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Abstract 

The multigrid method based on multi-stage Jacobi relaxation, earlier developed by the authors for structured grid 
calculations with Euler equations, is extended to unstructured grid applications. The meshes are generated with 
Delaunay triangulation algorithms and are adapted to the flow solution. 
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1. Introduction 

In two previous papers [6, 7], the authors analysed the use of multi-stage Jacobi relaxation in 
multigrid methods for two-dimensional steady Euler equations on structured grids. It was shown 
that by using multi-staging the classical defect correction procedure typically employed in relax- 
ation multigrid methods [5, 10, 11] to obtain the solution of a high order accurate discretization, 
can be avoided. Full high order methods and mixed high order methods were demonstrated. In the 
full high order formulation, the same high order accurate operator is used on all grids. In the mixed 
formulation, a high order operator is used on the finest grid while on the coarser grids a different 
high order operator or a first order operator is used. In particular, the mixed discretization with 
high accuracy nonlinear TVD-operator on the finest grid and the linear high order Van Leer 
x = ½-operator on the coarser grids was shown to be efficient. 

Defect correction procedures are found to be inefficient in cases where the results of the first 
order operator and the higher order operator differ significantly. The reason is that the inner 
(multigrid) iteration on the first order operator cannot reduce sufficiently the residue of the higher 
order operator. As a consequence, the global convergence rate is largely dominated by the outer 
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defect correction (nonmultigrid) iteration. In the mixed discretization method a better performance 
is obtained by two means. First, the higher order operator for which the solution is sought, i.e. the 
nonlinear TVD-operator, is used in all iterations on the finest grid. Second, a linear high order 
operator which is much closer to the nonlinear TVD-operator than the first order operator, is used 
on the coarse grids. Due to its linearity, this last operator allows the optimization of the multigrid 
procedure. 

In this paper, we demonstrate how the mixed method can be employed on unstructured adaptive 
grids. The use of unstructured grids in computational fluid dynamics is nowadays well established. 
Unstructured grids offer great flexibility when dealing with complex geometries and allow mesh 
adaptation techniques. Adaptive mesh procedures can lead to an improvement in the quality of the 
computed solution by computing the specific flow features. Considerable success has already been 
achieved in this. We cite examples by Mavriplis [-14], Weatherill and Soni [21], L6hner [13], and 
Barth [2]. 

The unstructured grids used here are of the Delaunay type. To generate a grid, a description of 
the domain boundary has to be given. Then points on the boundaries are introduced, based on 
local curvature and local grid spacing information. Using these points an initial grid is constructed, 
conformable to the boundary. Then, a criterion based on the edge length is applied to refine this 
initial mesh. On the first mesh a flow solution is calculated by means of the multigrid method. As 
soon as the residual drops below a threshold value, an adaption cycle is started. Using the same 
procedure as for the first grid, criteria are applied to refine the mesh. Instead of being based on 
mesh properties they are now based on flow properties like pressure and entropy differences. In this 
way, shock regions, stagnation regions and slip regions are captured accurately. Each newly 
generated mesh forms the finest mesh of a multigrid procedure. 

Results are given for transonic flow over a NACA-0012 airfoil. 

2. The flux-difference splitting method 

In this section, we explain how the flux-difference splitting method can be employed on 
unstructured grids. Fig. 1 shows part of an unstructured triangular grid. In the vertex-centred finite 
volume method nodes are located at the vertices of the grid. Around every node a control volume is 
constructed by connecting the centres of gravity of the cells surrounding the node. At the 
boundaries, the control volumes are formed with the midpoints of the edges of the cells. 

The flux-difference over the surface Sij is written as 

F j  - -  F i  = s i j A i ~ ( U ~  - -  Ui) ,  (1) 

where U stands for the vector of conserved variables, sij  is the length of the surface and A~j is the 
discrete flux Jacobian. The first order upwind flux is defined by 

F , j  = *2 (F ,  + F~) - *2 s,j(A,~. - A , ~ ) ( U j  - -  U~), (2) 

where A~. and A~ are the positive and the negative parts of Afj. The upwind flux can also be written 
a s  

F i j  = F i  + s i j A i j  ( U j  - Ui) .  (3) 
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Fig. 1. Control volumes in the interior and on a solid boundary. 

