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1. Introduction

After a positive solution to the Lagrange problem for finite Moufang loops was given [8], proving
an analog of Sylow’s theorems has become an important problem in the theory of finite Moufang
loops [7]. We should mention right away that an obvious obstruction to the precise analog of the
first Sylow theorem about the existence of a p-Sylow subloop has been known for a long time: if
M(q) is the finite simple Paige loop over a finite field Fq then the orders of elements of M(q) divide
q(g?> — 1), whereas the order of M(q) is 1q*(g* — 1), where d = gcd(2, g — 1). Hence, for a prime p
dividing %(q2 + 1), a p-Sylow subloop of M(q) does not exist; consequently, nor does it exist in any
finite Moufang loop having a composition factor isomorphic to M(q).

The main result of the present paper asserts that this obstruction to the existence of a p-Sylow
subloop is in fact the only one. Namely, if a composition series of a Moufang loop M contains no
simple factors M(q) such that p | %(q2 + 1), then M has a p-Sylow subloop. In this case, we call p
a Sylow prime for M. In particular, every prime is Sylow for all solvable finite Moufang loops, i.e.,
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a p-Sylow subloop exists in this case for every p. We note that this result for Moufang loops of odd
order (in fact, a stronger result about the existence of Hall & -subloops) was proved in [5].

Many major results about finite Moufang loops were proved based on the correspondence between
Moufang loops and groups with triality [4]. This paper is not an exception. Clearly, the existence of
a p-Sylow subloop is related to the existence of an S-invariant subgroup in a corresponding group G
with triality S. Unfortunately, even when the above obstruction to the existence of a p-Sylow subloop
in M is absent (which is always the case, for example, when p = 2 or 3), one cannot guarantee
existence in G of an S-invariant p-Sylow subgroup. We therefore prove only that G possesses a suffi-
ciently large S-invariant p-subgroup whose corresponding p-subloop in M is p-Sylow.

A Moufang loop M may still have nontrivial p-subloops even when p is not a Sylow prime for M.
The order of such a p-subloop is obviously bounded by the product of the orders of p-Sylow subloops
of the composition factor of M for which p is Sylow. In the last section, we show that this bound is
actually achieved for all finite Moufang loops M. We call such p-subloops of maximal order quasi-p-
Sylow. In this way, Sylow’s theorem can be reformulated as follows:

Theorem A. Every finite Moufang loop has a quasi-p-Sylow subloop for all primes p.

The proof of this result uses the following important structural theorem (see Theorem 3 in Sec-
tion 5) for Moufang loops:

Theorem B. Every finite Moufang loop M contains a uniquely determined normal series

1<GrM) < Mg < M

such that M /My is an elementary abelian 2-group, Mo/ Gr(M) is the direct product of simple Paige loops M(q)
(where g may vary), the composition factors of Gr(M) are groups, and Gr(M/Gr(M)) = 1.

Another interesting auxiliary fact that we obtain is that a nonassociative minimal normal subloop
of a finite Moufang loop must necessarily be simple, see Theorem 3(i). This extends the well-known
group-theoretic assertion that a minimal normal subgroup of a finite group is the direct product of
isomorphic simple groups.

It is natural to conjecture that analogs of other two Sylow theorems, namely the embedding of p-
subloops of M into a quasi-p-Sylow subloop and the conjugacy of quasi-p-Sylow subloops by (inner)
automorphisms of M, are true for finite Moufang loops as well. As far as determining the number of
quasi-p-Sylow subloops, at present we do not have a formulation of the corresponding conjecture for
lack of sufficient experimental data.

2. Preliminaries

All loops we consider are finite. If x, y are elements of a group G then x¥ = y~lxy, x ¥ = (x"1)Y,
[x,y] =x"'x¥. Z(G) is the center of G. If ¢ € Aut(G) then x¥ is the image of x under ¢. If n is an
integer and p is a prime then the notation p¥ | n for k >0 means that p¥ |n and p**! {n. For natural
numbers m, n, we write (m, n) for gcd(m, n).

A loop M is called a Moufang loop if xy - zx = (x - yz)x for all x, y,z € M. For x,y,z € M define the
commutator [x, y] by xy = yx - [x, y]. The nucleus Nuc(M) of a Moufang loop M is the set {a e M |
a-xy=ax-y Vx,y € M}. For basic properties of Moufang loops, see [1].

To arbitrary elements x, y of a Moufang loop M, there are associated bijections Ly, Rx, Tx, Ly, y,
Ry,y of M defined as follows:

yLy =Xy, YRy=yx forall y e M;

Ta=Ly"Rx.  Luy=LdyLy!.  Rey=RRyRy. (1)
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The multiplication group MIt(M) of M is the group of permutations of M generated by Ly and Ry for
all x e M, and the inner mapping group J(M) is the subgroup of MIt(M) generated by Ty and Ry y for
all x, y in M.

A pseudoautomorphism of a Moufang loop M is a bijection A: M — M with the property that there
exists an element a € M such that

XA(yA-a)=(x-y)A-a forall x,y e M.

Such an element a is called a right companion of A. Denote by PsAut(M) the group formed by all pairs
(A, a), where A is a pseudoautomorphism of M with right companion a, with respect to the operation
(A,a)(B,b) = (AB,aB - b). Denote by PsInn(M) the subgroup of PsAut(M) generated by the elements
(Tx, x~3) and (Rx,y, [x, y]) for all x, y in M (such elements are in PsAut(M) by [1, Lemma VIL.2.2]).

