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Abstract 

Information extracting method from numerous measured signals is a critical technique for intelligent manufacturing application to further 
reduce the manpower cost and improve the productivity and workpiece quality. Manually defining signal features, as the common way, 
unfortunately will lose most of the information and the performance can’t be guaranteed. In the past few years, machine learning method with 
deep structure has been the most promising automatic feature extracting method which has made great breakthrough in computer vision and 
automatic speech recognition. In this paper, deep belief networks are employed using vibration signal obtained from end milling to build 
feature space for cutting states monitoring. Greedy layer-wise strategy is adopted to pre-train the network and standard samples are used for 
fine-tuning by applying back-propagation method. Comparisons are made with several manually defined features both in time and frequency 
domain, like MFCC and wavelet method. Different modeling methods are also employed in the research for comparisons. Results show that the 
deep learning method has similar ability to characterize the signal for cutting states monitoring compared to those manually defined features. 
And the modeling accuracy is much better than other traditional modeling methods. Furthermore, benefitting from the potential capability in 
information fusion, deep learning method would be a promising solution for more complex applications, like tool wear monitoring, machining 
surface prediction et al. 
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1. Introduction 

Intellectualization is a development trend of machining 
industry [1-4]. Owing to rapid changing in market and 
growing of manpower cost, it is in urgent need of more 
intelligent, optimized and self-adaptive manufacturing 
solutions [3, 5], especially for complicated applications, in 
which the theoretical analysis method could not provide 
practical suggestions. More and more signals, which can 
currently be obtained from an actual machining process, with 
the advancement of sensor technology, provide an opportunity 
to make breakthrough in machining Intellectualization [6, 7]. 

A critical technique for intelligent manufacturing is 
extracting features from numerous measured signals. A 
common way to do that is manually construction. Samanta et 
al. employed statistic parameters of the vibration signal, root 
mean square, variance, skewness, kurtosis, etc., in the artificial 

neural network for fault diagnostics of rolling bearings [8]. 
Yao et al. extracted standard deviation and energy ratio of the 
decomposed sub-signals applying wavelet decomposition to 
indicate the chatter phenomenon [9]. Teti et al. summarized 
the features used in time and frequency/time-frequency 
domain for various machining signals [7]. However, manual 
construction of features is usually a way solving a certain 
problem, and the problem-unconcerned information might be 
lost. For different applications, different features must be built. 
This task is quite time-consuming, and becomes even difficult 
when the subject contains too many coupled components [10]. 
In addition, the performance cannot be guaranteed. 

Deep learning or called deep encoder [11], which simulates 
the hierarchical way that the brain processes the information 
[12], is a newly developed machine learning method which 
employs deep structure to model the data distribution and 
inner structure [13, 14]. Different from the traditional learning 
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methods, deep learning method introduces hierarchical 
structure to firstly extract features from low level to high level 
and after proper fine-tuning, the highest level features will be 
input to a classifier or a regression machine to construct the 
relationship. In the past decade, deep learning method has 
made great success in computer vision [15] and automatic 
speech recognition [16], and has been regarded as be the most 
promising automatic feature detecting method [13].Recently 
deep learning has been introduced to some engineering 
application. Van et al. employed deep belief networks to 
classify the faults of compressor valves [5]. Tamilselvan used 
deep belief learning method in failure diagnosis to detect the 
health state of the power transformer [17]. They still regard 
deep learning as a traditional machine learning method and 
only focus on the accuracy with several low dimensional 
manually defined features. 

This study is inspired by the success of the deep learning 
method applied in automatic speech recognition. The vibration 
signal is similar to the voice, which just comes from different 
speakers and differs in frequency and amplitude distribution, 
which makes us to believe that the deep learning can also 
achieve wonderful performance as it does in the voice. Deep 
belief network (DBN), which is a major kind of deep learning 
method, is introduced to construct a cutting states classifier 
using vibration signals. The capability of deep belief networks 
for automatic feature extracting is discussed.  

