	Overnight (reference)	Ambulatory		
	no./total no. (%)	no./total no. (%)	Hazard Ratio (95% CI)	p value
Low ACEF				
MACE	7/618 (1.1)	18/2214 (0.8)	0.716 (0.299 - 1.714)	0.453
Readmission	4/618 (0.6)	16/2214 (0.7)		
All-cause Death	1/618 (0.2)	0/2214 (0)		
MI	4/618 (0.6)	3/2214 (0.1)		
High ACEF				
MACE	35/1098 (3.2)	22/1002 (2.2)	0.683 (0.401 - 1.165)	0.162
Readmission	14/1098 (1.3)	18/1002 (1.8)		
All-cause Death	20/1098 (1.8)	4/1002 (0.4)		
MI	4/1098 (0.4)	1/1002 (0.1)		
ACEF score: a	ge/left ventricula	r ejection fractio	n + 1 (if creatinine ≥2 i	mg/dl).

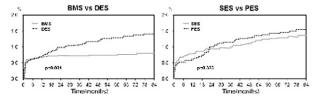
Conclusions: In this single-center registry, patients who underwent ambulatory PCI had no worse outcomes than those who stayed at least one night, at high and low ACEF scores.

TCT-656

Low Incidence of Stent Thrombosis in Asian Races: Multicenter Registry in Asia 7 Years Follow-Up Result

Sunao Nakamura¹, Hisao Ogawa², Jang-Ho Bae³, Yeo Cahyadi⁴, Wasan Udayachalerm⁵, Damras Tresukosol⁶, Sudaratana Tansuphaswadikul⁷

¹New Tokyo Hospital, Chiba, Japan, ²Kumamoto University Hospital, Kumamoto, Japan, ³Konyang University Hospital, Daejeon, Korea, Republic of, ⁴Husada Hospital, Jakarta, Indonesia, ⁵King Chulalongkorn Memorial Hospital, Bangkok, Thailand, ⁶Faculty of Medicine Siriraj Hospital, Bangkok, Thailand, ⁷Chest Disease Institute, Nonthaburi, Thailand


Background: The aim of this study was to evaluate the frequency, predictors and the clinical outcome of stent thrombosis after DES implantation and bare metal stent (BMS) implantation in Asian races.

Methods: A total of 14,577 consecutive patients who underwent successful DES implantation (8,809 patients, 62% of the lesion with Sirolimus-eluting stent: SES, 38% of the lesion with Paclitaxel-eluting stent: PES) and BMS implantation (5,768 patients) were included in this study. We evaluate the frequency, predictor of stent thrombosis.

Results: At a mean follow-up of 78.5±29.9 months in DES and 81.8±26.4 months in BMS. The cumulative incidence of stent thrombosis were subacute stent thrombosis (SAT): 0.5% with DES and 0.6% with BMS, late stent thrombosis (LAST): 0.18% with DES and 0.1% with BMS, very late stent thrombosis (VLAST): 0.18% per year with DES and no BMS. Independent predictors of stent thrombosis are bifurcation lesion (OR=1.90, 95% CI: 1.83 to 24.24, p=0.01) and ejection fraction (OR=0.90, 95% CI: 0.86 to 0.94, p=0.03). Only 0.2 % of the patients were died because of the myocardial infarction after stent thrombosis in both groups.

Conclusions: The incidence of stent thrombosis in Asian races is relatively low (0.5 % with DES and 0.6% with BMS of SAT, 0.18% increase per year with DES of late stent thrombosis) at mean follow-up to 7 years. Particular attention will need to be directed to this complication when the patients have bifurcation lesions or low ejection fraction.

TCT-657

Multi Center, Prospective, Randomized, Single Blind, Consecutive Enrollment Evaluation Of Elixir DESyneTM Novolimus-Eluting Coronary Stent System With Durable Polymer To Endeavor Zotarolimus-Eluting Coronary Stent System: 3-Year Clinical and 9-Month Angiographic And IVUS Results: EXCELLA II Study

Stefan Verheye¹, Christophe Dubois², Karl-Eugen Hauptmann³, John Ormiston⁴, James Stewart⁵, Joachim Schofer⁶, Karl Stangl⁷, Bernhard Witzenbichler⁸, Marcus Wiemer⁹, Emanuele Barbato¹⁰, Peter Fitzgerald¹¹, Hiromasa Otake¹², Patrick W. Serruys¹³