By [13], the only finite simple nonassociative Moufang loops are the Paige loops M(q) which exist
for every finite field Fq. The order of M(q) is %q3 (q* — 1), where d = (2, q — 1), and is the product of
two coprime numbers ¢3(g> — 1) and J(g? +1).

Let M be a Moufang loop and let p be a prime. M is a p-loop if the order of every element of M
is a power of p (for Moufang loops, this is equivalent to the condition that |M| be a power of p).
A p-Sylow subloop of M is a subloop of order p¥, where p¥ || |[M|, k > 0. We denote by Syl, (M) the set
of all p-Sylow subloops of M. The fact that Syl,(M) can be empty for p dividing |[M| was observed
long ago. For example, the simple Paige loop M(2) of order 120 does not have elements of order 5.
The classification [9] of maximal subloops of M(q) implies the following assertion:

Lemmal.lfp1 %(q2 +1) then Syl,(M(q)) #2.1f p | %(q2 + 1) then M(q) does not have elements of order p;
in particular, Syl,(M(q)) = @ in this case.

Proof. First, suppose that g is a power of p. Consider a maximal subloop of M(q) of shape g2: PSLy(q)
(i.e. a split extension of a normal elementary abelian subgroup order g2 by the simple group PSL(q)).
This subloop obviously contains a subloop of order g3 which is therefore p-Sylow in M(q).

If p|qg®—1 then consider a maximal subloop of type M(PSLy(q),2) (i.e. a loop with a normal
subgroup PSL(q) of index 2 constructed by the Chein duplication process [2, Theorem 1]). Then,
obviously, Syl,(PSL2(q)) < Syl,(M(q)) whenever p is odd, and M(S,2) € Syl,(M(q)) for every S €
Syl (PSL2(q)).

If p| %(q2 + 1) then it can be easily seen by induction that every maximal subloop of M(q) either
has order coprime with p, or contains no elements of order p. O

Note that we will give another proof (see Corollary 2 below) of the existence of a p-Sylow
subloop in M(q) which does not use the classification [9]. However, the explicit structure of the Sylow
subloops of M(q) is best seen from the proof of Lemma 1 above.

Lemma 1 also shows that there is an obstruction to the existence of a p-Sylow subloop in an
arbitrary finite Moufang loop M having a composition factor M(q) with %(q2 + 1) divisible by p.

Definition. Let M be a Moufang loop. A prime p is called a Sylow prime for M if, for every composition

factor of M that is isomorphic to M(q) for some g, we have p ¢ (g_zqtll).

Obviously, p is a Sylow prime for M if and only if it is such for all composition factors of M. We
can now state the main theorem.

Theorem 1 (Sylow’s theorem). Let M be a finite Moufang loop and let p be a prime. Then M contains a p-Sylow
subloop if and only if p is a Sylow prime for M.

Before proving this theorem, we will require some facts about groups with triality which are in-
troduced in the next section. As an important corollary to Sylow’s theorem, we obtain the following
assertion:
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Corollary 1.

(i) Every Moufang loop has a 2-Sylow and a 3-Sylow subloop.
(ii) If all composition factors of a Moufang loop M are groups then M has a p-Sylow subloop for all primes p.

g*+1

Proof. (i) The primes 2 and 3 are Sylow for every loop, since GaD

powers q.
(ii) If M is as stated then all primes are Sylow for M by definition. O

is coprime with 6 for all prime

3. Groups with triality

A group G possessing automorphisms o and o that satisfy p3 =02 = (p5)? =1 is called a group
with triality (p, o) if

X, ollx, 0 1°[x, o1” =1 )

for every x in G, where [x, 0] = x~x°. We henceforth denote S = (5, p). Obviously, S is a homomor-
phic image of the symmetric group S3 of degree 3. (Strictly speaking, we have fixed a homomorphism
y : S3 — Aut(G) and then identified the generators p and o of S3 with their images under y to sim-
plify the notation. We thus implicitly consider G as a group with operators S5 in the sense of [12, §15].)
It should be noted that the identity (2) does not depend on a particular choice of the generators p
and o [4].

Let G be a group with triality S. Put M ={[x,0]|x € G} and H = C¢(0). Then M endowed with
the multiplication

m.n=m"Pnm=> forallm,neM, (3)

becomes a Moufang loop (M,.) of order |G : H|. We denote this loop by M(G). Every Mo-
ufang loop can be obtained in this way from a suitable group with triality. Moreover, for every
subloop My < M(G), there exists an S-invariant subgroup Go of G (in brief, S-subgroup) such that
Mo = M(Gp). Any element of M(G) has the same order whether viewed as a group or loop element.
For more details on this, see [8,10]. We observe that

m®=m-leM forallmeM. (4)

A homomorphism ¢ : G; — G, of groups G; and G, with triality S is called an S-homomorphism
if ap = o for all o € S. (Again, strictly speaking, we have fixed homomorphisms y; : S3 — Aut(G;),
i=1,2, and then required (ay1)¢ = @(ay») for all @ € S3 thus making ¢ an operator homomorphism
from G to G;. This is clearly a morphism in the category of groups with triality.) Denote by Zs(G)
the S-center of G, which is by definition the maximal normal S-subgroup of G on which S acts
trivially.