2. Methodology 

2.1. A brief introduction to deep belief networks 

Deep belief networks are a generative model constructed by 
stacking a number of restricted Boltzmann machines (RBMs), 
as illustrated in Fig. 1. A common recognition model is 
usually composed of three components: collecting observing 
signals, extracting features and building relationships. The 
three components all need a lot of manual efforts. Deep belief 
networks provide a framework to build model directly from 
what we observe to what we want to know. The layer by layer 
structure is a kind of hierarchical feature representation. The 
network training process is self-adaptive and can replace the 
brainwork-consuming feature extracting component. The 
training procedure is conducted layer by layer using massive 
unlabeled samples and after the preparation, a much smaller 
size of labelled sample set is used to fine-tune the whole 
network using back-propagation (BP) algorithm [11]. 

 

Fig. 1 Architecture of RBM (a) and DBN (b). 

RBM is a generative stochastic artificial neural network 
based on statistical mechanics which can learn a probability 
distribution over the training set [18]. It is composed of two 
layers of binary stochastic units, a visible layer and a hidden 
layer. Regarding it as an undirected graphical model, all 
visible units are connected to all hidden units, and there are no 
connections within each layer, as illustrated in Fig. 1(a). The 
model parameters are visible units biases b , hidden units 
biases c  and connection weights W . 

The theoretical derivation of RBM starts from the 
definition of network energy for a certain network state, which 
defines a probability distribution over the joint state of the 
visible units and the hidden units, expressed as 
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where iv  and ih  are the binary states of the visible unit i  and 
the hidden unit j . nV  and nH  respectively represent the 
number of visible units and hidden units. The joint distribution 
over the visible and hidden units can be defined as: 
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The conditional probability of the hidden units h  over the 
visible units v  can be given as: 
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Similar derivation can be done to  P v | h  as 
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As there are no hidden-hidden or visible-visible 
connections, the units in one layer are conditionally 
independent when the other layer is given, so we can obtain  
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In order to train the RBM, maximum likelihood estimation 
is a good way. Given a training set, the log likelihood of the 
model for a single training sample is  

 log | log logE EL P e ev,h v,h

h v,h
v   (8) 

where W,b,c  is the parameters to be estimated. The 
gradient can be given as: 
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In order to simplify the equation, two symbols are 
introduced as follow: 

 
data

model
,

E
P

E
P

h

v h

v,h
h | v

v,h
v,h

  (10) 

The partial derivative of energy function to model 
parameters is summarized as follow: 
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The first item 
data

 can be calculated easily while the 

second one 
model

 needs to traverse all the possible value 
combinations of the visible units and hidden units which is a 
NP-hard problem. In order to solve this problem, Prof. Hinton 
proposed contrastive divergence (CD) algorithm [19] in which 
the 

model
 is obtained using Gibbs sampling method, which 

is based on the Markov Chain Monte Carlo (MCMC) strategy. 
The Gibbs sampling starts with a train sample, and alternately 
samples the hidden units and visible units using equation (6) 
and (7) by k steps, as illustrated below: 

 

0 0 0

1 0 1 1

1

, |

| , |

......

| , |k k k k

t P

P P

P P

v h h v

v v h h h v

v v h h h v

  (12) 

When k , the accurate model distribution can be obtained 
and 

model
 can be calculated. In practice, Pro. Hinton 

pointed out that the CD learning with 1k  can provide 
adequate results to properly estimate the model gradient. 
Therefor the second term 

model
 can be estimated using 

Gibbs sampling as 
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where l  is the number of samples used to estimate the model 
represented distribution in the Gibbs sampling. 

In practical application, the training data is divided into 
mini-batches to enhance the computing efficiency. And a 
common strategy is set l  equal to the size of the mini-batch. 
The total gradient is also divided into “mini-batch” by the size 
of the data mini-batch to avoid changing the learning rate 
when the size of a mini-batch changes. Therefore the updating 
rules of the parameters using stochastic gradient descent 
algorithm can be given as: 

 data model
:   (14) 

where  is the learning rate. The gradient for a mini-batch 
with size l  can be expanded as: 
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where the notation ,

k

s i  represents the parameter  of the 

s-th training sample’s i-th element, and k  implies the sample 
obtained after k-step Gibbs sampling. 

The whole structure is trained greedily layer by layer using 
unlabelled training data on a series RBM units, and after all 
RBMs are well trained, their parameters are then unfolded to 
the DBN network, and back-propagation algorithm is 
performed to fine-tune the whole network  using a much small 
set of labelled data. 

