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We explore a connection between generalized uncertainty principle (GUP) and modified Hořava–Lifshitz
(HL) gravity. The GUP density function may be replaced by the cutoff function for the renormalization
group of modified Hořava–Lifshitz gravity. We find the GUP-corrected graviton propagators and compare
these with tensor propagators in the HL gravity. Two are qualitatively similar, but the p5-term arisen
from Cotton tensor is missed in the GUP-corrected graviton propagator.
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1. Introduction

Recently Hořava has proposed a renormalizable theory of gravity at a Lifshitz point [1], which may be regarded as a UV complete
candidate for general relativity. At short distances the theory of z = 3 Hořava–Lifshitz (HL) gravity describes interacting non-relativistic
gravitons and is supposed to be power counting renormalizable in (1 + 3) dimensions. Recently, the HL gravity theory has been intensively
investigated in [2–27], its cosmological applications in [28,29], and its black hole solutions in [30–32].

It seems that the GUP effect on the Schwarzschild black hole is related to black holes in the deformed Hořava–Lifshitz gravity [33]. We
could not confirm a solid connection between the GUP and the black hole of modified Hořava–Lifshitz gravity, although we have obtained
partial connections between them.

However, it was known that the generalized uncertainty principle provides naturally a UV cutoff to the local quantum field theory as
gravity effects [34,35].

It is known that the UV-propagator for tensor modes ti j take a complicated form Eq. (49) including upto p6-term from the Cotton
bilinear term Cij Ci j . At low energies, the UV-propagator may reduce to a conventional IR-propagator as G IR(ω, �p) = 1/(ω2 − c2 �p2) for
z = 1 HL gravity. It is very important to understand why the UV-propagator takes a complicated form in the non-relativistic gravity theory.

In this work, we investigate a connection between GUP and modified Hořava–Lifshitz gravity. The GUP density function may be replaced
by a cutoff function for the renormalization group study of modified Hořava–Lifshitz gravity. We find GUP-corrected graviton propagators
and compare these with UV-tensor propagators in the HL gravity. Two are similar, but the p5-term arisen from Cotton tensor is missed
in the GUP-corrected graviton propagator. This shows that a power-counting renormalizable theory of the HL gravity is closely related to
the GUP.

2. HL gravity

Introducing the ADM formalism where the metric is parameterized [36]

ds2
ADM = −N2 dt2 + gij

(
dxi − Ni dt

)(
dx j − N j dt

)
, (1)

the Einstein–Hilbert action can be expressed as

SEH = 1

16πG

∫
d4x

√
gN

[
Kij K i j − K 2 + R − 2Λ

]
, (2)

where G is Newton’s constant and extrinsic curvature Kij takes the form

Kij = 1

2N
(ġi j − ∇i N j − ∇ j Ni). (3)
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Here, a dot denotes a derivative with respect to t . An action of the non-relativistic renormalizable gravitational theory is given by [1]

SHL =
∫

dt d3x [L K + LV ], (4)

where the kinetic terms are given by

L K = 2

κ2

√
gN Kij G i jkl Kkl = 2

κ2

√
gN

(
Kij K i j − λK 2), (5)

with the DeWitt metric

G i jkl = 1

2

(
gik g jl − gil g jk) − λgij gkl (6)

and its inverse metric

Gi jkl = 1

2
(gik g jl − gil g jk) − λ

3λ − 1
gij gkl. (7)

The potential terms is determined by the detailed balance condition (DBC) as

LV = −κ2

2

√
gN Eij Gi jkl E

kl = √
gN

{
κ2μ2

8(1 − 3λ)

(
1 − 4λ

4
R2 + ΛW R − 3Λ2

W

)

− κ2

2w4

(
Cij − μw2

2
Rij

)(
C ij − μw2

2
Rij

)}
. (8)

Here the E tensor is defined by

Eij = 1

w2
C ij − μ

2

(
Rij − R

2
gij + ΛW gij

)
(9)

with the Cotton tensor Cij

C i j = ε ik�

√
g

∇k
(

R j
� − 1

4
Rδ

j
�

)
. (10)

Explicitly, Eij could be derived from the Euclidean topologically massive gravity

