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Abstract

In this paper, we classify the finite p-groups all of whose non-abelian proper subgroups are generated by
two elements.
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1. Introduction

To determine a finite group G by using its subgroup structure is an important theme in the
group theory. Let G be a finite p-group. If every proper subgroup of G is abelian then G is
either abelian or minimal non-abelian determined by Rédei [8]. If every proper subgroup of G

is generated by two elements then Blackburn [5] proved that G is either metacyclic or a 3-group
of maximal class with a few exceptions. Moreover, every subgroup of a p-group of maximal
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class with an abelian maximal subgroup is either abelian or generated by two elements (see
Theorem 2.5). Motivated by the above results, Berkovich [1] posed the following

Problem 46. Classify the p-groups all of whose proper subgroups are either abelian or generated
by two elements.

The present paper is devoted to this problem and all such groups are classified.
Following Berkovich and Janko [2], for a positive integer t , a finite p-group G is called an

At -group if every subgroup of index pt is abelian, but there is at least one subgroup of index pt−1

which is not abelian. So A1-groups are nothing but the minimal non-abelian p-groups. All A1-
and A2-groups are known (see [12]).

We use Bp to denote the class of p-groups satisfying the condition in this problem. It is obvi-
ous that abelian, metacyclic, A1- and A2-groups are in Bp . Also, as mentioned above, p-groups
of maximal class having an abelian maximal subgroup and 3-groups of maximal class are in Bp .
So, the class Bp is rather wide.

We use B′
p to denote the class consisting of groups in Bp which are neither abelian nor mini-

mal non-abelian and let Dp = {G ∈ B′
p | G has an abelian maximal subgroup}, Mp = {G ∈ B′

p |
G has no abelian maximal subgroup}. Then we need only classify Dp-groups and Mp-groups.
For convenience, we also let Dp(2) = {G ∈ Dp | d(G) = 2} and Dp(3) = {G ∈Dp | d(G) = 3}.

We also say G is an X -group if G is in the class X .
Let G be a finite p-group. We use c(G), d(G), and pe(G) to denote the nilpotency class,

the minimal number of generators, and the exponent of G, respectively. For any integer s with
0 � s � e = e(G), we define

Ωs(G) = 〈
a ∈ G

∣∣ aps = 1
〉
, �s(G) = 〈

aps ∣∣ a ∈ G
〉
.

In this paper we use

G = G1 > G2 > · · · > Gc+1 = 1

to denote the lower central series of G, where c = c(G) is the nilpotency class of G. Follow-
ing P. Hall, we say that G has lower central complexion (f1, f2, . . . , fc) if |G : G2| = pf1 and
|Gi : Gi+1| = pfi for 2 � i � c.

We use Cpm to denote the cyclic group of order pm, Cn
pm the direct product of n cyclic groups

of order pm and M � G the maximal subgroup of a group G. For undefined notation and termi-
nology the reader is referred to Huppert [6, Kap. III].

2. Preliminaries

In this preliminary section we list some known results about minimal non-metacyclic groups,
A1-groups, p-groups of maximal class and some other results due to Blackburn, and some com-
mutator formulae. These results will be used later.

Recall that a finite group G is said to be metacyclic if there is a cyclic normal subgroup N

such that G/N is also cyclic. For a classification of metacyclic p-groups, the reader is referred
to [7,11].

A non-metacyclic group G is said to be minimal non-metacyclic if all proper subgroups of G

are metacyclic.

Lemma 2.1. A minimal non-metacyclic p-group has an abelian maximal subgroup.
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Proof. It is an immediate consequence of [5, Theorem 3.2]. �
For minimal non-abelian p-groups, i.e., A1-groups, the following lemma is well known.

Lemma 2.2. Let G be a finite p-group. Then the following statements are equivalent.

(1) G is minimal non-abelian;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Z(G) = Φ(G).

Theorem 2.3. (See [8].) Let G ∈A1. Then G is one of the following groups:

(1) Q8;
(2) 〈a, b | apm = bpn = 1, ab = a1+pm−1〉 (metacyclic);
(3) 〈a, b, c | apm = bpn = cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, where m + n � 3 if p = 2,

(non-metacyclic).

A non-abelian p-group G of order pn is said to be of maximal class if n � 3 and c(G) =
n − 1. It is known that 2-groups of maximal class are dihedral, semi-dihedral and generalized
quaternion, which have a cyclic maximal subgroup.

Theorem 2.4. (See [4] also see [1, Section 9, Exercise 1].) Let G be a p-group of maximal class
and of order pn. Then

(1) |G : G′| = p2, G′ = Φ(G), d(G) = 2.
(2) |Gi/Gi+1| = p, i = 2,3, . . . , n − 1.
(3) If i � 2, then Gi is the unique normal subgroup of G of order pn−i .
(4) If N � G and |G/N | � p3, then G/N is also of maximal class.
(5) If 0 � i � n − 1, then Zi (G) = Gn−i , where 1 = Z0(G) < · · · < Zn−1(G) = G is the upper

central series of G.
(6) If p > 2 and n > 3, then G has no cyclic normal subgroup of order p2.

Theorem 2.5. (See [1, Section 1, Exercise 4].) Suppose that a non-abelian p-group G has an
abelian maximal subgroup A. Then

(1) G is of maximal class if and only if |Z(G)| = p or |G : G′| = p2.
(2) If G is of maximal class, then every non-abelian subgroup of G is of maximal class. In

particular, G ∈ Dp(2).

Theorem 2.6. (See [4].) Let G be a group of maximal class and order pm, m � p + 1. Then
Φ(G) and G/Z(G) have exponent p.

Theorem 2.7. (See [5, Lemma 1.2].) Let G be a group of order pn with n � 4. Assume that G has
a maximal subgroup which is of maximal class. Then either G is of maximal class or d(G) = 3,
G′ = Φ(G) and c(G) = n − 2.