Lemma 2. Let G be a group with triality S and let M = M(G). Then

(i) lIG, 51, S1=1G, 5],
(il) Zs(G/Zs(G)) =1and Zs(G) = C([G, S]S),
(iii) [G, S]is generated by M U MP,
(iv) the elements m, mP, mP’ of G pairwise commute for allm € M,
(v) m=Pnm="" =n=P’mn=, forallm,n e M.

Proof. See [10, Lemmas 1 and 2]. O
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Lemma 3. Let G be a group with triality S = (o, p) and let M = M(G). Then the semidirect product Go =
G % (p) is a group with triality S if and only if M has exponent 3.

Proof. For every g € G, we have (gp)~'(gp)° = p*g~1g% p? and (gp?)~1(gp?)? = pg~'g p. Put
m=g 1g°. Then

(omp)(pmp)” (pmp)?” =m?’ mPm =1,
2
(p?mp?)(0*mp?)" (p?mp?)” = (m")’.
Hence, Gy is a group with triality iff m® =1 for all m e M(G). O

Note that if M(G) has exponent 3 then G x S is also a group with triality S (where S acts by inner
automorphisms). However, in this case M(GS) = M(G{p)).

Given a Moufang loop M, there exists a universal group with triality D(M) introduced by
Doro [4] which satisfies M(D(M)) = M, [D(M), S] = D(M), and, if G is any group with trial-
ity such that M(G) =M and G = [G, S], then there is an S-epimorphism 7 : D(M) — G. Denote
&(M) = D(M)/Zs(D(M)). Then M(&(M)) = M.

A nontrivial group G with triality is said to be S-simple if it has no proper S-homomorphic images
or, equivalently, contains no proper normal S-subgroups.

Lemma 4. Every finite S-simple group is S-isomorphic to one of the following S-simple groups:

(i) A finite simple group G with trivial S-action. In this case, M(G) is the trivial loop;

(i) G=(a|a®=1)=Z3, aP =a,a® =a" . In this case, M(G) = Zs;

(iii) G=(a,b|aP =bP =[a,b] =1) = Z, x Zp, p #3isaprime,a® =b, b’ =a~1b~1,a° =b,b’ =a.In
this case, M(G) = Zp;

(iv) G=Vy xVyx Vs, @i : V— Vi, i=1,2,3, are isomorphisms, V is a finite nonabelian simple group,
V1, v2,v3)? = (va, vy, v3), (V1, V2, v3)P = (v3, V1, v2). In this case, M(G) = V;

v) G= P_Q; (q), S is the group of graph automorphisms of G. In this case, M(G) = M(q) is the simple Paige
loop.

Proof. See [4,14]. O

Let F be a field. An FS-module V is called a triality module if V is a group with triality S. The

representations goi(X) of S corresponding to the indecomposable FS-modules Vi(X) are shown in Ta-
ble 1. They depend on whether the characteristic x of F is 2, 3, or otherwise. We may assume F to
be a prime field, since the decomposition field of S is prime in any characteristic [3]. If a module is a

triality module, we put v’ in the last column, and '-’, otherwise.
Lemma 5. Table 1 holds.

Proof. The indecomposable FS-modules are well known and can be readily determined, for exam-
ple, using [3, §863, 64]. Namely, if x # 2,3 then every indecomposable FS-module is irreducible
by Maschke’s theorem. If x =3 then there are exactly 6 indecomposable FS-modules by [3, The-
orem (64.6)] and the ones shown in Table 1 are easily seen to be indecomposable and pairwise
nonisomorphic. If x =2 then the indecomposable modules are the components of the regular and
natural permutation FS-modules by [3, Theorem (63.8)].

The triality of a module V is equivalent to the condition that the element (o — 1)(1+ p + p?)
of FS annihilates V, which is directly verified in each case. O

Lemma 6. Let G be an S-simple group with triality. Let p be a Sylow prime for M(G). Then G has a p-Sylow
S-subgroup.
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Table 1
Indecomposable S3-modules.
X 14 dimV (7 (12)p (123)¢p Triality
#2,3 v 1 ¥ 1 1 7
v 1 o =il 1 -
(0) (0) 01 1
£ 2 3 (1 o) <71 -1 v
2 v® 1 o 1 1 v
) ) 01 0 1
V2 2 e (1 o) (1 1 v
@) @) 11 10 B
€ 2 3 (1 o) (0 1
3 v 1 o 1 1 7
3) (3)
v 1 ik _1 0 1 ’
3) (3)
Vs 2 (O3 (0 _1 ) 1 ) v
3) 3) -1 0 1
Vs 2 (2! 0 1 ) 1 v

v® 3 ¢é3)

OO = 00O = O~ O~
- | © = =
I =
=
~——
<

Vé3) 3 (pé3) (

Proof. We analyze the cases (i)-(v) of Lemma 4. If G is as in cases (i)-(iii), the claim readily follows.
Let case (iv) hold. Then, for any P € Syl,(V), the group Py x Pz x P3 is the required p-Sylow S-
subgroup of G, where P; = «;(P), i =1, 2, 3. Suppose that G = P.Q;(q) as in case (v) and S is the
group of graph automorphisms of G. We will use the structure of some S-subgroups of G (for details,
see [11]). We have |G| = d1—2q12(q6 —1)(q* — 1)%(q? — 1) = nynyn3, where the integers

B 2 4 _G.O@ g+ D@ —g+ 1) (1Y
“Get @V m= 3 SN

are pairwise coprime. By hypothesis, p | niny. If p | ny then Syl,(C¢(S)) < Syl,(G), since Cg(S) =
G2(q) and ny divides |G2(q)| =¢°®(g® — 1)(g? — 1). Hence, any subgroup in Syl,(Cs(S)) is the required
one.