Eij = 1√
g

δWTMG

δgij
(11)

with

WTMG = 1

w2

∫
d3xε ikl

(
Γ m

il ∂ jΓ
l

km + 2

3
Γ n

il Γ
l
jmΓ m

kn

)
− μ

∫
d3x

√
g(R − 2ΛW ), (12)

where ε ikl is a tensor density with ε123 = 1.
In the IR limit, comparing L0 with Eq. (2) of general relativity, the speed of light, Newton’s constant and the cosmological constant are

given by

c = κ2μ

4

√
ΛW

1 − 3λ
, G = κ2

32πc
, Λcc = 3

2
ΛW . (13)

The equations of motion were derived in [28] and [30]. We would like to mention that the IR vacuum of this theory is anti-de Sitter
(AdS4) spacetimes. Hence, it is interesting to take a limit of the theory, which may lead to a Minkowski vacuum in the IR sector. To this
end, one may deform the theory by introducing “μ4 R” (L̃V = LV + √

gNμ4 R) and then, take the ΛW → 0 limit [31]. This does not alter
the UV properties of the theory, while it changes the IR properties. That is, there exists a Minkowski vacuum, instead of an AdS vacuum.
In the IR limit, the speed of light and Newton’s constant are given by

c2 = κ2μ4

2
, G = κ2

32πc
, λ = 1. (14)

3. GUP

A meaningful prediction of various theories of quantum gravity (string theory) and black holes is the presence of a minimum measur-
able length or a maximum observable momentum. This has provided the generalized uncertainty principle which modifies commutation
relations between position coordinates and momenta. Also the black hole solution of modified HL gravity reminds us the Schwarzschild
black hole modified with GUP [34]. Hence, we make a close connection between GUP and Hořava–Lifshitz gravity. A commutation relation
of

[�x, �p] = ih̄
(
1 + β2 �p2) (15)
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Fig. 1. Density functions for regularization of a LQFT as function of p2 with β = 1. The dashed line denotes “arbitrary uniform density function” as the UV cutoff 1/
√

β = 1
for p2 ∈ [0,1] required by hand, while three curves represent the GUP density function in Eq. (20) for D = 1,2, and 3 from top to bottom. These curves cut effectively off
the integral beyond p = 1/

√
β .

leads to the generalized uncertainty relation


x
p � h̄

2

[
1 + α2l2p

(
p)2

h̄2

]
, (16)

with lp = √
Gh̄/c3 the Planck length. Here a parameter α = h̄

√
β/lp is introduced to indicate the GUP effect. The Planck mass is given by

mp = √
h̄c/G . The above implies a lower bound on the length scale


x � (
x)mim ≈ h̄
√

β = αlp, (17)

which means that the Planck length plays the role of a fundamental scale. On the other hand, Eq. (16) implies the upper bound on the
momentum as


p � (
p)max ≈ 1√
β

= mpc

α
. (18)

Importantly, it was known that the generalized uncertainty principle provides naturally a UV cutoff to the local quantum field theory
(LQFT) as gravity effects [34,35]. The GUP relation of Eq. (15) has an effect on the density of states in D-dimensional momentum space as

dD �pD D
(
β �p2), (19)

where a density function (weight factor) D D(β �p2) is defined by

D D
(
β �p2) = 1

(1 + β �p2)D
. (20)

As is depicted in Fig. 1, this function cuts effectively off the integral beyond p = 1/
√

β . Due to strong suppression of density of states
at high momenta, a relevant quantity will be rendered finite with 1/

√
β acting effectively as a UV cutoff. We wish to mention that this

function may be related to the Cotton-term of Cij C i j in Eq. (8) because the latter contains a sixth order derivative. We note that the
arbitrary uniform density function is introduced by hand and thus, the physics beyond the cutoff (�p2 > 1/

√
β = 1) never contributes to a

relevant quantity.
The right-hand side of Eq. (15) includes a �p-dependent term and thus affect the cell size in phase space as “being �p-dependent”.