3606 M. Xu et al. / Journal of Algebra 319 (2008) 3603–3620
Theorem 2.8. (See [5, Theorem 3.1].) Suppose that G is a finite p-group (p odd), d(G) > 2, and
d(H) � 2 for all H � G. Then G has an abelian maximal subgroup.

Theorem 2.9. (See [5, Theorem 4.2].) Suppose that G is a group of order pn, where p is odd and
n � 6, and that all maximal subgroups of G have two generators. Then either G is metacyclic or
G/G3 is of order p3 and �1(G) = G3.

Theorem 2.10. (See [5, Theorem 5.1].) Let G be a group of order 2n, where n � 5. Suppose,
for some integer r with 5 � r � n, that all subgroups of order 2r−1 and 2r have two generators.
Then G is metacyclic.

Theorem 2.11. (See [3, Theorem 4].) Let G be a p-group. If both G and G′ can be generated by
two elements, then G′ is abelian.

A non-abelian group G is said to be metabelian if G′ is abelian. The following commutator
formulae are useful in this paper, and we will use it freely.

Proposition 2.12. (See [10].) Let G be a metabelian group and a, b ∈ G. For any positive inte-
gers i and j , let

[ia, jb] = [a, b, a, . . . , a︸ ︷︷ ︸
i−1

, b, . . . , b︸ ︷︷ ︸
j−1

].

Then

(1) For any positive integers m and n,

[
am,bn

] =
m∏

i=1

n∏

j=1

[ia, jb](m
i )(

n
j).

(2) Let n be a positive integer. Then

(
ab−1)n = an

∏

i+j�n

[ia, jb]( n
i+j)b−n.

Lemma 2.13. (See [9], see also [6, Aufgabe 2, p. 259].) Suppose that a finite non-abelian
p-group G has an abelian normal subgroup A, and G/A = 〈bA〉 is cyclic. Then the map
a �→ [a, b], a ∈ A, is an epimorphism from A to G′, and G′ ∼= A/A ∩ Z(G). In particular, if
a non-abelian p-group G has an abelian maximal subgroup, then |G| = p|G′||Z(G)|.

Finally, we prove the following lemma.

Lemma 2.14. Assume that a p-group G has an abelian maximal subgroup A. Then:

(1) Let a1, a2 ∈ A and b ∈ G. Then [a1a2, b] = [a1, b][a2, b].
(2) Let a ∈ A, b ∈ G and n a positive integer. Then:
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(2a) [an, b] = [a, b]n;
(2b) (ba)n = bnan

∏n−1
i=1 [a, ib]( n

i+1).
(3) Let d ∈ G′ and b ∈ G\A. Then (bd)p = bp .

Proof. For (1) and (2), see [6, III, Hilfsatz 10.9]. By Lemma 2.13, there is an a ∈ A such that
d = [b, a]. Thus (bd)p = (b[b, a])p = (ba)p = (bp)a = bp . �
3. The classification of Dp(2)-groups

Let D′
p(2) = {G ∈ Dp(2) | G is not of maximal class}. According to Theorem 2.5, we only

need to classify D′
p(2)-groups.

Lemma 3.1. Let G be a non-abelian two-generator p-group having an abelian maximal sub-
group A. Assume that |G/G′| = pm+1 and c(G) = c. Then m � 1, c � 2 and

(1) G has the lower central complexion (m + 1,1, . . . ,1︸ ︷︷ ︸
c−1

) and hence |G′| = pc−1, |G| = pm+c.

(2) |Z(G)| = pm and G/Z(G) is of maximal class.
(3) Z(G) � Φ(G), Φ(G) = G′Z(G) and G′ ∩ Z(G) = Gc.
(4) Let M be a non-abelian maximal subgroup of G. Then Z(M) = Z(G) and

M ′ = G3,M3 = G4, . . . ,Mc−1 = Gc.

Proof. (1) Let b ∈ G\A, and a1 ∈ A\Φ(G). Then G = 〈b, a1〉, bp ∈ A and Gi = 〈[a1,

(i − 1)b],Gi+1〉 for 2 � i � c. In particular, Gc = 〈[a1, (c − 1)b]〉. Since [a1, (c − 1)b] ∈ Z(G),
[a1, (c − 1)b]p = [a1, (c − 2)b, bp] = 1 and hence |Gc| = p.

To prove that G has the lower central complexion (l.c.c. for short) (m + 1,1, . . . ,1︸ ︷︷ ︸
c−1

), we use

induction on c. If c = 2, then |G′| = p and G has the l.c.c. (m + 1,1). Now assume c > 2. Since
G/Gc is not abelian and has an abelian maximal subgroup A/Gc , the induction hypothesis gives
that G/Gc has the l.c.c. (m + 1,1, . . . ,1︸ ︷︷ ︸

c−2

). Since |Gc| = p, (1) holds.

(2) By Lemma 2.13, |G| = p|G′||Z(G)|. Since |G| = pm+c and |G′| = pc−1, |Z(G)| = pm

and |G/Z(G)| = pc. Since c(G/Z(G)) = c − 1, G/Z(G) is of maximal class.
(3) Suppose that Z(G) � Φ(G). Then there exists an element x ∈ Z(G) \ Φ(G). Since

d(G) = 2, there is a y ∈ G such that 〈x, y〉 = G. It follows that G is abelian, a contradiction.
Thus Z(G) � Φ(G).

Since G/Z(G) is of maximal class, G′Z(G)/Z(G) = Φ(G/Z(G)). Since Z(G) � Φ(G), we
have G′Z(G) = Φ(G).

Finally, since |G′ ∩ Z(G)| = |G′||Z(G)|
|G′Z(G)| = |G|

p|Φ(G)| = p and Gc � G′ ∩ Z(G), we have G′ ∩
Z(G) = Gc.

(4) Since Z(G) � Φ(G) < M , Z(G) � Z(M). By Lemma 2.13, |G| = p|G′||Z(G)| and |M| =
p|M ′||Z(M)|. It follows that |G′/M ′| = p|Z(M)/Z(G)|.