Therefore, we may assume that p | ny. If p | ¢ then we consider an S-invariant parabolic sub-
group Rsy of G (in the notation of [11]) of order d]—zqu(q —1)*(g+1)3. It has the following S-invariant

structure Ry = q° x (SLa(q) o SLa(q) o SL2(q)) . (g — 1) with S naturally permuting the three factors
SLy(q), where o denotes the central product. The group SLy(q) oSLy(q) oSL,(q) has an obvious p-Sylow
S-subgroup whose preimage in Ry is the required subgroup.

If ptq and p # 3 then consider an S-subgroup I,4 of order dizq“(q2 — 1) It has the structure
(SLa(q) o SLa(q) o SL2(q) o SL2(q)) . d x K, where K =7y x Zy and K x S = S4 naturally permutes the
four factors SL,(q). It is easy to see that this group contains a p-Sylow S-subgroup.

Finally, if pfq and p =3 then let ¢ = ¢(3), € = £1. The required 3-Sylow subgroup is inside an
S-subgroup I, of order 15—22(q — &)*. To see this, consider an s2-decomposition of the Cayley algebra
O@)=V1®---® V4 which is also a Z; x Zy-grading with 1 € V1, see [9, Section 4]. Let R be the cen-
tralizer of this decomposition in Q; (q) extended by the 4-group ((12)(34), (13)(24)) of permutations
of the subspaces {V;}, i=1,...,4. This group has the following structure R = (Z%(q_l))4 .d3.23 .22,
In particular, the 3-Sylow subgroup of R is characteristic. Take the group T = ((23), (34)) = S5 of per-
mutations of {V;}, i =2, 3, 4, which acts identically on V; and induces automorphisms of OQ(q). Then
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the group Iz =R x T is the image in P£25 (q) of R x T € £2 (¢). It is S-invariant with S centraliz-
ing f (because T is a group of automorphisms of Q(q)). It is now clear that the 3-Sylow subgroup
03(R) x ((2,3,4)) of I, is S-invariant. O

Lemma 7. Let G be a group with triality S = (p, o) and let M(G) = {[g,0]| g € G} = (M, .) be the corre-
sponding Moufang loop. Then, for every subloop P < M(G), the group Q = (P U PP) is an S-subgroup of G
such that M(Q) =P and [Q,S]=Q.

Proof. By [8, Theorem 1], Q is an S-subgroup and M(Q) = P. By Lemma 2, [Q, S] is the S-subgroup
of G generated by P. Hence, we have Q C[Q,S]. O

Lemma 8. Let M be a finite Moufang p-loop. Then

(i) PsInn(M) is a p-group;
(ii) Any group with triality G such that M(G) = M and [G, S] = G is a p-group.

Proof. (i) The kernel of the natural epimorphism A : Psinn(M) — J(M) which acts by A: (A,a) — A
is a subgroup of Nuc(M) hence is a p-group. The group J(M) is a subgroup of MIt(M) which is a
p-group by [1, Lemma VI.2.2] and [5, Theorem 4].

(ii) Let G be as stated. Then G is finite, since it is a quotient of the finite group D(M), see [4,
Corollary 3]. We have G/Zs(G) = (M) and |E(M)| = |PsInn(M)|- M| (see [10]) is a power of p by (i).
Hence, it remains to prove that K = Zs(G) is a p-group. Let P € Syl,(G). We have G = O (K) x P,
since K is a central subgroup of G. The condition [G, S] =G now implies O (K) =1. O

In the following lemma, for an integer n and a prime p, we denote by n, the maximal power of p
dividing n.

Lemma 9. Let G be a group with triality S = (p, o), let M = M(G), and let p be a prime.

(i) If N < G is an S-subgroup containing a p-Sylow subgroup of G then [M(N)|p = |[M|,.
(ii) If P € Syl,(G) is S-invariant then M(P) € Syl, (M).

Proof. (i) Let H = Cg(0). We have |M(N)| = N|/|N N H|, and |[M| = |G|/|H|. By Lagrange’s theo-
rem [8], IM|/|M(N)| =|G|/INH]| is an integer. However, |G|, = [N|, divides |[N| which, in turn, divides
INH|. Hence |M : M(N)| is coprime with p.

(ii) Since M(P) is a p-loop and |[M : M(P)| is coprime with p by (i), it follows that M(P) €
Syl,(M). O

As a consequence, we have an alternative proof independent of the classification [9] of the follow-
ing assertion (cf. Lemma 1 above):

Corollary 2. [f p is a Sylow prime for M(q) then Syl,,(M(q)) # .

Proof. We have M(q) = M(G), where G = PQ;(q) is S-simple. By Lemma 6, G contains a p-Sylow
S-subgroup. The claim follows by Lemma 9(ii). O

Lemma 10. Let G = V P be a group with triality S such that P isa p-group, V. < G, p ¥V |. Suppose that M(P)
is generated by at most 2 elements, where P = G /P satisfies [P, S] = P. Then G has a p-Sylow S-subgroup.

