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Abstract

Information extracting method from numerous measured signals is a critical technique for intelligent manufacturing application to further
reduce the manpower cost and improve the productivity and workpiece quality. Manually defining signal features, as the common way,
unfortunately will lose most of the information and the performance can’t be guaranteed. In the past few years, machine learning method with
deep structure has been the most promising automatic feature extracting method which has made great breakthrough in computer vision and
automatic speech recognition. In this paper, deep belief networks are employed using vibration signal obtained from end milling to build
feature space for cutting states monitoring. Greedy layer-wise strategy is adopted to pre-train the network and standard samples are used for
fine-tuning by applying back-propagation method. Comparisons are made with several manually defined features both in time and frequency
domain, like MFCC and wavelet method. Different modeling methods are also employed in the research for comparisons. Results show that the
deep learning method has similar ability to characterize the signal for cutting states monitoring compared to those manually defined features.
And the modeling accuracy is much better than other traditional modeling methods. Furthermore, benefitting from the potential capability in
information fusion, deep learning method would be a promising solution for more complex applications, like tool wear monitoring, machining
surface prediction et al.
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1. Introduction

Intellectualization is a development trend of machining
industry [1-4]. Owing to rapid changing in market and
growing of manpower cost, it is in urgent need of more
intelligent, optimized and self-adaptive manufacturing
solutions [3, 5], especially for complicated applications, in
which the theoretical analysis method could not provide
practical suggestions. More and more signals, which can
currently be obtained from an actual machining process, with
the advancement of sensor technology, provide an opportunity
to make breakthrough in machining Intellectualization [6, 7].

A critical technique for intelligent manufacturing is
extracting features from numerous measured signals. A
common way to do that is manually construction. Samanta et
al. employed statistic parameters of the vibration signal, root
mean square, variance, skewness, kurtosis, etc., in the artificial

neural network for fault diagnostics of rolling bearings [8].
Yao et al. extracted standard deviation and energy ratio of the
decomposed sub-signals applying wavelet decomposition to
indicate the chatter phenomenon [9]. Teti et al. summarized
the features used in time and frequency/time-frequency
domain for various machining signals [7]. However, manual
construction of features is usually a way solving a certain
problem, and the problem-unconcerned information might be
lost. For different applications, different features must be built.
This task is quite time-consuming, and becomes even difficult
when the subject contains too many coupled components [10].
In addition, the performance cannot be guaranteed.

Deep learning or called deep encoder [11], which simulates
the hierarchical way that the brain processes the information
[12], is a newly developed machine learning method which
employs deep structure to model the data distribution and
inner structure [13, 14]. Different from the traditional learning
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methods, deep learning method introduces hierarchical
structure to firstly extract features from low level to high level
and after proper fine-tuning, the highest level features will be
input to a classifier or a regression machine to construct the
relationship. In the past decade, deep learning method has
made great success in computer vision [15] and automatic
speech recognition [16], and has been regarded as be the most
promising automatic feature detecting method [13].Recently
deep learning has been introduced to some engineering
application. Van et al. employed deep belief networks to
classify the faults of compressor valves [5]. Tamilselvan used
deep belief learning method in failure diagnosis to detect the
health state of the power transformer [17]. They still regard
deep learning as a traditional machine learning method and
only focus on the accuracy with several low dimensional
manually defined features.

This study is inspired by the success of the deep learning
method applied in automatic speech recognition. The vibration
signal is similar to the voice, which just comes from different
speakers and differs in frequency and amplitude distribution,
which makes us to believe that the deep learning can also
achieve wonderful performance as it does in the voice. Deep
belief network (DBN), which is a major kind of deep learning
method, is introduced to construct a cutting states classifier
using vibration signals. The capability of deep belief networks
for automatic feature extracting is discussed.