Let G = G/M ′. Then G is not abelian since G′/M ′ �= 1. Since G has two distinct
abelian maximal subgroup A/M ′ and M/M ′, we know that G is minimal non-abelian. Then
|G′/M ′| = p and G3 � M ′. It follows that Z(M) = Z(G) and M ′ = G3.
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By induction on c, we may assume that for 3 � i � c − 1, Gi = Mi−1. Then we have Gi+1 =
[Gi,G] = [Mi−1,AM] = [Mi−1,M] = Mi . �

Note that a non-abelian proper subgroup K of a Dp(2)-group G is in Dp(2) or A1.

Lemma 3.2. Let G,A,m,c be the same as in Lemma 3.1. Assume that G ∈ D′
p(2). Then c � 3,

m � 2 and

(1) If M is a non-abelian subgroup of G with |G : M| = pt . Then t � c − 2, Z(M) = Z(G) and

M ′ = Gt+2,M3 = Gt+3, . . . ,Mc−t = Gc.

In particular, c(M) = c − t ;
(2) M is minimal non-abelian if and only if |G : M| = pc−2;
(3) All subgroups of G of index pc−1 are abelian;
(4) For any b ∈ G\A, Z(G) = 〈bp,Gc〉 and o(bG′) = o(bGc) = pm. There is some a1 ∈

A\Φ(G) such that o(a1G
′) = p. Moreover, G/G′ has type invariants (pm,p) and A/G′

has type invariants (pm−1,p).

Proof. Since D′
p(2)-groups are neither minimal non-abelian nor of maximal class, we have

c(G) � 3 and m � 2.
(1) The case t = 0 is trivial. So we assume below that M is a proper subgroup of G. Take

K � G with M � K . Lemma 3.1(4) gives that c(K) = c − 1, Z(K) = Z(G) and

K ′ = G3,K3 = G4, . . . ,Kc−1 = Gc.

If c = 3, then K ∈ A1. It follows that M = K and t = 1. Then we are done. So we may assume
that c � 4 below. Hence K ∈ D′

p(2). Since |K : M| = pt−1, by induction on c(G) we have
t − 1 � c − 3, Z(K) = Z(M) and

M ′ = Kt+1 = Gt+2, M3 = Kt+2 = Gt+3, . . . , M−t = Kc−1 = Gc.

It follows that t � c − 2 and Z(M) = Z(G).
(2)–(3) are immediate consequences of (1).
(4) Since G = 〈b,A〉, Z(G) = CA(b). Let M = 〈b,Gc−1〉. Since [Gc−1, b] = Gc, M ′ = Gc .

By Lemma 2.2, M ∈ A1. It follows that Z(M) = Φ(M) = 〈bp,Gc〉, and hence Z(G) =
Z(M) = 〈bp,Gc〉 by (1). Since |Z(G)| = pm, o(bGc) = pm. Since bp ∈ CA(b) = Z(G) and
G′ ∩ Z(G) = Gc, we have o(bG′) = o(bGc) = pm. So G/G′ has type invariants (pm,p) and
there is an element a1 such that o(a1G

′) = p and G/G′ = 〈bG′, a1G
′〉. We claim that a1 ∈ A.

For if a1 /∈ A, the above argument would give o(a1G
′) = pm > p, which is a contradiction.

Hence A/G′ = 〈bpG′, a1G
′〉 and A/G′ has type invariants (pm−1,p). �

Theorem 3.3. G ∈ D′
p(2) if and only if G/G′ has type invariants (pm,p) where m � 2, c(G) � 3

and G has an abelian maximal subgroup A such that A/G′ has type invariants (pm−1,p).

Proof. We only need to prove the “if” part. Since c = c(G) � 3, G /∈ A1. Since m � 2, G is not
of maximal class. Note that if all non-abelian maximal subgroups of G are D′

p(2)- or A1-groups
then G ∈D′ (2).
p
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Let M be a non-abelian maximal subgroup of G. Then, by Lemma 3.1, Z(M) = Z(G),
M ′ = G3,M3 = G4, . . . , and c(M) = c − 1. Since G/G′ has type invariants (pm,p) and A/G′
has (pm−1,p), M/G′ has type invariant (pm). It follows that M/M ′(= M/G3) has type invari-
ants (pm,p). If c = 3, then M ∈ A1 and we are done. So we may assume that c > 3 below.
Hence c(M) � 3.

We claim that Φ(G)/G3 is not cyclic. Otherwise, since |Z(G)| = pm � p2, we would
have Z(G)G3/G3 ∼= Z(G)/(G3 ∩ Z(G)) = Z(G)/Gc �= 1̄ and Z(G)G3/G3 � Φ(G)/G3 is
cyclic. Since |G′/G3| = p, G′/G3 � Z(G)G3/G3, and hence G′ � Z(G)G3. Thus G′ =
G′ ∩ Z(G)G3 = (G′ ∩ Z(G))G3 = GcG3 = G3, a contradiction. Then A∩M/M ′(= Φ(G)/G3)

has type invariant (pm−1,p). By induction, M ∈ D′
p(2), and finally G ∈ D′

p(2) by the arbitrari-
ness of M . �

The following corollary give a characterization of D′
p(2)-groups.

Corollary 3.4. G ∈ D′
p(2) if and only if d(G) = 2, c(G) � 3, Φ(G)/G′ is cyclic and G has an

abelian maximal subgroup A such that A/G′ is not cyclic.

The next examples show that the conditions for G/G′ and A/G′ in Theorem 3.3 are indis-
pensable.

Example 3.5. (1) G = 〈a1, b | bp2 = a
p2

1 = a
p

2 = a
p

3 = 1, [a1, b] = a2, [a2, b] = a3, [a1, a2] =
[a1, a3] = [a2, a3] = [a3, b] = 1〉, where p is odd.

Then G has a unique abelian maximal subgroup A = 〈bp, a1, a2, a3〉 such that A/G′ has
type invariants (p2,p) and G/G′ has type invariants (p2,p2). We have G /∈ D′

p(2) since
〈b, a

p

1 , a2, a3〉 has three generators.