Proof. Denote M = M(G). Let {m;};ic; generate M modulo W = M(V). By hypothesis, we may assume
|I] < 2. In particular, N = ({m;}ic;) is a group (since Moufang loops are diassociative) and M = WN.
Hence, any R € Syl,(N) is in Syl,(M). By Lemma 7, Q = (R U R”) is an S-subgroup of G such that
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M(Q)=R and [Q,S]= Q. Hence QV/V =P in view of [P, S] = P. By Lemma 8, Q is the required
p-Sylow S-subgroup. O

4. Proof of the theorem

We are going to prove the following extended form of Theorem 1:

Theorem 2. Let M be a finite Moufang loop and let p be a prime. Let G be a group with triality such that
M(G) = M. Then the following conditions are equivalent:

(i) M has a p-Sylow subloop,
(ii) p is a Sylow prime for M,
(ili) G has an S-invariant p-subgroup Q such that M(Q) € Syl, (M).

Proof. Let k > 0 be such that p* || |[M].

(i) = (ii). Suppose that M possesses a p-Sylow subloop P. We prove by induction on the length of
a composition series of M that p is a Sylow prime for M. If M is simple, this follows from Lemma 1.
Let N be a proper normal subloop of M. It suffices to show that p is a Sylow prime for both N and
M = M/N. Note that PN N is a p-subloop of N and P = (P, N)/N is a p-subloop of M by

ALl S 5
N T PAN )

see [1, Theorem IV.1.5]. By Lagrange’s theorem [8], |P| divides |(P, N)| which in turn divides |M]|.
Hence (5) also implies that the integers

INL__ PN M _ M)
PANI - IPL 1P [P N)]

are coprime with p. It follows that PN N e Syl,(N) and Pe Sylp(I\_/l). By induction, p is a Sylow prime

for both N and M.

(ii) = (iii). We now suppose that p is a Sylow prime for M = M(G). Proceed by induction on |M|.

If Zs(G) # 1 then consider Go = G/Zs(G). This group satisfies Zs(Gp) =1 and M(Gp) = M. If we
show that Po is an S-invariant p-subgroup of Go such that M(Po) € Syl,(M) then the preimage P
of Pg in G also satisfies M(P) € Syl,(M). If P is not a p-group then we take [P, S] which is a p-group
by Lemma 8(ii) and M([P, S]) = M(P).

Hence, we may assume that Zs(G) = 1. Clearly, we may also assume that [G, S] = G. Take a min-
imal normal S-subgroup V of G. Then V is characteristically simple see [6, Chapter 2, Theorem 1.5].
Two cases are possible:

(1) p||V]. Then we may assume that V is nonabelian (otherwise V is a p-group and we apply
induction for G/V, which is possible, since p is a Sylow prime for M(G/V) and [M(G/V)| < |M|). We
have V = V7 x --- x Vs is the product of isomorphic nonabelian simple groups V;'s. Since p is Sylow
for M(V) and V is a direct product of S-simple groups, it follows by Lemma 6 that V has a p-Sylow
S-subgroup W.

By assumption W # 1. We have G = VN, where N = Ng(W) is S-invariant. Observe that N con-
tains a p-Sylow subgroup of G. Moreover N < G, since W ;ﬂ V; and M(N) < M, since [G, S]=G.
Also note that p is Sylow for M(N), since W I NNV < N is an S-invariant series for N and W is a
p-group, (NNV)/W is a p’-group, and N/(N NV) = G/V. By induction, there exists a p-subgroup P
in N such that M(P) € Syl,(M(N)). By Lemma 9(i), M(P) € Syl,(M).

(2) p1|V]. By induction, we may assume that P = G/V is a p-group. It is sufficient to show that
G has a nontrivial S-invariant p-subgroup Pg such that Pg = PoV/V is normal in P. Indeed, if such
a subgroup exists then the condition Zs(G) =1 implies that either M(Pg) # 1 or Py ;@ G. In both



A.N. Grishkov, A.V. Zavarnitsine / Journal of Algebra 321 (2009) 1813-1825 1821

cases we can use induction for N/Pg, where N = Ng(Po). This is because |[M(N/Pp)| < |M| and p is
Sylow for M(N/Pg), since N/Pq is an extension of the p’-group Cy(Pg) by the p-group P/Pg. By
induction, N/Pg contains an S-invariant p-subgroup P; such that M(P1) € Syl, (M(N/Pg)). Then the
full preimage P; of Py in N is the required S-subgroup, since M(P1) € Syl, (M(N)) < Syl, (M).

Let Z = Z(P) and suppose that M(Z) # 1. The existence of P in this case is easy. Take z € M(G)
such that 1 # Z € M(Z), where Z = Vz. The group Gg = = (V, z, zP) satisfies the conditions of Lemma 10.
We take Py to be a p-Sylow S-subgroup of Go. Then Py < P as a central subgroup of P.

Suppose that M(Z) = 1. Then M(Z;) # 1, where Z1/Z Z(P/Z) since otherwise we would have
Z1<Zs(P)<Z _(the latter inclusion follows from [P,S]= P and Lemma 2(ii)). Take a € M(G) such
that 1#d e M(Z7) and set A= (a,a”). Then A is an S-subgroup of G not contained in Z, where Z is
the full preimage of Z in G.

