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a b s t r a c t

In this work we introduce a technique for solving nonlinear systems that improves the
order of convergence of any given iterative method which uses the Newton iteration as a
predictor.

The main idea is to compose a given iterative method of order pwith a modification of
the Newton method that introduces just one evaluation of the function, obtaining a new
method of order p + 2.

By applying this procedure to known methods of order three and four, we obtain new
methods of order five and six, respectively. The efficiency index and the computational
effort of the new methods are checked.

We also performdifferent numerical tests that confirm the theoretical results and allow
us to compare these methods with the ones from which have been derived and with the
classical Newton method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider the problem of finding a zero of a function F : D ⊆ Rn
−→ Rn, that is, a solution α of the nonlinear

system F(x) = 0 with n equations and n unknowns. The best known iterative method is the classical Newton method that
converges quadratically under certain conditions.

Recently, for n = 1, many robust and efficient methods have been proposed with higher convergence order (see [1–8]),
but in most of cases the methods have not been extended to several variables. Few papers for the multidimensional
case introduce methods with high order of convergence. In [9], new methods with order of convergence three based on
quadrature formulas of order at least one are presented and in [10], variants of the Newton method using fifth-order
quadrature formulas get third order convergence. As far as we know, methods with order of convergence four have been
developed in [11,12],where the authors present new families ofmulti-point iterativemethods. Order four and five is reached
in [13] by means of Adomian decomposition.

In this paper we propose new iterative methods for the multidimensional case with fifth and sixth order of convergence.
In order to compare different methods, we use the efficiency index, p1/d (see [14]), where p is the order of convergence and
d is the number of functional evaluations per iteration required by the method. This is the most used index. However, in the
n-dimensional case, it is also important to take into account the number of operations performed, since for each iteration
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a number of linear systems must be solved, for this reason we also use the computational efficiency index defined in [15], as
p1/(d+op), where op is the number of products/quotients per iteration.

In [15], we remember some known notions and results that we need in order to analyze the convergence of the new
methods, in particular, we use the fact that the inverse [F ′(x)]−1 of the jacobian matrix can be expressed as a power series
whose coefficients can be obtained from the formal inverse of the original series.

In Section 2, we introduce a technique for solving nonlinear systems in which the order of convergence p of a given
iterative method is improved to p + 2. The procedure is obtained by composing the method of order p with a modification
of the Newtonmethod that introduces only one additional evaluation of function F . We generalize a work presented by Kou
et al. in [16], that establishes

Theorem 1. Let uk+1 = g3(xk) be a third order method. Performing a new step given by:

xk+1 = uk+1 −
f (uk+1)

f ′(yk)
,

where yk = xk − f (xk)/f ′(xk), a new method of order five is obtained.

In [16], Kou et al. consider a procedure for the unidimensional case and improve a third order method to order five. We
generalize this result to the multidimensional case and show that any method of order p can be improved to order p + 2.

In Section 3 we apply the result described in Section 2 to a third-order and a fourth-order method that use the jacobian
matrix, F ′(y(k)), in their iteration function, in order to add just one functional evaluation when composing themethods with
a modified Newton method.

Finally, we present some numerical examples to illustrate the efficiency of the studied methods and compare themwith
the methods from which they have been obtained.

2. Main result

Let F : D ⊆ Rn
−→ Rn be a sufficiently differentiable function. Finding the solutions of the nonlinear system F(x) = 0,

is a classical problem that appears in many applied mathematical problems. In order to approximate the solution, we use
iterative methods.

In this paper, we present a technique that consists in composing an iterative method of order p with a modification of
the Newton method, giving a two-step method:

z(k)
= φ(x(k), y(k))

w(k)
= z(k)

− F ′(y(k))−1F(z(k)), (1)

where z(k)
= φ(x(k), y(k)) is the iteration function of a method of order p, that uses F ′(y(k)) in its iteration function, and

y(k)
= x(k)

− F ′(x(k))−1F(x(k)) is the classical Newton method of convergence order two.
In order to analyze the order of the iterative method defined by (1) we establish the following result:

Theorem 2. Let F : Rn
−→ Rn be a sufficiently differentiable function in a neighborhood D of α, that is a solution of the system

F(x) = 0, whose jacobian matrix is continuous and nonsingular in D. Then, for an initial approximation sufficiently close to α, the
method defined by (1) has order of convergence p + 2.