2. Methodology
2.1. A briefintroduction to deep belief networks

Deep belief networks are a generative model constructed by
stacking a number of restricted Boltzmann machines (RBMs),
as illustrated in Fig. 1. A common recognition model is
usually composed of three components: collecting observing
signals, extracting features and building relationships. The
three components all need a lot of manual efforts. Deep belief
networks provide a framework to build model directly from
what we observe to what we want to know. The layer by layer
structure is a kind of hierarchical feature representation. The
network training process is self-adaptive and can replace the
brainwork-consuming feature extracting component. The
training procedure is conducted layer by layer using massive
unlabeled samples and after the preparation, a much smaller
size of labelled sample set is used to fine-tune the whole
network using back-propagation (BP) algorithm [11].
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Fig. 1 Architecture of RBM (a) and DBN (b).

RBM is a generative stochastic artificial neural network
based on statistical mechanics, which can learn a probability
distribution over the training set [18]. It is composed of two
layers of binary stochastic units, a visible layer and a hidden
layer. Regarding it as an undirected graphical model, all
visible units are connected to all hidden units, and there are no
connections within each layer, as illustrated in Fig. 1(a). The
model parameters are visible units biases b, hidden units
biases € and connection weights W .

The theoretical derivation of RBM starts from the
definition of network energy for a certain network state, which
defines a probability distribution over the joint state of the
visible units and the hidden units, expressed as

nb nH  nV nH
E(vh)==2 by, =23 hWy, =2 ch M
j=1 i=1 j=1 i=1
where v, and /4, are the binary states of the visible unit i and
the hidden unit j. nV and nH respectively represent the
number of visible units and hidden units. The joint distribution
over the visible and hidden units can be defined as:
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In order to train the RBM, maximum likelihood estimation
is a good way. Given a training set, the log likelihood of the
model for a single training sample is

L(8)=log P(v logZe E(vm) —logZe’r vh) ®)

where 6 ={W,b,c} is the parameters to be estimated. The
gradient can be given as:
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In order to simplify the equation,
introduced as follow:
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The partial derivative of energy function to model
parameters is summarized as follow:
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model
combinations of the visible units and hidden units which is a
NP-hard problem. In order to solve this problem, Prof. Hinton
proposed contrastive divergence (CD) algorithm [19] in which
the <9>m0 . 1s obtained using Gibbs sampling method, which

is based on the Markov Chain Monte Carlo (MCMC) strategy.
The Gibbs sampling starts with a train sample, and alternately
samples the hidden units and visible units using equation (6)
and (7) by k steps, as illustrated below:
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When k — oo, the accurate model distribution can be obtained
and <9>mdcl can be calculated. In practice, Pro. Hinton
pointed out that the CD learning with £ =1 can provide
adequate results to properly estimate the model gradient.
Therefor the second term <9>m0 . can be estimated using

Gibbs sampling as
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where / is the number of samples used to estimate the model
represented distribution in the Gibbs sampling.

In practical application, the training data is divided into
mini-batches to enhance the computing efficiency. And a
common strategy is set / equal to the size of the mini-batch.
The total gradient is also divided into “mini-batch” by the size
of the data mini-batch to avoid changing the learning rate
when the size of a mini-batch changes. Therefore the updating
rules of the parameters using stochastic gradient descent
algorithm can be given as:
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where ¢ is the learning rate. The gradient for a mini-batch
with size / can be expanded as:
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where the notation (-)(k) represents the parameter (-) of the

()
s-th training sample’s i-th element, and £ implies the sample
obtained after k-step Gibbs sampling.

The whole structure is trained greedily layer by layer using
unlabelled training data on a series RBM units, and after all
RBMs are well trained, their parameters are then unfolded to
the DBN network, and back-propagation algorithm is
performed to fine-tune the whole network using a much small
set of labelled data.

2.2. Experimental setup and test configurations

In order to obtain vibration signals in different cutting
states, end milling experiments were conducted.
Accelerometer (PCB 356A15 3D 2-5k HZ +5%) was mounted
on the spindle housing to measure the real-time vibration
signals. LMS SCADAS Lab was employed to sample signals
in 20480Hz and transmitted them to a laptop. Cutting
experiments were conducted by straightly milling an
aluminum brick with a three teeth end mill cutter. Spindle
speed and depth of cut both varied from low level to high level
to activate the chatter phenomenon. 3324Hz, which is the
main chatter frequency, was identified to be a nature
frequency by impact test.