The elementary abelian group P/®(P) is the direct product Uy x --- x U; of indecomposable trial-
ity FpS-modules U;’s. The condition [P, S]= P implies that the U;’s are at most 2-dimensional and,

depending on p, are isomorphic to one of the modules V(O) V<2) V(3) V<3) from Table 1. Moreover,

we have M(U;) = (u;) is cyclic of order p and U; = (u;, u; Py (observe that u =u; if Uj = V(3)) Let
w; be corresponding preimages of u; in M(G). Then G is generated modulo V by the S-subgroups
Wi=(w;j,w ) Since Z; > A & Z, where Z; is the full preimage of 71 in G, it follows that there exists
ip such that W [A, W] ;{ V. On the other hand, W < Z, since A < Z;. Denote Go = (V, A, W)
and Go = Go/V. Then the S-subgroup Gy satisfies the conditions of Lemma 10, since the images of a
and wj, in Go generate M(Go) as a loop and Gg as an S-group (whence the condition [Go, S] = Go).
Let P; be a p-Sylow S-subgroup of Gg. Put Pg = P1 N Z. It remains to observe that Py # 1, since
PoNWV =P{NWV #1in view of W £ V.
(iii) = (i). Obvious. O

We note that in general it is not true that if G is a group with triality and p is Sylow for M(G) then
G contains a p-Sylow S-subgroup. For example, let G = S on which S acts by inner automorphisms.
Then 2 is a Sylow prime for M(G) = Z3, but G does not have a 2-Sylow S-subgroup.

5. The group-type radical of Moufang loops

A finite Moufang loop M is said to be a loop of group type if all composition factors of M are
groups. For example, all solvable Moufang loops are loops of group type. It is clear that the normal
subloop of M generated by two normal subloops of group type is again a loop of group type. Hence
we have

Proposition 1. Every finite Moufang loop has a unique maximal normal subloop of group type.

We denote this maximal normal subloop of group type by Gr(M). It is obvious that
Gr(M/Gr(M)) =1, hence we call Gr(M) the group-type radical of M.

For q odd, the simple Paige loop M(q) has a two-fold extension isomorphic to the loop PGL(Q(q)),
where O(q) is the Cayley algebra over Fg, see [9, Section 4]. We denote this extension by M(q) . 2.
Also, we define

M(q) .2, ifqis odd,

M(q) =
@ {M(q), if q is even.

It can be seen that the group lnnDiag(P.Qé*(q)) of inner-diagonal automorphisms of P.Qgr(q) is

a group with triality S corresponding to @, where S is the group of graph automorphisms
of P.Qé" (g). It is known that the factor group

InnDiag(P£24 (9))/P£24 (@)
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is trivial for g even and isomorphic to Z, x Z; for q odd. Moreover, in the latter case, S acts nontriv-
ially on Z; x Z; so that M(Z, x Z,) = Z3, whence |[M(q)| = 2|M(q)|.
The following assertion is the main result of this section (cf. Theorem B in the introduction):

Theorem 3. Let M be a finite Moufang loop and let N be a minimal normal subloop of M. Then we have

(i) N is the direct product of isomorphic simple loops. Furthermore, if N is nonassociative then it is simple.

(ii) Suppose, additionally, that M satisfies Gr(M) = 1. Then by (i) every minimal normal subloop of M is
a simple Paige loop M(q) for some q. Denote Soc(M) = [[M(q) and SW) = ]_[I\W(q\), where both
products are taken over all minimal normal subloops of M. Then

Soc(M) < M < Soc(M).
In particular, M/ Soc(M) is an elementary abelian 2-group.

Proof. Suppose that M and N are as stated.

(i) Let G be a group with triality S = (o, o) such that M(G) =M = {x"'x° | x € G}, [G,S] =G,
and let Qg be a minimal normal S-subgroup of G corresponding to N. Since Qg is characteristically
simple, we have Qo= Q1 x --- x Q,, where Q;,1 < i< n, are isomorphic simple groups. Note that
we also have the decomposition Qg = Rq x --- x Ry, where Rj, 1< j <k, are S-simple groups if
Qo is nonabelian or indecomposable S-modules if Qg is abelian; moreover, N = M(Qg) = M(R1) x
<X M(Rp). If Q1 2 P.Q;(q) for any q then Lemmas 5 and 4 imply that all M(R;)’s are either trivial
or isomorphic simple groups. Hence, we may assume that Q1 = P.Q; (q), with ¢ = p™, p a prime. We
denote [ ={i | Q,.S = Q;}. If either I =¢ or [Q;,S]=1 for all i €I then each R; is either an S-group
from Lemma 4(iv) with V; = P.Q;(q), t=1,2,3, or is isomorphic to P.Q;(q) with trivial S-action.
Hence, in this case, N is the direct product of several P.Q; (¢)’s and the claim holds. Consequently, we
may assume that 1 € I and M(Q1) = M(q) # 1. We prove that n =1 in this case. Assume the contrary.
Denote K = N;(Q1). Observe that K is S-invariant. We have K # G, since otherwise Q1 would be a
normal S-subgroup contrary to the choice of Qg. Note that we cannot have the inclusion M C K,
since G is S-generated by M (ie., G = (U, cs M), which follows from [G, S] = G by Lemma 2(iii)).
Hence, there exists x € M \ K such that x' € K for a prime I. Let y = x°. Then we have