(2) G = 〈a1, b | bp = a
p2

1 = a
p

2 = a
p

3 = 1, [a1, b] = a2, [a2, b] = a3, [a1, a2] = [a1, a3] =
[a2, a3] = [a3, b] = 1〉, where p is odd.

Then G/G′ has type invariants (p2,p) and G has a unique abelian maximal subgroup A =
〈a1, a2, a3〉 such that A/G′ has type invariants (p2). We have G /∈ D′

p(2) since 〈b, a
p

1 , a2, a3〉
has three generators.

Theorem 3.6. Let G ∈ D′
p(2), c(G) = c and |G| = pm+c. Let A,b, a1 be the same as in

Lemma 3.2. Then m � 2, c � 3 and G = 〈a1, b〉. Let

(a) ai = [ai−1, b], where i = 2,3, . . . .

Then ai �= 1 for i � c, G′ = 〈a2, a3, . . . , ac〉, Gc = 〈ac〉, and the following relations hold:

(b) [ac, b] = 1;
(c) [ai, aj ] = 1, i, j = 1,2, . . . , c;
(d) bpm = aδ

c for some integer δ with 0 � δ � p − 1;

(e) a
(p

1)
1 a

(p
2)

2 . . . ap = a
γ
c for some integer γ with 0 � γ � p − 1;

(f) a
(p

1)
i a

(p
2)

i+1 · · ·ai+p−1 = 1, i = 2,3, . . . , c;
(g) (bsa

s1a
s2 . . . a

sc
c )p = bspa

s1γ
c , where s, s1, . . . , sc are integers and (s,p) = 1.
1 2
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Furthermore, the relations (a)–(f) are defining relations of G. Conversely, a p-group having
defining relations (a)–(f) is a D′

p(2)-group.

Proof. Since c(G) = c, we have (b). Then for i > c, ai = 1. Since ai ∈ A for any i, (c) holds
and ai = 1 for c + 1 � i � c + p − 1. Since bp ∈ A, we have [ai−1, b

p] = 1 for 2 � i � c. By
Proposition 2.12(1), we have

[
ai−1, b

p
] = a

(p
1)

i a
(p

2)
i+1 . . . ai+p−1 = 1.

Then (f) holds. Since

[
a
(p

1)
1 a

(p
2)

2 . . . a
(p
p)

p , b
] = a

(p
1)

2 a
(p

2)
3 . . . a

( p
p−1)

p ap+1 = 1

by Lemma 2.14, we have a
(p

1)
1 a

(p
2)

2 . . . a
(p
p)

p ∈ Z(G). Since o(bG′) = o(bGc) = pm, (d) holds.

Since o(a1G
′) = p, we have a

p

1 ∈ G′ and hence a
(p

1)
1 a

(p
2)

2 . . . a
(p
p)

p ∈ G′ ∩ Z(G) = Gc. Then (e)
holds.

By Lemma 2.14 and (e), (ba
s1
1 )p = bpa

s1p

1

∏p−1
i=1 [as1p, ib]( p

i+1) = bp(a
p

1 a
(p

2)
2 . . . a

(p
p)

p )s1 =
bpa

s1γ
c . If (s,p) = 1, then there is some d ∈ G′ such that bsa

s1
1 = (ba

s′s1
1 )sd where ss′ ≡

1 (mod p). By Lemma 2.14(3), (bsa
s1
1 a

s2
2 . . . a

sc
c )p = (bsa

s1
1 )p = (ba

s′s1
1 )sp = bspa

s1γ
c . Then (g)

holds.
To prove that (a)–(f) are defining relations of G. (Note that (f) can be derived from (a)–(c)

and (e), so the relations (a)–(e) are already the defining relations of G.) We first use (f), taking
i = c, c − 1, . . . , to get o(ac) = p, . . . , o(ac−p+2) = p, . . . , Ai := 〈ai, ai+1, . . . , ac〉 has order
pc−i+1 for i = 2,3, . . . . Hence G′ = 〈a2, a3, . . . , ac〉 has order pc−1. By (c) G′ is abelian. Now
by (e), A1 := 〈G′, a1〉 is abelian and of order pc. Finally, by (d), G is a cyclic extension of A1

by Cpm . By Proposition 2.12(1) and (a), [a1, b
p] = a

(p
1)

2 a
(p

2)
3 · · ·ap+1 = 1, implying bp ∈ Z(G).

Finally, let G be a group defined by (a)–(f). Then 〈A1, b
p〉 is an abelian maximal subgroup

of G. Now it is easy to see that G/G′ and A/G′ has type invariants (pm,p) and (pm−1,p),
respectively. Hence G ∈ D′

p(2) by Theorem 3.3. �
Remark 3.7. The proofs of Lemma 3.2, Theorems 3.3 and 3.6 also work for the case m = 1. This
gives a description of the structures of p-groups of maximal class having an abelian maximal
subgroup and coincides with Blackburn’s results; see [4, §4].

Corollary 3.8. Suppose that G ∈Dp(2). Then

(1) G ∈ A2 if and only if c = 3.
(2) If p = 2, then G is metacyclic.
(3) If c � p, then d(G′) = c − 1. If c � p + 1, then d(G′) = p − 1.

Theorem 3.9. Let G and G̃ be two groups having defining relations in Theorem 3.6 with gen-
erators {b, a1} and {b̃, ã1} and parameters (δ, γ ) and (δ̃, γ̃ ), respectively. Then G and G̃ are
isomorphic if and only if there exist integers s, t1, k with p � st1 such that

(1) sc−2t1δ̃ ≡ δ (mod p); and
(2) γ̃ t1s

c−1 ≡ t1γ + kδ (mod p).
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Proof. Assume θ is an isomorphism from G̃ onto G. We have Ãθ = A and (G̃′)θ = G′ since
these four subgroups are characteristic in G or G̃, respectively. So, we may let

b̃θ = bsa
s1
1 a

s2
2 . . . asc

c , ãθ
1 = bkpm−1

a
t1
1 a

t2
2 . . . atc

c

where p � st1. By calculations, using Lemma 2.14, we get

ãθ
i ≡ a

si−1t1
i (mod Gi+1) (2 � i � c).