2.3. Data preparation

The measured vibration signals will be divided into a series
of frames, using a fixed sampling window (256 points) and a
small frame shift. The frame shift is set relatively small to 1/8
the length of the sampling window to create more samples. In
order to ensure the quality of the train samples, the segments
in transition states are abandoned. Hamming window is used
to eliminate energy loss problem. Finally a set of 47700
samples is extracted from three cutting experiments for the
DBM training. And the whole sample set is divided into two
parts, a subset with 45000 samples as the training data, and a
small subset with 2700 samples as the testing data. Three
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different cutting states are included, namely idling moving,
stable cutting and chatter.

3. Results and discussions

3.1. Comparisons among modeling methods with manually
defined features

In order to demonstrate the influence of manual feature
extraction, different modeling methods with different features
have been performed. The modeling performance of DBN
with a BP output layer is compared with neuron network (NN)
with only one hidden layer and support vector machines
(SVM). Three different kinds of features are included in the
comparisons. The first is the raw data just with traditional
normalization. The second is Mel-frequency cepstrum
coefficient (MFCC), which is a paramount feature in
automatic speech recognition [16]. It is a representation of the
short-term power spectrum of a sound, based on a linear
cosine transform of a log power spectrum on a nonlinear Mel-
scale of frequency. The last is a wavelet feature pair proposed
by Yao [9], which includes the energy ratio (T1) and standard
variation (T2) of the sub-signal where the chatter frequency
located.

Table 1 Errors of different modelling methods with different features.

Features Method Dimension Training Error Testing Error
None 256 6.22% 0.00%
MFCC NN 12 4.11% 13.41%
Wavelet 2 0.027% 0.037%
None 256 20.23% 19.41%
MFCC SVM 12 0.30% 0.36%
Wavelet 2 0.051% 0.037%
None 256 0.01% 0.00%
MFCC DBN 12 0.13% 0.27%
Wavelet 2 0.02% 0.00%

Table 1 shows the training error and testing error of NN,
SVM and DBN with different features. It is obviously that the
performance of NN and SVM depends on the selection of
features. In general, model performance would be improved
with decrease of the feature dimension. For example, the SVM
method is troubled with the hyper-parameters selection when
trained on the raw signals because the dimension and number
of the training samples are both too large. However, without
any alteration of network structures, the DBN method
consistently presents wonderful performances in all features.
The classification accuracy is stable and high for both training
samples and testing samples, which indicates that the method
does not encounter with any overfitting problem. In contrast,
severe overfitting, which is represented by a large testing error
and a relatively much smaller training error, occurs when NN
is trained on MFCC feature.

Table 2 Errors of clustering using k-means and DBN with different features.

Features Dimension Classes K-means DBN
None 256 3 54.83% 0.01%
MFCC 12 3 17.00% 0.13%
Wavelet 2 3 6.52% 0.02%

2 2 0.05% 0.00%

Errors of clustering using k-means and DBN with different
features are listed in Table 2. K-means method, one of the
clustering methods, extracts the distribution structure of the
training set to build clusters, and is different from the former
supervised learning methods like NN and SVM. It can be seen
as a simple feature extraction method. When the feature varies
from 256-dimensional raw signal to 2-dimensional wavelet
pair, the performance of k-means obviously improves. It
should be noticed that the performance of k-means becomes
different in distinguishing 2 and 3 classes with wavelet feature.
Fig. 2 can help us to explain the phenomenon. The wavelet
feature pair is designed to distinguish whether the machine
tool is in chatter state or not, whereas the idling moving is not
taken into consideration. Consequently, the idling moving
state and stable state are not well separated in the feature
space, resulting in a higher error rate of the k-means method in
3-class classification. This implies that proper feature would
significantly improve the performance of a modeling method,
and different features should be constructed for different
problems. However, the manual definition of features turns to
be a fussy procedure. On the contrary, DBN performs well no
matter what feature set is chosen.
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Fig. 2 The feature space of the wavelet feature pair.