2.2. Experimental setup and test configurations 

In order to obtain vibration signals in different cutting 
states, end milling experiments were conducted. 
Accelerometer (PCB 356A15 3D 2-5k HZ ±5%) was mounted 
on the spindle housing to measure the real-time vibration 
signals. LMS SCADAS Lab was employed to sample signals 
in 20480Hz and transmitted them to a laptop. Cutting 
experiments were conducted by straightly milling an 
aluminum brick with a three teeth end mill cutter. Spindle 
speed and depth of cut both varied from low level to high level 
to activate the chatter phenomenon. 3324Hz, which is the 
main chatter frequency, was identified to be a nature 
frequency by impact test. 

2.3. Data preparation 

The measured vibration signals will be divided into a series 
of frames, using a fixed sampling window (256 points) and a 
small frame shift. The frame shift is set relatively small to 1/8 
the length of the sampling window to create more samples. In 
order to ensure the quality of the train samples, the segments 
in transition states are abandoned. Hamming window is used 
to eliminate energy loss problem. Finally a set of 47700 
samples is extracted from three cutting experiments for the 
DBM training. And the whole sample set is divided into two 
parts, a subset with 45000 samples as the training data, and a 
small subset with 2700 samples as the testing data. Three 
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different cutting states are included, namely idling moving, 
stable cutting and chatter. 

3. Results and discussions 

3.1. Comparisons among modeling methods with manually 
defined features 

In order to demonstrate the influence of manual feature 
extraction, different modeling methods with different features 
have been performed. The modeling performance of DBN 
with a BP output layer is compared with neuron network (NN) 
with only one hidden layer and support vector machines 
(SVM). Three different kinds of features are included in the 
comparisons. The first is the raw data just with traditional 
normalization. The second is Mel-frequency cepstrum 
coefficient (MFCC), which is a paramount feature in 
automatic speech recognition [16]. It is a representation of the 
short-term power spectrum of a sound, based on a linear 
cosine transform of a log power spectrum on a nonlinear Mel-
scale of frequency. The last is a wavelet feature pair proposed 
by Yao [9], which includes the energy ratio (T1) and standard 
variation (T2) of the sub-signal where the chatter frequency 
located. 

Table 1 Errors of different modelling methods with different features. 

Features Method Dimension Training Error Testing Error
None 

NN 
256 6.22% 0.00% 

MFCC 12 4.11% 13.41% 
Wavelet 2 0.027% 0.037% 

None 
SVM 

256 20.23% 19.41% 
MFCC 12 0.30% 0.36% 

Wavelet 2 0.051% 0.037% 
None 

DBN 
256 0.01% 0.00% 

MFCC 12 0.13% 0.27% 
Wavelet 2 0.02% 0.00% 

 
Table 1 shows the training error and testing error of NN, 

SVM and DBN with different features. It is obviously that the 
performance of NN and SVM depends on the selection of 
features. In general, model performance would be improved 
with decrease of the feature dimension. For example, the SVM 
method is troubled with the hyper-parameters selection when 
trained on the raw signals because the dimension and number 
of the training samples are both too large. However, without 
any alteration of network structures, the DBN method 
consistently presents wonderful performances in all features. 
The classification accuracy is stable and high for both training 
samples and testing samples, which indicates that the method 
does not encounter with any overfitting problem. In contrast, 
severe overfitting, which is represented by a large testing error 
and a relatively much smaller training error, occurs when NN 
is trained on MFCC feature.  

Table 2 Errors of clustering using k-means and DBN with different features. 

Features Dimension Classes K-means DBN 
None 256 3 54.83% 0.01% 

MFCC 12 3 17.00% 0.13% 
Wavelet 2 3 6.52% 0.02% 

2 2 0.05% 0.00% 
 

Errors of clustering using k-means and DBN with different 
features are listed in Table 2. K-means method, one of the 
clustering methods, extracts the distribution structure of the 
training set to build clusters, and is different from the former 
supervised learning methods like NN and SVM. It can be seen 
as a simple feature extraction method. When the feature varies 
from 256-dimensional raw signal to 2-dimensional wavelet 
pair, the performance of k-means obviously improves. It 
should be noticed that the performance of k-means becomes 
different in distinguishing 2 and 3 classes with wavelet feature. 
Fig. 2 can help us to explain the phenomenon. The wavelet 
feature pair is designed to distinguish whether the machine 
tool is in chatter state or not, whereas the idling moving is not 
taken into consideration. Consequently, the idling moving 
state and stable state are not well separated in the feature 
space, resulting in a higher error rate of the k-means method in 
3-class classification. This implies that proper feature would 
significantly improve the performance of a modeling method, 
and different features should be constructed for different 
problems. However, the manual definition of features turns to 
be a fussy procedure. On the contrary, DBN performs well no 
matter what feature set is chosen. 