Making use of the Liouville theorem, one could show that the invariant weighted-phase space volume under time evolution is given
by [34]

dD�x dD �p
(1 + β �p2)D

, (21)

where the classical commutation relations corresponding to the quantum commutation relation of Eq. (15) are given via [A, B]/ih̄ → {A, B}
by

{xi, p j} = (
1 + βp2)δi j, {pi, p j} = 0, {xi, x j} = 2β(pi x j − p jxi). (22)

Actually, 1/
√

β plays the role of a UV cutoff Λ of the momentum integration as [35]

1√
β

→ Λ. (23)

As a concrete example, by assuming that the zero-point energy of each oscillator is of h̄ω/2 = h̄
√�p2 + m2/2, the cosmological constant is

calculated to be

Λcc(m) =
∫

d3 �p
(1 + β �p2)3

[√�p2 + m2

2

]
= 2π

∞∫
p2 dp

(1 + βp2)3

√
p2 + m2 = π

2β2
f
(
βm2), (24)
0
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Fig. 2. The linear source term is constrained to J (p) = 0 for p > ΛR so as to only excite Green functions with low energy. The quadratic term contains a cutoff function

K(
p2

Λ2 ) with the property that K = 1 for p < Λ and then falls off smoothly to zero for p � Λ.

with f (0) = 1 and h̄ = 1. Then, one obtains the cosmological constant for the massless case

Λcc(0) = π

2β2
→ π

2
Λ4. (25)

Finally, the GUP commutation relation in Eq. (15) can be extended into [37]

[�x, �p] = ih̄eβ2 �p2
, (26)

which includes all order corrections to the Heisenberg uncertainty principle. In this case, the density function is given by an exponential
function [38]

Dall
D

(
β �p2) = 1

eβ2 �p2 . (27)

4. Cutoff function for a relativistic theory

It is well known that even the simplest local quantum field theories (LQFT) are useless because the answer to any loop calculation is
infinite. A standard example is the 1-loop correction to the mass in scalar λ̃φ3 [39]


m2 = λ̃2

2

∫
d4 p

(2π)4

1

(p2 + m2)((p + q)2 + m2)
(28)

= finite + C
∞∫

dp

p
= ∞, (29)

with p2 = pμpμ and a constant C . The reason why we have this meaningless result is clear because of integrating all the way to infinity in
momentum space. One way to avoid infinity is to introduce a UV cutoff Λ. However, we run into trouble with LQFT, because a regularized
theory is no longer unitary since we “arbitrarily” removed part of the phase space (by hand) to which there was associated a non-zero
amplitude. In order to find an appropriate situation, we wish to probe the system at some energy scale ΛR namely, incoming momenta
in Feynman graphs obey p � ΛR , while keeping Λ 	 ΛR . If we can make all physical observables at ΛR independent of Λ, then we can
safely take Λ → ∞. It is convenient to parameterize the energy scale using an RG “time” parameter flowing towards lower and lower
energies

Λ(t) = Λ(0)e−t . (30)

Let us demand that changing the cutoff Λ leaves the partition function invariant as

∂t Z [ J ] = 0. (31)

Then we could define the partition function of a LQFT by

Z [ J ] = I[ J ]
I[0] , (32)

where

I[ J ] =
∫

[dφ]e−(S0+S I +S J ). (33)

The action is composed of linear source term, quadratic kinetic term and polynomial interaction term as
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S J =
∫

d4 p

(2π)4
J (p,ΛR)φ(−p), (34)

S0 = 1

2

∫
d4 p

(2π)4
φ(p)φ(−p)


̃(p2)

K(
p2

Λ2 )
, (35)

SI =
∞∑

n=3

∫
d4 p1

(2π)4
· · · d4 pn

(2π)4
δ4

(∑
pi

)
gn(p1, . . . , pn;Λ)φ(p1) · · ·φ(pn), (36)

where 
̃(p2) is the inverse propagator in four-momentum space. That is, 
̃(p2) = p2 + m2 for a massive scalar field. Here we include
a source function J (p) and a smooth cutoff function K(p2/Λ2) with specific properties as was described in Fig. 2. From Eq. (35), a
relativistic propagator could be derived to take the form


̃
(

p2)−1 × K
(

p2

Λ2

)
. (37)

We mention two important properties: ∂t K · J = 0 because they have disjoint support and ∂t J (p) = 0 because J depends only on ΛR .
Finally, using these properties, one arrives at

∂t
(
e−S I

) = −1

2

∫
d4 p

(2π)4

∂t K

̃(p2)

δ

δφ(p)

δ

δφ(−p)
e−S I . (38)

Eq. (38) describes the infinitesimal change of the interaction Lagrangian upon changing the UV cutoff Λ. This dependence of the coupling
constants on the cutoff Λ is called the “RG flow”. A procedure of decreasing the cutoff on |p| infinitesimally from Λ to Λ − δΛ is called
integrating out a momentum shell. We note that no infinities are encountered here because all the momentum integrals are done in an
infinitesimally finite range.