DBN provides a uniform framework to model the data
relationship and exhibits amazing power in modeling
complicated data structure without much manual interference.
It has been proved in theory that with enough hidden units,
DBN can model any kind of data distribution and the
extension of the training data set will always improve the
model performance until the data distribution has been
perfectly captured [14].

3.2. Feature extracting ability analysis of DBN

The modeling accuracy of DBN with BP layer totally
depends on the output feature of the last DBN layer. A DBN
with 256-256-256-100-1 structure is trained using the above
training set to exhibit the feature extracting ability. Fig. 3(a)
illustrates the feature space extracted from the training data
using the DBN method. In comparison, Fig. 3(b) shows the
space of top two principal components from principal
component analysis (PCA). Obviously, the output feature
space of DBN clearly separates the three states with a
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relatively large margin, even if stable cutting state tangles with
idling moving state in the feature space from PCA. DBN is
obviously more capable than PCA in extracting critical
structure from the given data. Based on the well prepared
features of DBN, any kind of classification method would
achieve an outstanding performance. In addition, the DBN is
quite flexible in any dimension of constructed feature space as
long as the training data is enough.

Chatter Stable idling moving

() L1 DBN

0.8

Feature

15
Sample

g

2nd Principal Component

-4 -3 2 -1 0 1 2 3 4
Ist Principal Component

Fig. 3 Feature space obtained using DBN and PCA: (a) the feature space of
DBN output and (b) the first two principal components of PCA.

The DBN structure is visualized for a better understanding
of what is done during the training. By sampling [20] the first
256-256 RBM layer, the visualized results on the raw signals
are shown in Fig. 4. The results are obtained by firstly
sampling the RBM from the beginning hidden state where
only the current hidden unit is 1 and the others are 0. And the
bricks, which represent the feature signal associated with a
hidden unit, are taken from the associated visible unit
sequence in row-wise. The bricks can be seen as signals in
different frequencies and amplitudes and some of them are
translated to signal sequences, as shown in Fig. 5.

Fig. 5 shows that each brick represents a distinct signal
sequence with particular frequency and amplitude. David
Hubel and Torsten Wiesel proposed a theory about
“Orientation Selective Cell” to explain what happens in
human brain [12]. The cell will active when similar image
with its saved memory is captured and tell the brain what is in
sight. We can infer that the hidden units in the DBN behave
just like the selective cell which turns prominent when similar
vibration signal segment is input into the network, otherwise
very small. In the hierarchical network structure of DBN, the

high layer nonlinearly combines the low level features to form
more complicated features to acquire a more elaborate
description of the input data distribution. In the former
comparison with PCA, we intentionally set the unit number of
last layer to 1, and the network automatically and successfully
separates the feature space in the specified dimension.
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Fig. 4 Visualized result of the first layer of DBN.
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Fig. 5 Translated signal sequences of some pick-out bricks in Fig. 4.
4. Conclusions

Deep belief networks (DBNs) are introduced in this study
to directly model the cutting states based on the raw measured
vibration signal. Comparisons among different modelling
methods with different features have been given. DBN shows
amazing performances in both raw signals and training data
with feature extracting preparations, and no obvious
overfitting is observed.

Several conclusions have been found:

(a) Deep belief networks can steadily achieve high
performance on the raw vibration signal without too much
data preparation;

(b) Automatic feature extracting is conducted when the
network is trained, and the elaborate feature representation is
critical to the high performance of DBN;

(c) The DBN can be seen as a more powerful tool than
PCA in separating the data, when used to reduce data
dimensionality.
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Because of the wonderful performance and simple
preprocessing, DBN is a very promising tool to be used in
more complicated applications where numerous different
kinds of signals need to be taken into consideration to
construct a more detailed data description.
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