This flux expression shows the wave components incoming to the control volume around the node 
i. To determine the flux Jacobians, we use polynomial flux-difference splitting here. Details of this 
method are given in [4, 5]. The technical form of the splitting is not relevant, however, for the 
method described here. The second order accurate flux is defined with the flux extrapolation 
technique. The second order correction is calculated from a limited combination of differences 
between nodes j and i and shifted differences obtained by extrapolation of the line segment ij. The 
shifted differences are calculated by interpolation of the data in the points il and Jl as indicated in 
Fig. 1. The line segment ij is extended with a length equal to ij when this results in a point inside the 
adjacent cell (point il). Otherwise, the extrapolated point is taken to be on the opposing edge (point 
j~). This latter restriction is necessary to preserve TVD-properties. The minmod limiter is always 
applied. 

The resulting flux expression is 

Fij = Fi + s i j A i j ( U j  - Ui) + F.C., (4) 

where F.C. denotes the flux correction for high order accuracy. 

3. Boundary conditions 

The example to follow is the flow around an airfoil. This external type flow has a solid boundary, 
and a farfield boundary. At the solid boundary, impermeability is imposed by setting the convective 
part of the flux equal to zero. This requires a modification of the flux expression (4). For a point i' 
on the boundary, the point j '  does not exist (see Fig. 1). This can be introduced in (4) by setting F.C. 
to zero and by setting the values of the variables in the ficticious node j '  equal to the values of the 
variables in the node i'. The matrix Ai~ in (4) is then calculated with the values of the variables in 
the node i'. Of course, since the difference of the variables is zero, the first order difference part in (4) 
is also zero. The impermeability is introduced by replacing Fi by F ~ -  F*, where F* is the 
convective part of the flux. The term - F* can be seen as a new flux correction term F.C. As will be 
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Fig. 2. Treatment of the trailing edge and the farfield boundary. 

discussed in the next section, the matrix Ai~ at a solid boundary plays an important role in the 
relaxation method, although it is multiplied by a zero term. 

Special attention is to be given to the trailing edge of the airfoil. In order to impose a correct 
Kutta-condition, the trailing edge is represented by two nodes very close to each other (10-8 of the 
chord in the actual calculation). The local grid around the trailing edge is schematically shown in 
Fig. 2. For clarity, the two nodes at the trailing edge are separated in the figure. The control 
volumes are indicated. For node b, imposing impermeability is approximately equivalent to 
imposing a velocity direction along ac. Similarly for node d, the direction is approximately ec. If the 
trailing edge were represented by the single node c, impermeability would result in imposing 
approximately the direction ae for the velocity, which is physically erroneous. 

The farfield boundary around the airfoil is formed by a hexagon at a distance of 100 chord 
lengths from the airfoil (Fig. 9). We can use a very large distance in an unstructured grid application 
since the mesh size near the farfield boundary can be very large. For node i on the boundary (Fig. 
2(b)), the outside node j necessary to define the flux through the boundary face is given the free 
stream state values. By means of flux-difference splitting, the actual node on the boundary then 
takes only the part of the state of the farfield that corresponds to ingoing characteristics. 

4. The multi-stage Jacobi relaxation 

We bring multi-staging into the Jacobi method in the same way as multi-staging is used for time 
stepping methods and we use the optimization results known for time stepping schemes. 

For the time-dependent Euler equations, the discrete set of equations associated with the node 
i reads 

dUi  
Voll--d-i- + 2 A~  (Uj -- Ui)sij + 2 F.C. = O, 

J J 
(5) 
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where the index j loops over the faces of the control volume and the surrounding nodes. A single 
stage time stepping method on (5) gives 

- f f - /  3U, + ~ A~ (U 7 - UT)s,j + ~_, F.C." = 0. (6) 
J J 

The Jacobi relaxation applied to the steady part of (5) reads 

Ai~(U~ - U7 + X)s, i + ~ F.C." = O. (7) 
J J 

Using the increments b Ui = U7 +1 - U ~ ,  this gives 

( - ~ A~ sij) 6Ui + ~ A~ (U'j - UT)slj + ~, F.C." = O. (8) 
• j J 

The 4 x 4 matrix coefficient of 6 Ui in (8) is nonsingular. The coefficient matrix employed in the 
relaxation method only can become singular for zero velocity, i.e., convective eigenvalues on all 
control volume faces equal to zero. In a practical calculation this does not happen. Even at 
a stagnation point, the velocity is only exactly zero on one face of a control volume. The other faces 
then still contribute in a way that singularity is avoided. The matrix can be near to singular. If 
wanted, the condition number of the matrix can be improved by a so-called fix. This means that the 
contribution of the velocity components to the coefficient matrix are not allowed to be smaller than 
a prescribed minimum value (usually of the order of 0.01 to 0.001 times the free stream velocity). 
We did not use such a fix. 

