Such blastocysts are generated by the

activation of unfertilized oocytes, which undergo duplication of

their genomic content and thus harbor two copies of the

maternal genome. Human parthenogenetic pluripotent stem

cells may serve for the generation of MHC-matched cells for

transplantation, as was demonstrated in mouse (Kim et al.,

2007a), and may also be used for the study of imprinting (Stelzer

et al., 2011).

A third striking type of ESCs was recently reported in mouse.

Using the same technique of activating haploid oocytes,

mESCs were derived from parthenogenetic embryos grown

under specific culture conditions, and were than FACS-sorted

for low DNA content, resulting in haploid mESC lines (Elling

et al., 2011; Leeb and Wutz, 2011). These haploid mESCs may

become an invaluable tool for forward and reverse genetics,

as was elegantly demonstrated in these two groundbreaking

papers. Similar attempts to generate haploid hESCs are cur-

rently underway, hopefully to be crowned with success.

The Pluripurpose Cell: Using ESCs beyond Pluripotency
Research
One of the most interesting developments in the ESC field in

recent years is the way it has been integrated into affiliated

research fields and influenced all areas of genetics, epigenetics,

and cell biology. Indeed, the boundaries between ESC research

and other research fields often become blurry, as studies ‘‘with’’

ESCs, rather than ‘‘of’’ ESCs, are already rapidly accumulating

into a significant body of work.

ESCs have been used as a tool for the investigation of basic

questions in various areas of biology, and by now these cells

are responsible for major advancements ‘‘outside’’ the tradi-

tional borders of ESC research. To name just a few examples,

the identification of an active DNA demethylation enzyme

(Bhutani et al., 2010), lincRNAs (Guttman et al., 2009), and exten-

sive transcription initiation (Guenther et al., 2007), as well as

improvements in genomic techniques such as zinc finger nucle-

ases (Collin and Lako, 2011) and high-resolution methylation

mapping (Jeddeloh et al., 2008), are all discoveries made in

ESCs but with implications that go far beyond the biology or

the manipulation of pluripotent cells.
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It seems, therefore, that ESCshave recentlymadegreat impact

on a variety of research arenas, serving as a sort of ‘‘pluripurpose

cells,’’ awell characterized in vitro systemof normal humanprolif-

erating cells that might possibly even replace HeLa cells as

‘‘default’’ cells of choice. ESCs have thus gone beyond what is

usually perceived as ‘‘ESC research’’ and are extensively used

in the biological and biomedical sciences (a fact that is unfortu-

nately overlooked in some public discussions, when the neces-

sity and utility of these cells is drawn into question).

Concluding Remarks: The Next 5 Years
Soon after Yamanaka and Thomson first reported the generation

of human iPSCs, President George W. Bush referred to this

achievement as a ‘‘scientific advancement within ethical bound-

aries’’ (Kolata, 2007); however, the expectation that iPSCswould

replace embryonic stem cells (ESCs) in the study of pluripotency

has proven wrong. On the contrary, the vibrant and flourishing

ESC research community received a substantial boost from

the induced pluripotency breakthrough, and since 2006 these

two pluripotent cell types have complemented and promoted

each other (Scott et al., 2011).

The rapid discovery rate in the ESC field, with the surprising

twists and turns it sometimes takes, makes it very difficult to

predict where ESC research will be 5 years from now. Nonethe-

less, the achievements of recent years do seem to suggest

that ESC research is far from reaching its full capacity and is

predicted to continue expanding. Geographically speaking, the

gap that still exists betweenmESCs and hESCs in terms of coun-

tries involved suggests that more countries are probably about

to get actively engaged in hESC research. From a basic research

point of view, there is no doubt that much is left to be discovered

regarding the pluripotent state and its control, with an emphasis

on combining the complex multilayered regulation into a

coherent regulation circuitry. From the perspective of regenera-

tive medicine, data regarding the safety and efficacy of current

and future clinical trials will undoubtedly determine when ESC

research is mature enough to fulfill its promise in the clinic, and

success in this arena is bound to draw more private companies

into the field. Novel ESC types and reprogramming methods,

possible advancements in the generation of human-animal

chimeras, and increasing numbers of disease models are further

reasons to believe that exciting years lie before us.
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