Proof. Taylor’s expansion of F(x(k)) around α gives

F(x(k)) = F ′(α)

e(k)

+ C2e(k)2
+ C3e(k)3

+ O(e(k)4)


, (2)

where Ck =
1
k!F

′(α)−1F (k)(α), k ≥ 2, and e(k)
= x(k)

− α
Then

F ′(x(k)) = F ′(α)

I + 2C2e(k)

+ 3C3e(k)2
+ O(e(k)3)


(3)

and inverting (3), (see [15]), we have

F ′(x(k))−1
= (I − 2C2e(k)

+ (4C2
2 − 3C3)e(k)2)F ′(α)−1

+ O(e(k)3). (4)

Let us denote d(k)
= y(k)

− α = x(k)
− α − F ′(x(k))−1F(x(k)). From (2) and (3) one has

d(k)
= C2e(k)2

+ (−2C2
2 + 2C3)e(k)3

+ O(e(k)4). (5)

Using (5) in the expansion of F ′(y(k)), we obtain

F ′(y(k)) = F ′(α)

I + 2C2

2 e
(k)2

+ 2C2(−2C2
2 + 2C3)e(k)3

+ O(e(k)4)


. (6)
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Table 1
Efficiency indices for different values of n.

EI N M3 M5 M4 M6

2
1

n+n2 3
1

n+2n2 5
1

2n+2n2 4
1

2n+2n2 6
1

3n+2n2

n = 2 1.1224621 1.1161232 1.1435298 1.1224620 1.1365335
n = 3 1.0594631 1.0537075 1.0693595 1.0594631 1.0686129
n = 4 1.0352649 1.0309874 1.0410564 1.0352649 1.0415623
n = 5 1.0233739 1.0201756 1.0271870 1.0233739 1.0279490
n = 10 1.0063212 1.0052452 1.0073425 1.0063212 1.0078207
n = 20 1.0016517 1.0013407 1.0019178 1.0016517 1.0020856
n = 30 1.0007456 1.0006005 1.0008657 1.0007456 1.0009485

Then

F ′(y(k))−1
=


I − 2C2

2 e
(k)2

+ (4C3
2 − 4C2C3)e(k)3

+ O(e(k)4)

F ′(α)−1. (7)

Consider now the expansion of F(z(k)) about α,

F(z(k)) = F ′(α)

C2b(k)2

+ C3b(k)3
+ O(b(k)4)


, (8)

where b(k)
= z(k)

− α. By substituting it in a(k)
= ω(k)

− α = z(k)
− α − F ′(y(k))−1F(z(k)), and using (7) one obtains

a(k)
=


−C2b(k)2

− C3b(k)3
+ O(b(k)4)


+


2C2

2b
(k)

+ 2C3
2b

(k)2
+ 2C2

2C3b(k)3
+ O(b(k)4)


e(k)2

+


−4C3

2 + 4C2C3

b(k)

− C2

4C3

2 − 4C2C3

b(k)2

− C3

4C3

2 − 4C2C3

b(k)3

+ O(b(k)4)

e(k)3

+ O(e(k)4). (9)

Due to the fact that the method defined by φ is of order p, the error equation is b(k)
= Ae(k)p

+ O(e(k)p+1
) and so a(k) is at

least of order p + 2. �

3. Extended methods—efficiency index

We apply (1) to a third-order method and to a fourth order method that use F ′(y) in their iteration function. Firstly let
us consider the third order method, (M3), introduced by Frontini and Sormani [17]. By using Theorem 1, we obtain the
fifth-order method, denoted byM5:

z(k)
= x(k)

− 2(F ′(y(k)) + F ′(x(k)))−1F(x(k)),

w(k)
= z(k)

− F ′(y(k))−1F(z(k)).