=x1,  yP=xTy7l,  y=xy, [xyl=1 (6)

in view of (4) and Lemma 2(iv). Denote Q j) = Qf'yj. i,jeZ/lZ, Q = Q,0 = Q1. Suppose that
x?yP € K, then by (6) we have (xy?)® =xP=%yb ¢ K and (x?y?)? =xPyb ¢ K. Hence 3a=3b=
0 (mod I).

l.1>3. Then a=b=0 (mod I) and all groups Qg are different. By (6) we obtain

QG ) =Qi-ih  Qfj=Qeii-p- (7)

Since Qg is a group with triality, the orbits of S on the set {Q1,..., Qn} are all of size 1 or 3. Hence
by (7) the set

(@D, G0, (=i i =), Gi— ), (=j, =), (=1, —D]

has 3 elements or less for all i, j € Z/IZ. However, this is possible only in the case | = 2.
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I I = 3. Since x3, y3 € K we have by (6)

1

(@) =¥ =) =qv,

2 1

(@) =@ = (@)Y =V,

Similarly, we can prove that the set X = {Q¥*, Q"z, QY, Qyz, Qv, szyz} is an S-orbit. Since
|[X]>1 and Q is a simple group, we have |X|=3.1f Q* = Qyz, an application of p gives QY = Q%,
which implies Q* = Q in contradiction with the choose of x. The cases Q* = Q)<2 or Q*= QY are

treated similarly. In the other cases: Q*=Q7Y, Q* = Q"zy2 we have |X| =2, a contradiction.
III. I = 2. Then the subgroup Q x Q* x QY x Q¥ is S-invariant and

(QX)O’ = Q*, (Qy)a =QY, (Qx)/) =QY, (Qy)ﬂ =QY, (Qxy)/’ =0Q*
Let a € Q. We apply the identity of triality (2) to g = ax. We have

r=g g =x""(a'a’)x"! and

1=rrPrP’ =x"(a'a”)xx7F (a’1a")px’px’p2 (a”a")pzx”o2

—x (0 1a%)x Ty (a‘1a”)px(a‘1a”)p2xy —x (g 1a%)x Ty ! (a—laa)ﬂxzy((a—laa)ﬂz)Xy

! (a—laa)x((a—laa)/’)xzy((a—laa)ﬂz)xy _ (a—laa)X((a—laa)p)xzy((a—1aa)p2)xy_

Since x2 € K, the last expression is in Q* x Q¥ x Q*. Hence, a—'a® = 1. By arbitrariness of a, we
have M(Q) ={a"'a® |ae Q} =1, a contradiction. This proves item (i).

(ii) Suppose that Gr(M) = 1. Let G be as above with the additional condition that Zs(G) = 1. Let
T be a minimal normal S-subgroup of G corresponding to Soc(M). By the above, T = ]_[q PQ;(q)
with S acting on each factor of T by graph automorphisms. Observe that Cs(T) is a normal S-
subgroup of G. Denote My = M(C¢(T)) < M. Since Cq(T)NT =1, we have My N Soc(M) =1, which
implies Mg =1 and, therefore, C¢(T) =1 in view of Zs(G) = 1. It follows that T <{ G < Aut(T). We
have

Aut(T) = nAut(PQgr(qi)) 2 Sy

1

where each factor is the natural permutation wreath product with Sp,. Since S acts on each P.Q; qi)
in the same way, this action commutes with the action of S;,. Moreover, S commutes with the field
automorphisms of P528+(q,~) (for details, see [11, p. 181], where the structure of Aut(PQ;(q)) is dis-
cussed). Thus, the condition [G, S] = G forces G to be an S-subgroup of ]_[]- Dj x I'; < Aut(T), where
Dj= lnnDiag(P.Q; (q;)) and I is the group of graph automorphisms of P.Q; (gi). Since the jth pro-
jection G — D; x I'j commutes with the action of S, its image G; must be a subgroup with triality
in D x I'j. However M(G ), containing M(q) as a subloop, does not have exponent 3. By Lemma 3,
we must have G; < Dj. Hence, Gj is either P.Qg(qj) or InnDiag(PQ;(qj)), and M(G)) is either M(q)

or M((]\) accordingly. O

Observe that part IIl of the proof of item (i) implies, in particular, the following useful fact:

Proposition 2. Let the symmetric group S4 act on the direct product of isomorphic groups G = G1 x Gy x
G3 x Ggq in such a way that (G;)* = Gjz foralli=1,...,4and T € S. Let S4 =S x N, where S = (0 =
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(12), p = (123)) and N = ((12)(34), (13)(24)). If the semidirect product N x G is a group with triality S then
G4 < Cg(S).

The following lemma will be used in the next section:

Lemma 11. Let M and N be Moufang loops.

(i) If ¢ : M — N is a homomorphism then Gr(M)? < Gr(M¥), where the inclusion can be proper;
(ii) If Gr(M) =1 and N < M then Gr(N) = 1.

Proof. The inclusion in (i) readily follows from the definition. If we take M = M(En\) and N =Z; then
N is a homomorphic image of M; however, Gr(M) =1 and Gr(N) = N. To show (ii), define m; to
be the projection of Sm) to its ith direct factor isomorphic to m see Theorem 3(ii). Then ;
maps N to a normal subloop of 7;(M) which is either M(q) or m In any case, Gr(N”i) = 1. By (i),

this implies Gr(N)™ =1 for all i and the claim follows. O

6. p-Subloops for non-Sylow primes p

The main theorem about the existence of p-Sylow subloops suggests the following natural ques-
tion: How large can a p-subloop of a Moufang loop M be if p is not a Sylow prime for M? In this
section, we show that it can be as large as possible. To give a more precise statement, we need
another definition.