By Theorem 3.6(g), we have

(
b̃p

)θ = (
bsa

s1
1 a

s2
2 . . . asc

c

)p = bspa
s1γ
c ,

and hence

(
b̃pm)θ = bspm = asδ

c .

Since

(
b̃pm)θ = (

ãδ̃
c

)θ = asc−1t1 δ̃
c ,

we get

sc−2t1δ̃ ≡ δ (mod p).

By Theorem 3.6(g), we have

(ba1)
p = bpa

γ
c and (b̃ã1)

p = b̃pã
γ̃
c .

Transforming the latter equation by θ , the left-hand side becomes

(
bsa

s1
1 a

s2
2 . . . asc

c bkpm−1
a

t1
1 a

t2
2 . . . atc

c

)p
,

and by Theorem 3.6(g) again it is equal to bspa
(s1+t1)γ
c akδ

c ; while the right-hand side of that

equation is equal to bspa
s1γ
c a

sc−1t1γ̃
c . Hence we have

γ̃ t1s
c−1 ≡ t1γ + kδ (mod p).

Conversely, if parameters (δ, γ ) and (δ̃, γ̃ ) satisfy congruent equations in theorem, then, by
using the above argument, it is easy to check that the map θ : b̃ �→ bs , ã1 �→ bkpm−1

a
t1
1 is an

isomorphism from G̃ onto G. �
Theorem 3.10. The number of non-isomorphic D′

p(2)-groups of order pm+c with c(G) = c is
2 + gcd(c − 1,p − 1).

Proof. If δ is relatively prime to p, then δ can be chosen to be 1 and γ can be chosen to be zero.
If p divides δ, then γ can be assigned either 0 or one of gcd(c − 1,p − 1) values. �
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Lemma 3.11. Let G, A, a1, . . . , ac, b and γ be the same as in Theorem 3.6. Let Ai =
〈ai, ai+1, . . . , ac〉, c − 1 = (p − 1)q + r where q � 0 and 0 � r � p − 2. Then:

(1) If γ = 0, then A1 = 〈a1〉 × 〈a2〉 × · · · × 〈ap−1〉 = Cr+1
pq+1 × C

p−r−2
pq and ac = a

(−p)q

r+1 .
(2) If γ �= 0, then

(i) for q = 0 (namely c < p), A1 = 〈a1〉× 〈a2〉× · · ·× 〈ac−1〉 = Cp2 ×Cc−2
p and a

p

1 = a
γ
c ;

(ii) for q = 1, r = 0 (namely c = p) and γ = 1, A1 = 〈a1〉 × 〈a2〉 × · · · × 〈ap〉 = C
p
p ;

(iii) for q = 1, r = 0 (namely c = p) and γ �= 1, A1 = 〈a1〉 × 〈a2〉 × · · · × 〈ap−1〉 = Cp2 ×
C

p−2
p and a

p

1 = a
γ−1
p ;

(iv) for c � p + 1, A1 = 〈a1〉 × 〈a2〉 × · · · × 〈ap−1〉 = Cr+1
pq+1 × C

p−r−2
pq and ac = a

(−p)q

r+1 .

Proof. For the case c = c(G) � p − 1, Theorem 3.6(e)–(f) gives a
p
c = a

p

c−1 = · · · = a
p

2 = 1 and
exp(A2) = p. Since a

p

1 = a
γ
c , exp(A1) = p or p2, depending on γ = 0 or �= 0, respectively. So,

we get (1) and (2)(i).
Now we assume that c = p. By Theorem 3.6(e), a

p

1 = a
γ−1
c . Similar argument gives (1) and

(2)(ii)–(iii).
Next, assume c > p. By Theorem 3.6(e)–(f) again, we have that for any i � 2, o(ai) =

po(ai+p−1), and that for i � p, ai is a pth power of some element in A1 and hence ai ∈ Φ(A1).
Thus A1 = 〈a1, . . . , ap−1〉. Since |A1| = pc, and it is easy to check that o(a1) = · · · = o(ar+1) =
pq+1 and o(ar+2) = · · · = o(ap−1) = pq , we have o(a1)o(a2) · · ·o(ap−1) = |A1|. So we have
A1 = 〈a1〉 × 〈a2〉 × · · · × 〈ap−1〉.

Finally, to prove ac = a
(−p)q

r+1 , we use induction on c. If p + 1 � c � 2p − 1, Theorem 3.6(e)
gives the result. If c � 2p, Ω1(A1) = 〈ac, . . . , ac−p+2〉 = Gc−p+2. Consider Ḡ = G/Ω1(A1).

Then c(Ḡ) = c − p + 1. So, the induction hypothesis gives ac−p+1 = a
(−p)q−1

r+1 modulo Ω1(A1),

i.e., a
−p

c−p+1 = a
(−p)q

r+1 . Applying Theorem 3.6(e) again, we get ac = a
−p

c−p+1. Hence ac =
a

(−p)q

r+1 . �
Theorem 3.12. Suppose G ∈D′

2(2), c(G) = c and |G| = pm+c. Then m � 2, c � 3 and G is one
of following non-isomorphic groups:

(1) 〈a, b | a2c = b2m = 1, ab = a−1〉;
(2) 〈a, b | a2c = 1, b2m = a2c−1

, ab = a−1〉;
(3) 〈a, b | a2c = b2m = 1, ab = a−1+2c−1〉.