Nowwe consider the fourth ordermethod, (M4), introduced by Cordero et al. in [13]. In order to obtain a sixth-ordermethod,
denoted byM6, we compose it with the modified Newton method:

z(k)
= y(k)

− F ′(x(k))−1
[2I − F ′(y(k))F ′(x(k))−1

]F(y(k)),

w(k)
= z(k)

− F ′(y(k))−1F(z(k)).

Remember that in both methods y(k)
= x(k)

− F ′(x(k))−1F(x(k)).
Table 1 shows the efficiency indices for different sizes of the nonlinear system. Notice that, for any value of n, the new

methods M5 and M6 are, respectively, more efficient than M3 and M4, the third and fourth order methods from which they
are derived, and that for n > 3 the new methodM6 is always the most efficient.

It is important to point out that, with this technique, we get efficient methods if they use F ′(y(k)) in the first step, because
in this case we add just one functional evaluation.

Table 2 shows the computational efficiency indices of the described methods for some values of n. The results show that
the new method M5 is always better than M3, while M6 is better than M4 only for n = 1, 2. Nevertheless, for big sized
problems (see n = 10, 20, 30), the new method M6 has computational efficiency index better than the Newton method.

4. Numerical results

In this section we compare the performance of the numerical methods introduced in our work,M5 andM6 with the third
and fourth order methods fromwhich they are derived,M3 andM4, and with the classical Newtonmethod, in order to check
their effectiveness.
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Table 2
Computational efficiency indices for different values of n.

N M3 M5 M4 M6

n = 2 1.0594631 1.0512048 1.0551131 1.0472941 1.0482809
n = 3 1.0241896 1.0201756 1.0216911 1.0205959 1.0205696
n = 4 1.0124545 1.0102243 1.0109339 1.0112425 1.0109853
n = 5 1.0073230 1.0059561 1.0063315 1.0069556 1.0066582
n = 10 1.0012844 1.0010273 1.0010664 1.0014603 1.0012899
n = 20 1.0001992 1.0001583 1.0001606 1.0002719 1.0002191
n = 30 1.0000641 1.0000508 1.0000510 1.0000959 1.0000735

Table 3
Numerical results for nonlinear systems.

F(x) x(0) Iterations ρ

N M3 M5 M4 M6 N M3 M5 M4 M6

(a) [1, 1] 9 6 5 6 5 2.0 3.0 5.0 4.0 6.0
[0, −1] 9 6 4 5 4 2.0 3.0 5.0 4.0 6.0

(b) [1, 1] 10 7 5 6 5 2.0 3.0 3.5 4.0 6.0
[−1, 2] 11 7 6 6 5 2.0 3.0 5.0 4.0 6.0

(c) [1, 0.5, 1] 10 7 5 7 5 2.0 2.83 5.0 4.0 5.1
[1, 1, 2] 10 8 6 8 5 2.0 3.0 5.0 4.0 6.0

(d) [2, . . . , 2] 9 7 5 6 5 2.0 3.0 5.0 4.0 6.0
[−4, . . . ,−4] 11 7 6 6 5 2.0 3.0 5.0 4.0 6.0

(e) [1, . . . , 1] 13 9 7 8 6 2.0 3.0 5.2 4.1 6.2
[−2, . . . ,−2] 14 9 7 8 7 2.0 3.0 5.4 4.1 6.4

Consider the nonlinear systems defined by the following functions and their solutions:
(a) F(x1, x2) = (x21 − 4x2 + x22, 2x1 − x22 − 2), α ≈ (0.3542, 1.1364), β ≈ (0.3542, −1.1364).
(b) F(x1, x2) = (x21 + x22 − 1, x21 − x22 + 0.5), α = ( 1

2 ,
√
3
2 ), β = (− 1

2 , −
√
3
2 ).

(c) F(x1, x2, x3) = (cos(x2) − cos(x1), x
x1
3 − 1/x2, ex1 − x23), α ≈ (0.9096, 0.6613, 1.5758).