Finally, we propose that the cutoff function K(p2/Λ2) for a relativistic theory can be replaced by the density function D D(β �p2) for a
non-relativistic gravity theory:

K
(

p2/Λ2) → D D
(
β �p2). (39)

This is quite reasonable because two functions play the similar role in suppressing high momenta (UV region).

5. Propagators of HL gravity

We wish to consider perturbations of the metric around Minkowski spacetimes, which is a solution to the z = 3 HL gravity (4)

gij = δi j + whij, N = 1 + wn, Ni = wni . (40)

In order to have tensor propagator, it is convenient to use the cosmological decomposition in terms of scalar, vector, and tensor modes
under spatial rotations SO(3) [40]

n = −1

2
A, ni = ∂i B + V i, hij = ψδi j + ∂i∂ j E + 2∂(i F j) + ti j, (41)

where ∂ i F i = ∂ i V i = ∂ iti j = tii = 0. The last two conditions mean that ti j is a transverse and traceless tensor in three dimensions. Using
this decomposition, the scalar modes (A, B,ψ, E), the vector modes (V i, Fi ), and the tensor modes (ti j) decouple completely from each
other. These all amount to 10 degrees of freedom for a symmetric tensor in four dimensions. Hereafter we consider tensor modes only.

5.1. Tensor modes

The field equation for tensor modes is given by [23]

ẗi j − μ4κ2

2

 ti j + μ2κ4

16

2 ti j − μκ4γ 2

4w2
εilm∂ l 
2 tm

j − κ4

4w4

3 ti j = Tij, (42)

with external source Tij and the Laplacian 
 = ∂2
i → −�p2. We could not obtain the covariant propagator because of the presence of

ε-term. Assuming a massless graviton propagation along the x3-direction with �p = (0,0, p3), then the ti j can be expressed in terms of
polarization components as [27]

ti j =
( t+ t× 0

t× −t+ 0
0 0 0

)
. (43)

Using this parametrization, we find two coupled equations for different polarizations

ẗ+ − μ4κ2

2

 t+ + κ4μ2

16

2 t+ + κ4μ

4w2
∂3 
2 t× − κ4

4w4

3 t+ = T+, (44)

ẗ× − μ4κ2


 t× + κ4μ2


2 t× − κ4μ
2
∂3 
2 t+ − κ4

4

3 t× = T×. (45)
2 16 4w 4w
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In order to find two independent components, we introduce the left-right base defined by

hL/R = 1√
2
(h+ ± ih×), (46)

where hL(hR) represent the left (right)-handed modes. After Fourier-transformation, we find two decoupled equations

−ω2tL + c2 �p2tL + κ4μ2

16

(�p2)2
tL − κ4μ

4w2
p3

(�p2)2
tL + κ4

4w4

(�p2)3
tL = T L, (47)

−ω2tR + c2 �p2tR + κ4μ2

16

(�p2)2
tR + κ4μ

4w2
p3

(�p2)2
tR + κ4

4w4

(�p2)3
tR = T R . (48)

We have UV-tensor propagators

tL/R = − T L/R

ω2 − c2 �p2 − c2κ2

8μ2

(�p2
)2 ± c2κ2

2w2μ3 p3
(�p2

)2 − c2κ2

2w4μ4

(�p2
)3

. (49)

We note that the left-handed mode is not allowed because it may give rise to ghost (− c2κ2

2w2μ3 p3(�p2)2), while the right-handed mode is

allowed because there is no ghost ( c2κ2

2w2μ3 p3(�p2)2). Finally, we have UV-propagators in the Lorentz-frame with pμ = (ω,0,0, p3) as

tL/R = − T L/R

ω2 − c2 p2
3 − c2κ2

8μ2 p4
3 ± c2κ2

2w2μ3 p5
3 − c2κ2

2w4μ4 p6
3

. (50)