In the expressions (6) to (8), the matrices A~ are on the time or relaxation level n. The difference 
between (single stage) Jacobi relaxation (8) and single stage time stepping (6) is seen in the matrix 
coefficient of the vector of increments 6 U~. In the time stepping method, the coefficient is a diagonal 
matrix. In the Jacobi method, the matrix is composed of parts of the flux Jacobians associated with 
the different faces of the control volume. The collected parts correspond to waves incoming to the 
control volume. In time stepping, the incoming waves contribute to the increment of the flow 
variables all with the same weight factor. In the Jacobi relaxation the corresponding weight factors 
are proportional to the wave speeds. As a consequence, Jacobi relaxation can be seen as time 
stepping in which all incoming wave components are scaled to have the same effective speed, i.e., all 
have a CFL-number equal to unity. 

This last observation is very important. The coefficients of a multi-stage scheme can only be 
optimized for a single wave equation [6, 7]. The CFL-number plays a dominant  role in this 
optimization. By the introduction of multi-staging into the Jacobi relaxation, there is a guarantee 
that the optimization applies equally well to all wave components in the field. I n a  time stepping 
scheme, the optimization can only be reached for one wave component.  

There is similarity between the multi-stage Jacobi method and the time stepping method with 
preconditioning introduced by Turkel [ 17] and the characteristic time stepping method introduced 
by Van Leer et al. [19]. The difference is that the scaling of the wave components in the multi-stage 
Jacobi method is realized on the discrete equations of the original steady Euler system while in the 
other methods it is done analytically before discretization through multiplication of the vector of 
time derivative terms by a matrix. 
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For  a node on a solid boundary,  an expression similar to (8) is obtained provided that  for a face 
on the boundary  the flux expression (4) is used and that  the difference in the first order  flux- 
difference part is in t roduced as U7 - virr" ÷ 1, similar to the term U7 - U7 ÷ 1 which is used for a flux 
on an interior face. So, in order to avoid a singular matrix coefficient of the vector of increments in 
(8), this t reatment at the boundaries is necessary. A boundary  node can then be updated  in the same 
way as a node in the interior. 

A multi-stage scheme (k stages) is defined by 

U ° = UT, 

U 1 ~__ U 0 q- o~ 1V3U O, 

U 2 _~. U 0 ..]_ o~2v3U I ,  (9) 

U k = U 0 -~- O~kVt~U k - l ,  

U n + l  = U k, 

where ~ U is the increment obtained from single-stage Jacobi relaxation. The coefficient v indicates 
the C F L - n u m b e r .  The last coefficient in the stepping series (~k) is equal to 1. 

In the sequel, we use a five stage scheme on the finest grid adapted for the TVD-opera tor  with 
coefficients ~x = 0.066; ~2 = 0.16; ~3 = 0.307; ~,~ = 0.576; ~5 = 1.0; v = 1.55. We denote  this set as 
TVD5 I-7]. On the coarse grids we use a three stage scheme with coefficients ~1 = 0.2884; 
~2 = 0.501; ~3 = 1.0; v = 1.3254. We denote  this set as VL 1.33 [7]. These sets were shown to be 
op t imum for a mixed discretization with the TVD-opera tor  on the finest grid and the Van Leer 
x = ½-operator (K3) on the coarser grids. 

5. The mesh generation 

Unstructured tr iangular grids are very attractive for two-dimensional  flow calculations. One 
reason is that  geometries of arbitrary complexity can be meshed. Another  is that  mesh adapt ion  by 
the addi t ion of points is very simple. The grid generation technique used here leads to Delaunay 
tr iangular meshes. Many  algori thms exist and are used for the generation of such meshes, we cite 
the methods  of Baker [1], Mavriplis [15] and George [8], among  many  others. These methods  use 
the basic algori thms of Lawson [12], Bowyer [3] and Tanemura  et al. [16]. A Delaunay 
tr iangulat ion of a planar set of points can be characterized as the unique tr iangulat ion such that  the 
circumcircle of every triangle contains no point  other than the forming points of the triangle. This 
circle criterion can be shown to be equivalent to the equiangular  property,  which selects the 
tr iangulat ion that  maximizes the min imum of the six angles in any pair of two triangles making  up 
a convex quadrilateral [8]. The meshes are generated by the following algorithms. 