¹Antwerp Cardiovascular Center, ZNA Middelheim, Antwerp, Belgium, Antwerp, Belgium, ²Catholic University Leuven, Leuven, Belgium, ³Krankenhaus der Barmherzigen Brüder Trier, Trier, Germany, ⁴Associate Professor, University of Auckland Medical School, Auckland, New Zealand, ⁵Auckland City Hospital, Auckland, New Zealand, ⁶Medicare center Prof Mathey, Prof Schofer, Hamburg University Cardiovascular Center, Hamburg, Germany, ⁷Charité University Hospital, Humboldt University, Berlin, Germany, Berlin, Berlin, ⁸Charité Campus Benjamin Franklin, Berlin, Germany, ⁹Herz-und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany, ¹⁰Cardiovascular Center Aalst, Aalst, Belgium, ¹¹Cardiovascular, Stanford, California, ¹²Kobe University Graduate School of Medicine, Kobe-city, Hyogo, ¹³Thoraxcenter, Erasmus Medical center, Rotterdam, Netherlands

Background: Aims: To evaluate safety and effectiveness of the Elixir DESyneTM Novolimus-Eluting Coronary Stent System (CSS) compared to the Endeavor Zotarolimus-Eluting CSS through assessment of clinical, angiographic, and IVUS endpoints.

Methods: 210 patients were randomized 2:1 either to the DESyne CSS loaded with 5mcg per mm of stent length of Novolimus, a sirolimus metabolite, eluted via a durable methacrylate polymer, or to the Endeavor CSS loaded with 10mcg per mm of stent length of Zotarolimus eluted via a durable phosphoryl choline polymer. All patients were analyzed for the primary endpoint of late lumen loss (LLL) assessed by QCA at 9 months. All patients also underwent evaluation for secondary endpoints which included a Device-orientated Composite Endpoint (DoCE) defined as: cardiac death, MI not clearly attributable to a non-intervention vessel, and clinically-indicated target lesion revascularization (TLR); clinically-indicated Target Vessel Revascularization (TVR); and stent thrombosis all evaluated at 1, 6, 9, and 12 months and annually through 5 years. Stents were also assessed for angiographic endpoints at 9 months including: in-stent and in-segment LLL. A subset of patients underwent IVUS evaluation including percent neointimal obstruction at 9 months. The study met the non-inferiority endpoint and also demonstrated superiority of the DESyne CSS as compared to control.

Results: Table 1 summarizes 9-month angiographic and IVUS results and clinical results through 2 years which trend lower for the DESyne stent.

Table 1: 9-month Angiographic, IVUS and Clinical Results

	DESyne	Endeavor	p-value		
Angiographic Results					
Baseline RVD (post- procedure)	2.84 ± 0.43	2.91 ± 0.38	0.2		
9-month angiographic/IVUS					
In-stent LLL	0.11 ± 0.32	0.63 ± 0.42	< 0.001		
% neointimal volume	4.5 ± 5.1	20.9 ± 11.3	<0.001		
Clinical Results					
12-month DoCE (%)	4.3	7.0	0.51		
Clinically-indicated TLR	1.4	5.6	0.18		
24-month DoCE (%)	4.3	9.0	0.14		
Clinically-indicated TLR	1.4	7.0	0.045		

Conclusions: The study met the non-inferiority endpoint and also demonstrated superiority of the DESyne CSS as compared to control. Clinical results through 3 years and a review of angiographic and IVUS results will be presented.

TCT-658

Do Drug Eluting Stents Improve Survival in All Comers?

Tudor Vagaonescu¹, Yingzi Deng¹, Abel Moreyra¹, John Kostis²

¹UMDNJ, New Brunswick, NJ, ²CVI & RWJMS, UMDNJ, New Brunswick, NJ

Background: Drug eluting stents (DES) have been shown to significantly decrease restenosis with subsequent need for lesion and/or vessel revascularization when compared with bare metal stents (BMS) in selected patient groups in both randomized controlled trials and in observational registries. If their use in all-comers is also associated with a survival benefit over a longer follow-up is controversial.

Methods: Retrospective analysis of the MIDAS registry for patients who underwent PCI with BMS between January 1 1997-December 31 1998 (pre DES era, group 1; N=