Suppose that M is a finite Moufang loop and M;, 1 <i <, are the composition factors of M.
Let p be any prime. Take P; € Syl,(M;) if p is a Sylow prime for M; and set P; =1, otherwise.
Then a quasi-p-Sylow subloop of M is a subloop of order ngigl |Pi|. By Lemma 1, a quasi-p-Sylow
subloop, if exists, must be a maximal p-subloop of M and its order must be the maximal order of
all p-subloops of M. Denote by q-Syl,(M) the set of all quasi-p-Sylow subloops of M. Clearly, if
p is a Sylow prime for M then g-Syl,(M) = Syl,(M). Our main result of this section is the following
assertion (cf. Theorem A in the introduction):

Theorem 4. Let p be a prime and M a finite Moufang loop. Then M contains a quasi-p-Sylow subloop.

Proof. We may assume that p is non-Sylow for M, since otherwise the result follows from Theorem 2.
This implies that p > 3. We proceed by induction on the composition length [ of M. If [ =1 then the
claim holds by definition. Assume that [ > 1. Let N be a minimal normal subloop of M. By induction,
there exists P € g-Syl,(M), where M = M/N. Let P be the full preimage of P in M. If p is a Sylow
prime for N then it is such for P as well. In this case, P contains a p-Sylow subloop by Theorem 2
which is obviously quasi-p-Sylow for M. Hence, we may assume that p is non-Sylow for N. But then
N must be nonassociative and, by Theorem 3, N is simple. Note that a quasi-p-Sylow subloop of P,
if exists, must have order |P|. Let R = Gr(P). Since p is odd, it is easy to conclude by Theorem 2(ii)
that P/R = N and |R| = |P|. Hence, R € q-Syl,(P) S g-Syl,(N). O

A corresponding fact about groups with triality can be stated as follows:

Corollary 3. Let p be a prime and let G be a group with triality S. Then G possesses an S-invariant p-
subgroup P such that M(P) € q-Syl, (M(G)).

Proof. This assertion is a generalization of the implication (i) = (iii) of Theorem 2 and can be proved
as follows. Denote M = M(G). We identify M with the subset {[x,o]|x € G} CG. Let N € g-Syl,(M),
which exists by Theorem 4. By Lemma 7, P = (N U N”) is an S-subgroup of G such that M(P) = N
and [P, S] = P. By Lemma 8(ii), P is the required p-subgroup. 0O
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Let M be a Moufang loop and let p be a prime. Denote by Grp(M) the product of all normal
subloops of M for which p is a Sylow prime. The properties of Gr, (M) are as follows:

Proposition 3.

(i) Grp(M) < M and p is a Sylow prime for Grp(M);
(ii) The factor loop M/ Gr, (M) contains no elements of order p;
(iii) All p-subloops of M are contained in Gr, (M);
(iv) Syl,(Grp(M)) = q-Syl, (M);
(v) Gr(M) = Gr(Grp(M)) =, Grp(M).

Proof. Item (i) follows directly from the definition. We may henceforth assume that p is non-Sylow
for M, since otherwise Grp(M) =M and the claim trivially holds. In particular, we have p > 3. Ob-
serve that Gr(M) < Grp(M). Hence, M/ Gry(M) = M/ Grp(M), where M = M/Gr(M), and it is easy to
conclude by Theorem 3 that Soc(M/ Grp(M)) must be the product of M(q) for which p is non-Sylow.
Hence, M/Grp(M) does not contain elements of order p by Lemma 1 and (ii) follows. If P is a p-
subloop of M then P Gr,(M)/Grp(M) is a p-subloop of M/Gr,(M) and hence must be trivial by (ii),
which implies (iii). The inclusion Syl, (Grp(M)) € g-Syl, (M) holds by the definition of a quasi-p-Sylow
subloop, since the composition factors of M/ Gr, (M) are M(q) for which p is non-Sylow and, possibly,
cyclic groups of order 2, as we just explained in proving (ii). The reverse inclusion holds by (iii) and
the fact that quasi-p-Sylow subloops are p-subloops of maximal order. Finally, we show that (v) holds.
The inclusions Gr(M) < Gr(Grp(M)) and Gr(M) < ﬂp Grp (M) are obvious from Gr(M) < Grp(M). Since
Grp(M)/ Gr(M) is a normal subloop of M/Gr(M), its group-type radical must be trivial by Lemma 11.
It follows easily that Gr(Gr,(M)) < Gr(M). Now denote by R the image of ﬂp Grp(M) in M/Gr(M).
Since R is a normal subloop, it follows by Lemma 11(ii) that every minimal normal subloop of R is
M(q) for some q. However, for every M(q), there is a non-Sylow prime. Hence R has no nontrivial
normal subloops and thus must be trivial. O

Proposition 3 shows that Gr,(M) can be viewed as a p-analog of the group-type radical Gr(M).
In particular, the study of embeddings of p-subloops into each other and determining the number of
quasi-p-Sylow subloops of M can be reduced to the case where p is a Sylow prime for M.
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