5.1. Triangulat ion o f  a po l ygon  

The first a lgori thm is based on the advancing front method,  developed by Tanemura  et al. [16], 
but simplified to work on a set of nodes which are already connected. The nodes have to lie on the 
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Fig. 3. Generation of the Delaunay triangulation of a nonconvex polygon. 
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Fig. 4. Adding a node to an existing Delaunay triangulation. 

boundary of a polygon. With this algorithm a given, not necessarily convex, polygon can be 
triangulated. No extra nodes are added. Fig, 3 explains the procedure. 

For an arbitrary edge of the polygon, the node that has to be connected to the edge is 
determined. For a Delaunay triangulation, this node results in the smallest circumcircle. It can be 
found by a walk along the boundary of the polygon. Connecting the edge to the node splits up the 
polygon in to two smaller polygons, or reduces the size of the original polygon. Applying the 
algorithm recursively results in a constrained Delaunay triangulation of the given polygonal 
boundary. If the number of boundary nodes is limited, the triangulation can be generated 
efficiently. 

5.2. Node incremental algorithm 

The second basic algorithm used in the grid generation makes the addition of a node to an 
existing triangulation possible. The new node is connected to three or four existing nodes: three 
nodes if the new node lies inside a triangle, four nodes if the new node lies on an edge. The 
triangulation is made Delaunay by a diagonal swapping algorithm [12]. For every node connected 
to the new node, the circle criterion is checked. If the circumcircle contains the fourth node of the 
quadrilateral, as shown in Fig. 4, the diagonal is swapped. This results in two new triangles that 
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Fig. 5. Action of the smoother. 
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Fig. 6. Local scaling transforming a circle into an ellipse. 

have to be checked by the circle criterion. When all triangles connected to the new node satisfy the 
circle criterion, the Delaunay property of the triangulation is restored. 

5.3. Node smoother 

The third algorithm is a smoother, which moves the nodes but does not change the topology of the 
mesh. Every node is moved towards the midpoint of the polygon it is connected to, as is shown in Fig. 
5, as if the node were connected to its neighbours by springs. After a few loops over all the nodes, the 
mesh quality is much improved. After the smoothing, the Delaunay property is restored by swapping. 

5.4. Locally scaled space 

To enable anisotropy in the construction of the grid, the above-described algorithms are applied 
in a transformed, locally scaled space. Every node has its own transformation parameters, (~, sx, st). 
The transformation is a rotation over the angle ct, followed by a rescaling of the new x and y axes by 
Sx and s r. The criteria by which the Delaunay triangulation is built, are based on transformed 
properties. The initial transformation parameters are calculated from the required boundary mesh 
spacing and boundary edge direction. Transformation parameters of new nodes are interpolated. 
Fig. 6 illustrates the effect of the scaling. 
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Fig. 7. Starting mesh consisting of one simply connected cell around the NACA-0012 profile. The profile is located at the 
centre of the hexagon. 

6. Application 

The mesh generation procedure can be used for any two-dimensional mesh, and is illustrated 
here for an airfoil NACA-0012 with a hexagonal farfield boundary 100 chords away from the 
profile as shown in Fig. 9. The Mach number of the incoming flow is 0.8 and the profile has an angle 
of attack of 1.25 ° . 

6.1. The first mesh 

Given the analytical description of the NACA-0012 profile, a set of nodes located on the profile is 
determined. These nodes are used as beginning and end points of the Bezier curves by which the 
geometry is described. Additional central points of the Bezier curves are calculated by requiring 
that the profile is continuous up to the second derivative. The larger the chosen set of nodes, the 
higher the accuracy by which the profile is represented, but also the larger the minimum number of 
nodes on the profile. The mesh generator presently in use is not allowed to remove the beginning 
and end points of the Bezier curves. Because the curvature is largest on the leading edge, the nodes 
are chosen with a stretching of 1.05 with the highest density at the leading edge. The total number 
of points on the profile is 61. 