(d) F(x) = (f1(x), f2 (x) , . . . , fn(x)), where x = (x1, x2, . . . , xn) and fi : Rn
→ R, i = 1, 2, . . . , n, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , n − 1
fn(x) = xnx1 − 1.

When n is odd, the exact zeros of F(x) are α = (1, 1, . . . , 1) and β = (−1, −1, . . . ,−1). Results appearing in Table 3
are obtained for n = 31.

(e) F(x) = (f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, . . . , xn) and fi : Rn
→ R, i = 1, 2, . . . , n, n > 3, such that

fk(x) =


1≤i<j≤n,i,j≠k

xixj, k = 1, 2, . . . , n − 1

fn(x) =


1≤i<j≤n,i,j≠k

xixj − 1.

A zero of F(x) is

αi =


2

(n − 1)(n − 2)
, i < n; αn = −

n − 3
√
2(n − 1)(n − 2)

,

and symmetrically,

βi = −


2

(n − 1)(n − 2)
, i < n; βn =

n − 3
√
2(n − 1)(n − 2)

.

The results that appear in Table 3 are obtained for n = 30.

Nowadays, high order methods are important because numerical applications use high precision in their computations.
For this reason, numerical computations have been carried out using variable precision arithmetic that uses floating point
representation of 200 decimal digits of mantissa in MATLAB 7.1. Some of the examples used in our test appear in [13,11].

In Table 3, we calculate the number of iterations and the estimated order of convergence ρ, given by (see [10]):

ρ =
ln

x(k+1)
− x(k)

 /
x(k)

− x(k−1)


ln
x(k) − x(k−1)

 /
x(k−1) − x(k−2)

 (10)
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Table 4
Numerical results stepwise for example (c) with x(0)

= [1, 0.5, 1].

Method ∥x(k)
− x(k−1)

∥ ∥F(x(k))∥

N 0.9300 0.8606
k = 1 M3 0.5616 0.2353

M5 0.5986 0.0370
M4 2.1706 1.1870
M6 0.6403 0.0754

N2 0.3365 0.0763
k = 2 M3 0.0704 0.0011

M5 0.0147 3.3170e−008
M4 0.4286 0.0082
M6 0.0651 1.4496e−007

N 0.0687 0.0021
k = 3 M3 0.0015 7.7680e−009

M5 4.7902e−008 2.7887e−036
M4 0.0067 2.2736e−009
M6 2.3791e−007 7.9758e−039

N2 0.0038 1.0642e−005
k = 4 M3 1.2151e−008 3.6915e−024

M5 4.1532e−036 1.2675e−176
M4 4.1168e−009 2.5769e−033
M6 1.1971e−038 1.5508e−226

N 1.7620e−005 2.9328e−010
k = 5 M3 5.7816e−024 3.9896e−070

M5 1.8965e−176 0
M4 3.9118e−033 2.6800e−129
M6 2.3169e−226 0

N2 4.4084e−010 1.9684e−019
k = 6 M3 6.2555e−070 5.0462e−208

M5 1.8965e−176 0
M4 4.0047e−129 0
M6 2.3169e−226 0

for everymethod and different initial guesses. The stopping criterion used is
x(k+1)

− x(k)
+

F(x(k))
 < 10−120. Therefore,

we check that the iterates converge to a limit and that this limit is a solution of the nonlinear system.
Finally, Table 4 shows the distance between two consecutive approximations ∥x(k)

− x(k−1)
∥ and the value of ∥F(x(k))∥

in each iteration for example (c). It can be observed that from the third iteration on the results of our methods M5 and M6
outperform the results of the other methods.

5. Conclusions

In this paper we introduce a technique for accelerating the order of convergence of a given iterative process, that uses the
Newton iteration as a predictor, from p to p+2, with only one additional evaluation of the function.We apply this technique
to two particular methods of third and fourth order obtaining two newmethods of fifth and sixth order of convergence. The
efficiency indices of these newmethods improve the ones corresponding to themethods fromwhich they have been derived.

The theoretical results have been checked with some numerical examples.
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