Theorem 3.13. For p odd suppose that G ∈ D′
p(2), c(G) = c and |G| = pm+c. Then m � 2,

c � 3 and

(I) If c � p, then G is one of following non-isomorphic groups:
(1) an extension of an abelian p-group 〈a1〉 × 〈a2〉 × · · · × 〈ac〉(= Cc

p) by a cyclic group

of order pm generated by b, i.e. 〈a1, b | a
p
i = bpm = 1, [aj , b] = aj+1, [ac, b] = 1,

[ai, aj ] = 1〉, where 1 � i � c � p, 1 � j � c − 1;
(2) an extension of an abelian p-group 〈a1〉 × 〈a2〉 × · · · × 〈ac〉(= Cc

p) by a cyclic group of
order pm generated by b, i.e. 〈a1, b | ap

i = bpm+1 = 1, [aj , b] = aj+1, [ac−1, b] = bpm
,

[ai, aj ] = 1〉, where 1 � i � c − 1 � p − 1, 1 � j � c − 2;
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(3) an extension of an abelian p-group 〈a1〉 × 〈a2〉 × · · · × 〈ac−1〉(= Cp2 × Cc−2
p ) by a

cyclic group of order pm generated by b, i.e. 〈a1, b | a
p2

1 = a
p
i = bpm = 1, [aj , b] =

aj+1, [ac−1, b] = a
tp

1 , [ai, aj ] = 1〉, where 2 � i � c − 1 � p − 1, 1 � j � c − 2,
t = t1, t2, . . . , t(c−1,p−1), where t1, t2, . . . , t(c−1,p−1) are the coset representatives of the
subgroup F consisting of c − 1 powers in Z∗

p (there are gcd(c − 1,p − 1) groups).
(II) If c � p + 1, we let c − 1 = (p − 1)q + r where q � 1 and 0 � r � p − 2. Then G is one of

following non-isomorphic groups:
(4) an extension of an abelian p-group 〈a1〉×〈a2〉× · · ·× 〈ap−1〉(= Cr+1

pq+1 ×C
p−r−2
pq ) by a

cyclic group of order pm generated by b, i.e. 〈a1, b | apq+1

i = a
pq

j = bpm = 1, [ak, b] =
ak+1, [ap−1, b] = a

−(p
1)

1 a
−(p

2)
2 . . . a

−p

p−1a
t(−p)q

r+1 , [au, av] = 1〉, where 1 � i � r + 1,
r + 2 � j � p − 1, 1 � k � p − 2, 1 � u,v � p − 1, t = p, t1, t2, . . . , t(r,p−1), where
t1, t2, . . . , t(r,p−1) are the coset representatives of the subgroup F consisting of r powers
in Z∗

p (there are gcd(r,p − 1) + 1 groups);

(5) an extension of an abelian p-group 〈a1〉×〈a2〉× · · ·× 〈ap−1〉(= Cr+1
pq+1 ×C

p−r−2
pq ) by a

cyclic group of order pm generated by b, i.e. 〈a1, b | a
pq+1

i = a
pq

j = bpm+1 = 1, bpm =
a

(−p)q

r+1 , [ak, b] = ak+1, [ap−1, b] = a
−(p

1)
1 a

−(p
2)

2 . . . a
−p

p−1, [au, av] = 1〉, where 1 � i �
r + 1, r + 2 � j � p − 1, 1 � k � p − 2, 1 � u,v � p − 1.

4. The classification of Dp(3)-groups

Note that a Dp(3)-group G has a non-abelian maximal subgroup since G is not minimal
non-abelian.

Theorem 4.1. If G ∈ Dp(3), then G ∈ A2. Conversely, let G ∈ A2, d(G) = 3 and G has an
abelian maximal subgroup, then G ∈Dp(3).

Proof. Assume that G ∈ Dp(3) but G /∈ A2. Let A be an abelian maximal subgroup and M a
non-abelian maximal subgroup of G. Then d(M) = 2 and M has an abelian maximal subgroup
A ∩ M . It follows from Lemma 3.1(3) that Z(M) � Φ(M). Since d(G) = 3, Φ(M) = Φ(G).
Since Z(M) � Φ(M) = Φ(G) � A and G = AM , Z(M) � Z(G). Applying Lemma 2.13, we
have |G| = p|G′||Z(G)| and |M| = p|M ′||Z(M)|. It follows that |G′/M ′||Z(G)/Z(M)| = p.

Since G /∈ A2, G has a non-abelian maximal subgroup M which is not minimal non-abelian
and hence M ∈ Dp(2), c(M) � 3 and |M ′| � p2. By using the above argument, we consider two
cases: (1) G′ = M ′ and |Z(G)/Z(M)| = p, and (2) Z(G) = Z(M) and |G′/M ′| = p.

Case 1: Let K � M and K ∈ A1. Take d ∈ Z(G)\M and let N = 〈K,d〉. Then |N ′| =
|K ′| = p. It follows that N < G since |G′| = |M ′| � p2. Hence d(N) = 2. Since |N ′| = p,
N ∈ A1 and hence N = K . Furthermore, d ∈ K � M , a contradiction.

Case 2: By Lemma 3.1(3), Φ(M) = M ′Z(M). Then G′ � Φ(G) = Φ(M) = M ′Z(M). Let
e ∈ G′\M ′ and e = mz, where m ∈ M ′, z ∈ Z(M)\M ′. So z ∈ G′ \ M ′ and z ∈ Z(M) = Z(G).
Let b ∈ M\A. Then G = 〈b,A〉. By Lemma 2.13, there exists an a ∈ A such that z = [a, b]. Since
z /∈ M ′, we have a /∈ M . Then G = 〈b, a,A ∩ M〉. Let N = 〈b, a,Φ(G)〉. Then N is maximal
in G. Since N is not abelian, Φ(G) = Φ(N) and hence N = 〈b, a〉. Note that [a, b] = z ∈ Z(G)

and N ′ = 〈[a, b]g | g ∈ N〉 = 〈z〉. We have c(N) = 2 and hence N ∈ A1, which implies Z(N) =
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Φ(N). Hence G′ � Φ(G) = Φ(N) = Z(N) � Z(G) and c(G) = 2, a contradiction. Thus we
proved G ∈ A2.