 

Fig. 2 The feature space of the wavelet feature pair. 

DBN provides a uniform framework to model the data 
relationship and exhibits amazing power in modeling 
complicated data structure without much manual interference. 
It has been proved in theory that with enough hidden units, 
DBN can model any kind of data distribution and the 
extension of the training data set will always improve the 
model performance until the data distribution has been 
perfectly captured [14]. 

3.2. Feature extracting ability analysis of DBN 

The modeling accuracy of DBN with BP layer totally 
depends on the output feature of the last DBN layer. A DBN 
with 256-256-256-100-1 structure is trained using the above 
training set to exhibit the feature extracting ability. Fig. 3(a) 
illustrates the feature space extracted from the training data 
using the DBN method. In comparison, Fig. 3(b) shows the 
space of top two principal components from principal 
component analysis (PCA). Obviously, the output feature 
space of DBN clearly separates the three states with a 
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relatively large margin, even if stable cutting state tangles with 
idling moving state in the feature space from PCA. DBN is 
obviously more capable than PCA in extracting critical 
structure from the given data. Based on the well prepared 
features of DBN, any kind of classification method would 
achieve an outstanding performance.  In addition, the DBN is 
quite flexible in any dimension of constructed feature space as 
long as the training data is enough.  

 

Fig. 3 Feature space obtained using DBN and PCA: (a) the feature space of 
DBN output and (b) the first two principal components of PCA. 

The DBN structure is visualized for a better understanding 
of what is done during the training. By sampling [20] the first 
256-256 RBM layer, the visualized results on the raw signals 
are shown in Fig. 4. The results are obtained by firstly 
sampling the RBM from the beginning hidden state where 
only the current hidden unit is 1 and the others are 0. And the 
bricks, which represent the feature signal associated with a 
hidden unit, are taken from the associated visible unit 
sequence in row-wise. The bricks can be seen as signals in 
different frequencies and amplitudes and some of them are 
translated to signal sequences, as shown in Fig. 5. 

Fig. 5 shows that each brick represents a distinct signal 
sequence with particular frequency and amplitude. David 
Hubel and Torsten Wiesel proposed a theory about 
“Orientation Selective Cell” to explain what happens in 
human brain [12]. The cell will active when similar image 
with its saved memory is captured and tell the brain what is in 
sight. We can infer that the hidden units in the DBN behave 
just like the selective cell which turns prominent when similar 
vibration signal segment is input into the network, otherwise 
very small. In the hierarchical network structure of DBN, the 

high layer nonlinearly combines the low level features to form 
more complicated features to acquire a more elaborate 
description of the input data distribution. In the former 
comparison with PCA, we intentionally set the unit number of 
last layer to 1, and the network automatically and successfully 
separates the feature space in the specified dimension. 

 

Fig. 4 Visualized result of the first layer of DBN. 

 

Fig. 5 Translated signal sequences of some pick-out bricks in Fig. 4. 

4. Conclusions 

Deep belief networks (DBNs) are introduced in this study 
to directly model the cutting states based on the raw measured 
vibration signal. Comparisons among different modelling 
methods with different features have been given. DBN shows 
amazing performances in both raw signals and training data 
with feature extracting preparations, and no obvious 
overfitting is observed.  

Several conclusions have been found: 
(a) Deep belief networks can steadily achieve high 

performance on the raw vibration signal without too much 
data preparation; 

(b) Automatic feature extracting is conducted when the 
network is trained, and the elaborate feature representation is 
critical to the high performance of DBN; 

(c) The DBN can be seen as a more powerful tool than 
PCA in separating the data, when used to reduce data 
dimensionality. 
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Because of the wonderful performance and simple 
preprocessing, DBN is a very promising tool to be used in 
more complicated applications where numerous different 
kinds of signals need to be taken into consideration to 
construct a more detailed data description. 
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