Using the description of the boundary, a polygon is constructed so that all boundary nodes can 
be reached walking along the boundary edges. For this purpose the NACA-0012 profile is 
connected to the farfield. The starting mesh, given in Fig. 7 consists of one cell. The cell was 
generated by substituting every Bezier curve by one boundary edge. 

The triangulation of the starting mesh is carried out by applying the first mesh generation 
algorithm, i.e., the triangulation of a polygon. The result is a triangulation of only boundary nodes. 
In every boundary node, local transformation parameters are determined. These parameters are 
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used to define the locally required mesh spacing in two dimensions. On the farfield, the maximum 
edge length is taken to be 50 chord lengths in both directions. On the profile, the maximum length 
is chosen to be the actual length of the boundary edges for the tangential direction and :~ of the 
actual length in the normal direction. 

Now that the local transformation parameters are determined, a triangulation is generated of 
which all the edge lengths scaled by their local parameters are smaller than one. This is accomp- 
lished by looping over the edges and evaluating the length of every edge. When the length is larger 
than one, a node is added to the triangulation in the centre of the edge by applying the second mesh 
generation algorithm. When a node is added, the Delaunay triangulation is regenerated, and local 
transformation parameters are interpolated. After all nodes are added, the mesh generation is 
finished with a smoothing phase. Also during the smoothing, the local transformation parameters 
are used to preserve mesh stretching and anisotropy. The result is shown in Fig. 9. On this first 
mesh the flow is calculated. 

6.2. Unstructured multigrid 

Before the actual calculations start, the coarse meshes that are to be used in the multigrid cycle are 
generated. These meshes are built with telescoping nodes, i.e., all the nodes of a coarse mesh appear in 
all the finer meshes. Since the finest mesh is already given, the multigrid meshes are generated from 
fine to coarse. The generation of a coarse mesh consists of two phases. In the first phase a set of nodes 
from the fine mesh is selected to appear in the coarse mesh. Then the coarse mesh is generated. 

During the selection phase, special attention must be paid to the boundary nodes. Typically, half 
of the boundary nodes are selected. Some of the boundary nodes are crucial for the description of 
the geometry and have to be selected every time during the coarsening, e.g. the leading and trailing 
edges of an airfoil. In [9] a coarsening algorithm is given which is based on the idea that all the 
neighbours of a coarse node can be removed from the list of selected nodes. First, the nodes of the 
fine mesh are stored in a list of nodes. In this list, the special nodes appear first, then the boundary 
nodes, and then the other nodes. Initially, all nodes are selected. The set of nodes is determined by 
means of the following algorithm. 

Do for every node of the list: 
if node is selected 

then unselect all neighbours of the node; 
end do. 

The algorithm reduces the number of nodes roughly by a factor of 4. As a result of the algorithm, 
at least one neighbour of every fine grid node appears in the coarse grid, unless the node itself 
appears in the coarse grid. 

After the selection of the set of nodes that will form the coarse mesh, these nodes have to be 
connected. Here we do this by removing the nonselected nodes from the fine mesh. When a node is 
removed, all the edges connected to the node are also removed, leaving a cavity in the mesh. This 
cavity is retriangulated by the first mesh generation algorithm. Because the average number of 
connected neighbours is six, and usually below ten, the retriangulation of a cavity is very fast, and 
independent of the total number of nodes in the mesh. When all nodes are removed, the coarse 
mesh is obtained. 
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Fig. 8. Integrid operations on mesh with telescoping nodes. 
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The property of telescoping nodes reduces the complexity of the intergrid operations. The 
injection of flow variables is straightforward, as is the prolongation of corrections in the telescoping 
nodes. For the fine grid nodes that do not appear in the coarse grid, corrections can be interpolated 
on the coarse grid, as for totally unrelated meshes. Here, the correction in node i is taken to be the 
average of the corrections in nodes a, b, c, that appear on the coarse mesh (see Fig. 8). 