Conversely, assume that G ∈ A2 and d(G) = 3. Then every non-abelian subgroup of G is
maximal and hence is minimal non-abelian, which can be generated by two elements. Thus
G ∈Dp(3). �
5. The classification of Mp-groups

Since all groups of order p4 have an abelian maximal subgroup, Mp-groups have order at
least p5. Let M ′

p = {G ∈ Mp | G is neither metacyclic nor 3-group of maximal class}. Then we
only need to classify M′

p-groups.

Lemma 5.1. Suppose that G is of maximal class. Then G /∈ M′
p .

Proof. Let G be a p-group of maximal class and G ∈ M′
p . By the definition of M′

p-group, we
have that p � 5 and G has no abelian maximal subgroup. Hence d(M) = 2 for all M � G. Since
groups of order p4 have an abelian maximal subgroup, |G| � p5. Let G = G/G4. Then |G| = p4

and hence G has an abelian maximal subgroup M/G4. Since G ∼= G/G5
Z(G/G5)

and |G/G5| = p5,

Theorem 2.6 gives that exp(G) = p. Then M/G4 is an elementary abelian p-group. It follows
that d(M) � 3 and M � G, a contradiction. �
Theorem 5.2. Suppose that G ∈ M′

2. Then (1) d(G) = 3; (2) G has an abelian subgroup A

such that |G : A| = 4 and d(A) � 3; (3) Φ(G) = Z(G); (4) G ∈ A2 and is the following group:
G = 〈a, b, c | a4 = b4 = c4 = 1, [a, b] = c2, [a, c] = b2c2, [b, c] = a2b2, [a2, b] = [a2, c] =
[b2, a] = [b2, c] = [c2, a] = [c2, b] = 1〉 (Suzuki 2-group of order 26).

Proof. (1) Otherwise, d(G) = 2. Since all subgroups of G of order 2n−1 and 2n have two gen-
erators, Theorem 2.10 gives that G is metacyclic, which is a contradiction.

(2) If |G| = 25, since G has no abelian maximal subgroup, Lemma 2.1 gives that G has a non-
metacyclic maximal subgroup, say M . By the classification of groups of order 24, M is minimal
non-abelian and we may let

M = 〈
a, b

∣∣ a22 = b2 = c2 = 1, [a, b] = c, [c, a] = [c, b] = 1
〉
.

Its subgroup A = 〈a2, b, c〉 is abelian and of index 4 in G, and d(A) = 3.
If |G| � 26 and G has no abelian subgroup A such that |G : A| = 4 and d(A) � 3, since all

subgroups of order 2n−1 and 2n−2 have two generators, Theorem 2.10 gives that G is metacyclic,
which is a contradiction.

(3) Let A � M � G. We claim that M is minimal non-abelian. Otherwise, M ∈ D2(2). By
Corollary 3.8(2), M is metacyclic, contradicting d(A) � 3.

Since d(G) = 3 and d(M) = 2, Φ(M) = Φ(G). Hence Φ(G) < A and G/A is elementary
abelian. Let M1/A and M2/A be two maximal subgroups of G/A. Then M1 and M2 are maximal
subgroups of G containing A, and hence they are minimal non-abelian by the above argument. It
follows that Φ(G) = Φ(M1) = Φ(M2) = Z(M1) = Z(M2), and hence Φ(G) � Z(G). If Φ(G) <

Z(G), then |G : Z(G)| = 4 and G would have an abelian maximal subgroup. Hence Φ(G) =
Z(G).
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(4) Let M be any maximal subgroup of G. Then M is not abelian and d(M) = 2. Since
Z(G) = Φ(G) = Φ(M), Φ(M) = Z(M). It follows from Lemma 2.2 that M ∈ A1 and hence
G ∈A2. The last conclusion is obtained by [12]. �
Lemma 5.3. Let G ∈M′

p and |G| = p5. Then G ∈A2, d(G) = 2, c(G) = 3, and G is one of the
following groups:

(1) 〈a, b | ap2 = bp2 = cp = 1, [a, b] = c, [c, a] = bνp, [c, b] = ap〉, where p � 5, ν is a fixed
quadratic non-residue (mod p);

(2) 〈a, b | ap2 = bp2 = cp = 1, [a, b] = c, [c, a] = a−pb−kp, [c, b] = a−p〉, where p � 5,
4k = g2r+1 − 1 for r = 1,2, . . . , 1

2 (p − 1), g denotes the smallest positive integer which is a
primitive root (mod p);

(3) 〈a, b | a9 = b9 = c3 = 1, [a, b] = c, [c, a] = b−3, [c, b] = a3〉;
(4) 〈a, b | a9 = b9 = c3 = 1, [a, b] = c, [c, a] = a3b3, [c, b] = a−3〉.

Proof. It follows from Theorem 5.2 that p is odd. Then Theorem 2.8 gives that d(G) = 2.
According to Lemma 5.1, G is not of maximal class. Let M be any maximal subgroup of G.
Then M is also not of maximal class by Theorem 2.7. Since |M| = p4, the classification of
groups of p4 gives that M ∈ A1. Hence G ∈ A2. The other conclusions are obtained by [12,
Theorem 3.8]. �
Theorem 5.4. For p odd suppose that G ∈ M′

p and |G| = pn � p6. Then:

(1) d(G) = 2, G and all maximal subgroups of G are not of maximal class.
(2) G′ = Φ(G) is abelian, G3 = �1(G) and G/G3 is of order p3.
(3) If K is maximal in G, then G3 = Φ(K) and K ∈ A1 or K ∈D′

p(2).
(4) G has at most one minimal non-abelian maximal subgroup.
(5) c(G) = n−2. G has lower central complexion (2,1,2,1,1, . . . ,1︸ ︷︷ ︸

n−5

). If K ∈ D′
p(2) is maximal

in G, then K3 = G4,K4 = G5, . . . ,Kn−3 = Gn−2.
(6) If G has no minimal non-abelian maximal subgroup, then |G| = p6.