5.2. GUP-corrected propagators

Here we propose that the GUP-corrected tensor propagators may take the form

G IR(ω, �p) × D D
(
β �p2), (51)

where the IR-propagator G IR(ω, �p) is defined by

G IR(ω, �p) = 1

ω2 − c2 �p2
. (52)

For D = 1, its form takes

t1DGUP
i j = −G IR(ω, �p) × D1

(
β �p2)Tij = − Tij

(ω2 − c2 �p2)(1 + β �p2)
= − Tij

ω2 − c2(1 − βω2

c2 )�p − c2β2(�p2)2
(53)

which may be related to the propagator of z = 2 HL gravity defined by the Einstein gravity

WEG = μ

∫
d3x

√
g[R − 2ΛW ]. (54)

The D = 2 GUP-corrected tensor propagator is given by

t2DGUP
i j = −G IR(ω, �p) × D2

(
β �p2)Tij = − Tij

(ω2 − c2 �p2)(1 + β �p2)2

= − Tij

ω2 − c2(1 − 2βω2

c2 )�p2 − c2(2β − β2ω2

c2 )(�p2)2 − c2β2(�p2)3
, (55)

where scaling dimensions are given by [β] = −2, [ω] = 3, and [c] = 2. This may be related to UV-tensor propagator (49) for z = 3 HL
gravity because the highest space derivative is sixth order. At this stage, it is not clear why the D = 2 GUP-corrected tensor propagator
take a qualitatively similar form like UV-tensor propagator of z = 3 HL gravity except the p5-term. We conjecture that this may be possible
because the z = 3 HL gravity originates from the detailed balance condition. Finally, the D = 3 GUP-corrected tensor propagator is given
by

t3DGUP
i j = −G IR(ω, �p) × D3

(
β �p2)Tij = − Tij

(ω2 − c2 �p2)(1 + β �p2)3

= − Tij

ω2 − c2(1 − 3βω2

c2 )�p2 − 3c2(β − β2ω2

c2 )(�p2)2 − c2(3β2 − β3ω2

c2 )(�p2)3 − c2β3(�p2)4
, (56)

which may be related to the UV-tensor propagator in z = 4 HL gravity because the highest space derivative has eighth order. The z = 4 HL
gravity was constructed, through the detailed balance condition, from the new massive gravity [41]

WNMG =
∫

d3x
√

g

[
−μ(R − 2ΛW ) + 1

M

(
Rμν Rμν − 3

8
R2

)]
. (57)
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6. Discussions

We have explored a connection between the GUP commutator of (15) and the Hořava–Lifshitz gravity (a candidate of quantum gravity).

Explicitly, we have replaced a relativistic cutoff function K(
p2

Λ2 ) by a non-relativistic density function D D(β �p2) to derive GUP-corrected
graviton propagators. These were compared to a UV-tensor graviton propagator in the HL gravity. We point out that two are qualitatively
similar, but the p5-term arisen from the crossed operation of Cotton and Ricci tensors did not appear in the GUP-corrected propagators.
Also, it is unclear why the D = 2 GUP-corrected tensor propagator (not the D = 3 GUP-corrected propagator) takes a similar form from
the z = 3 HL gravity. We conjecture that it may be related to the detailed balance condition. Even though our GUP-corrected propagator
does not lead to a precise graviton propagator, this approach will provide a hint to understand quantum aspects of the HL gravity.

A key point to understand a connection between two seemingly different approaches is to recognize “effects of quantum gravity”.
The GUP provides naturally a UV cutoff 1/

√
β to the LQFT as effects of quantum gravity through the density function D D(β �p2). The

modified HL gravity action is composed of higher space derivatives terms from the detailed balance condition like R2, R2
i j , Rij Ci j and C2

i j

in addition to μ4 R , to become a power-counting renormalizable quantum gravity theory. All these higher derivative terms modify the
tensor propagator into the UV-tensor propagator in Eq. (49) without ghost. We need a further study to justify whether there exists an
exact connection between GUP and HL gravity.

Consequently, we have shown that effects of quantum gravity are imprinted on the GUP, which may explain the UV-tensor propagator
of the modified HL gravity.
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