For the restriction an algorithm is used that keeps the required intergrid connectivity informa- 
tion to a minimum. First, the residuals R~ are averaged or weighted on the fine grid. This averaging, 
which is done implicitly or explicitly has the function of a low-pass filter. The resulting quantity is 
then divided by the control volume area on the fine grid, injected to the coarse grid, and multiplied 
with the coarse grid volume area. With/~o the quantity in node o, calculated with the residual Ro in 
node o and the residuals Rj in the surrounding nodes, the explicit residual weighting is given by 

- -  = . , ( 1 o )  
Vo Vo + ~Y~j= ~ Vj 

while the implicit residual weighting is given by 

- -  = , ( 1 1 )  
Vo Vo + e X~'= 1 Vj 

where Vo and Vj denote control volume areas in the node and in the surrounding nodes. Since the 
function of the weighting is to filter out the high frequencies, a few Jacobi sweeps (e.g., 3) are enough 
to calculate/~o in the implicit weighting. In the explicit formula ~ = 0.5 and in the implicit formula 

= 2.0 [7]. Here we use the implicit formula. 
For the first mesh of Fig. 9 two coarse meshes were generated, given in Fig. 10. The multigrid 

procedure uses the three grids. 

6.3. The flow calculation 

After all multigrid meshes are determined, an initialization phase follows. For every mesh the 
following is done. 
• Every boundary has a type of boundary condition associated with it. 
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Fig. 9. The first mesh with 1944 nodes. 

• The boundary edges are duplicated. In a vertex-centred formulation every boundary edge is 
associated with one internal control volume face and one boundary control volume face. 

• The parameters that determine the initial flow field are given. 
• The length of every control volume edge is calculated. 
• The interpolation parameters for the shifted differences for the second order correction are 

calculated. 
• For every control volume the area is calculated. 

The time needed for these preparations, including the generation of the coarse meshes, is only 
a few work units. A work unit is defined as the work needed for the calculation of one basic 
relaxation on the current finest mesh (one stage of a multi-stage Jacobi). 

The calculations start in full multigrid mode (FMG). On the coarsest level the initial flow field is 
determined. After a few multi-stage relaxations with the Van Leer x = I-operator (K3), the solution 
is transferred to the finer mesh. Now 2 FAS multigrid cycli with one pre- and one postrelaxation 
are carried out before the solution is transferred to the finest mesh. Also on the finest mesh two 
multigrid cycli are done with the K3-operator before the TVD-operator is turned on only on the 
finest level. The multigrid is of the W-type with one pre- and one postrelaxation at every level. After 
50 W-cycli the residual has dropped 10 orders of magnitude. The solution is given by means of 
iso-Mach lines in Fig. 11. 

6.4. Adaptive refinement 

One of the most important advantages of unstructured grids is the possibility to refine the mesh 
locally during the computation. Successive mesh concentrations in critical zones may be performed 
without knowing them at mesh creation time. The optimal way is to start the computa t ion  on 
a coarse and smooth grid which is not at all specific to a hypothetical solution, and refine during 
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Fig. 10. Coarser meshes that belong to the first mesh. Top: coarsest mesh with 187 nodes. Bottom: coarse mesh with 548 
nodes. Right: enlargement around profile. 

the calculation, with criteria characteristic for the particular physical solution. In the phys- 
ical problem treated here, transonic flow over an airfoil, interesting regions are the shockwaves, 
which have to be precisely located and also well quantified; the stagnation regions; and 
the trailing edge zone where a contact discontinuity may exist. Ad hoc criteria can be 
defined characterizing such flow features. We used criteria based on gradients of local flow 
parameters. Although criteria based on error estimators might be possible, we did not consider 
these. 
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Fig. 11. Top: enlargement of the first mesh (1944 nodes). Middle: Mach contour lines per 0.02; sonic line thick. Bottom: 
edges that are selected for refinement. 
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Table 1 
Number of nodes of multigrid meshes during different adaption phases 

Finest  mesh 1944 4008 7080 8566 
First  coarse mesh 548 1019 1738 2031 
Second coarse mesh 187 302 476 557 
Th i rd  coarse mesh 158 181 

87 

The first criterion is based on the pressure difference over an edge. If 

]Pmax -- Pmin ] Lra 
]Pi - P~[ Li~ >/ , (12) 

Sp 

then the edge ij will be refined by placing a new point into the centre of the edge. In this formulation 
pi is the pressure at node i, L~j is the length of the edge. The variables in the right-hand side are 
minimum or maximum values taken over all the nodes. Lra is a reference length of the problem (the 
chord length), and Sp is the sensitivity constant for the pressure criterion. This criterion triggers 
shockwaves and stagnation regions to be refined. A second criterion is based on the entropy 
difference over an edge, similar to the first criterion: 

[Smax --  Sminl L~,r 
[si - s j [Li j  >i Ss ' (13) 

where s is the entropy (In P/7 - In p, with 7 the adiabatic constant). This criterion triggers shock 
waves and tangential discontinuities. To include the new points in the mesh, the earlier described 
procedure is used. In the refinement criteria, the right-hand side of the inequalities are constructed 
in such a way that the same sensitivity constant can be used on all meshes. 

For the NACA-0012 profile the sensitivity constants were chosen as Sp = 250 and S~ = 60. The 
edges of the first mesh that are selected by the criteria are shown in Fig. 11. 

A large part of the edges is selected. In the stagnation regions the values on the left-hand sides of 
the equations (12) and (13) diminish as a result of subsequent adaption solution cycles. This is 
caused by the reduction of the pressure difference over an edge, and by the reduction of the length 
of the edge. In shock regions the left-hand side diminishes only because the length becomes smaller. 

6.5. Results o f  the calculation 

On the adapted mesh another 50 W-cycli are performed. For this purpose new multigrid meshes 
are generated. The initial solution on the adapted mesh is interpolated from the previous solution. 
After the flow calculation the adaption is repeated. Three adaption phases are carried out. The 
number of nodes in the different meshes is given in Table 1. The evolution of the meshes and 
associated solutions is shown in Figs. 12, 13 and 14. On the last mesh the contour lines of the 
entropy parameter s = pl/k/p are given. 

In Fig. 15 the pressure distribution over the profile is given by 

- P ( 1 4 )  
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Fig. 12. Top: enlargement of the second mesh (4008 nodes). Middle: Mach contour lines per 0.02; sonic line thick. 
Bottom: edges that are selected for refinement. 
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Fig. 13. Top: enlargement of the third mesh (7080 nodes). Middle: Mach contour lines per 0.02; sonic line thick. Bot- 
tom: edges that are selected for refinement. 
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Fig. 14. Top: enlargement of the fourth mesh (8566 nodes). Middle: Mach contour lines per 0.02; sonic line thick. Bottom: 
contour lines per 0.001 of the entropy parameter. 

with Poo, P~ and u~ as the pressure, the density and the velocity at the farfield, respectively. The 
irregularities in the pressure distribution are the consequence of the abrupt  change in cell size from 
one cell to another. 

Table 2 shows the obtained lift and drag coefficients on the different meshes. The lift coefficient 
does not converge monotonically with the grid refinement. This behaviour was also observed in the 
grid refinement study on the same test case by van der Burg et al. [18]. A lift coefficient around 0.35, 
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c, 

Fig. 15. Pressure distribution along the profile. 

Table 2 
Lift and drag coefficients on the different meshes 

# nodes 1944 4008 7080 8566 
CL 0.3353 0.3443 0.3529 0.3433 
CD 0.0412 0.0298 0.0267 0.0255 

as found here, corresponds well with the result obtained in [18] on a structured 257 x 129 grid 
(0.3455) and the results given as reference results obtained on different grids in the AGARD report 
on test cases for inviscid flow field methods [20] (0.3463 to 0.3736). The drag coefficient shows 
a monotone  convergence with grid refinement. The value obtained on the finest grid (0.0255) is still 
somewhat larger than the value obtained in [18] (0.0221) and the values given in [20] (0.0221 to 
0.0230). 

Fig. 16 shows the convergence behaviour of the L~-norm of the residual as a function of the 
number of work units. The L~-norm is taken over all equations and over all nodes. The three 
adaptions are marked by a jump in the residual value. The figure must be interpreted with care 
since the time needed to calculate one work unit depends on the number of nodes of the finest mesh 
of the multigrid. Therefore one work unit in the first phase is much cheaper than one in the 
following phases. This presentation was chosen to show that the residual drop during the different 
phases is almost the same, indicating the mesh independency of the multigrid convergence. The 
mean convergence rate over the four phases is 1 magnitude per 6 cycles or 115 work units. 

In Fig. 17 an enlargement of the leading edge region and the shock region on the suction surface 
are shown. 
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Fig. 16. Convergence behaviour for the second order TVD-scheme (TVD5 on finest and VL 1.33 on coarser meshes). 
Logarithm of residual as a function of work units. 
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Fig. 17. Enlarged view of the final mesh, the stagnation region and the shock region. 

7. Conclusion 

By the combinat ion of an adaptive unstructured grid generation technique, suitable refinement 
criteria and a high resolution flow solver, high quality solutions for Euler equations are generated. 
By using the multigrid method, this solution is obtained very efficiently. 
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