Proof. (1) Theorem 2.8 gives that d(G) = 2. According to Lemma 5.1, G is not of maximal
class. Let M be any maximal subgroup of G. Then M is also not of maximal class by Theo-
rem 2.7.

(2) If G′ is not abelian, then d(G′) = 2, contradicting Theorem 2.11. Other conclusions follow
from Theorem 2.9.

(3) Since G/G3 = G/�1(G) has exponent p and is of order p3, K/G3 is elementary abelian
and of order p2. It follows that G3 = Φ(K) since d(K) = 2. Since K is not of maximal class
by (1) and G′ is an abelian maximal subgroup of K , K ∈A1 or K ∈ D′

p(2).
(4) Otherwise, let K1,K2 be two distinct minimal non-abelian maximal subgroups of G. Then

G3 = Φ(K1) = Φ(K2) = Z(K1) = Z(K2) by (3). It follows that G3 = �1(G) � Z(G). Since
zp ∈ �1(G) � Z(G) for any z ∈ G, 1 = [x, y, zp] = [x, y, z]p for any x, y, z ∈ G, and hence
exp(G3) = p. Let G = 〈a, b〉. Then G3 = 〈[a, b, a], [a, b, b]〉 gives that |G3| � p2 and hence
|G| � p5, contradicting |G| � p6.
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(5) Suppose that K ∈ D′
p(2) is maximal in G. As in Lemma 3.2, we let c(K) = c and |K| =

pm+c where m � 2, c � 3. Then |G| = pm+c+1, |G′| = pm+c−1, |G3| = pm+c−2. By Lemma 3.2,
|K ′| = pc−1 and K/K ′ has type invariants (pm,p). Let G = G/K ′. Then |G| = pm+2 and G

has an abelian maximal subgroup K/K ′. Since |G/G′| = p2, Theorem 2.5(1) gives that G is
of maximal class. Since G3 = G3/K

′ = Φ(K)/K ′ = Φ(K/K ′) is cyclic and of order pm−1,
and groups of maximal class have no normal cyclic subgroup of order p2 (Theorem 2.4(6)),
we have m = 2. Thus c(K) = n − m − 1 = n − 3, |K ′| = pn−4, |G| = p4 and G4 � K ′. Since
K ′ � Φ(K) = G3, 1 �= Kn−3 � Gn−2. By (1), G is not of maximal class. Hence c(G) = n − 2.

Let M ∈ D′
p(2) be a maximal subgroup of G and M �= K . Then c(M) = n − 3, |M ′| = pn−4

and G4 � M ′ by the above argument. Since M/K ′ is not abelian, |M ′K ′/K ′| = |M ′|
|M ′∩K ′| = p,

and hence |M ′ ∩ K ′| = pn−5. Since G4 � M ′ ∩ K ′, |G4| � pn−5. In the other hand, |G4| =
|G4/G5||G5/G6| . . . |Gn−2| � pn−5. Hence |G4| = pn−5, |G3/G4| = p2 and G has lower cen-
tral complexion (2,1,2,1,1, . . . ,1︸ ︷︷ ︸

n−5

).

Since K ′ � G3, Ki � Gi+1 for 3 � i � n − 3. It follows that Ki = Gi+1 for 3 � i � n − 3 by
comparing their order.

(6) Otherwise, n � 7 and hence n − 3 � 4. By (5), |Gn−3| = p2. Let M = CG(Gn−3). Then
G/M � Aut(Gn−3) and hence M is maximal in G. By assumption, M ∈ D′

p(2). Then (5) gives
that Mn−4 = Gn−3 and c(M) = n − 3. Since Gn−3 � Z(M), Mn−4 � Z(M) and hence c(M) �
n − 4, a contradiction. �
Theorem 5.5. For p � 5, suppose that G ∈ M′

p and G has no minimal non-abelian maximal
subgroup. Then G is one of following non-isomorphic groups:

G = 〈
a, b

∣∣ ap2 = bp2 = cp2 = 1, [a, b] = c, [c, b] = apcmp, [c, a] = bνpcnp,

[
a, bp

] = [
ap, b

] = cp,
[
c, ap

] = [
c, bp

] = [
cp, a

] = [
cp, b

] = 1
〉
,

where ν is fixed quadratic non-residue module p. The parameters m, n are the smallest positive
integers satisfying (m − 1)2 − ν−1(n + ν)2 ≡ r (mod p), for r = 0,1, . . . , p − 1.

Proof. According to Theorem 5.4, G′ is abelian, G3 = �1(G), c(G) = 4 and |G| = p6. Let
G = G/G4 and K � G. Then G is not metacyclic and K/G4 = K/K3 ∈ A1. It follows that G is
a group of Lemma 5.3. Let G = 〈a, b〉. Then we may let

(1) G = 〈ā, b̄ | āp2 = b̄p2 = c̄p = 1, [ā, b̄] = c̄, [c̄, b̄] = āp, [c̄, ā] = b̄νp〉, where ν is a fixed
quadratic non-residue (mod p); or

(2) G = 〈ā, b̄ | āp2 = b̄p2 = c̄p = 1, [ā, b̄] = c̄, [c̄, b̄] = ā−p, [c̄, ā] = ā−pb̄−kp〉, where p � 5,
4k = g2r+1 − 1 for r = 1,2, . . . , 1

2 (p − 1), g denotes the smallest positive integer which is a
primitive root (mod p).

We claim that exp(G′) �= p. Otherwise, �1(G) � Z(G) and hence G3 � Z(G), contradicting
c(G) = 4. We also have exp(G3) = p since 1 = [x, y, zp] = [x, y, z]p for all x, y, z ∈ G. Hence
we may assume that G = 〈a, b〉 such that ap2 = bp2 = cp2 = 1, [a, b] = c, G4 = 〈cp〉 and
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(1) [c, b] = apcmp , [c, a] = bνpcnp; or
(2) [c, b] = a−pcmp , [c, a] = a−pb−kpcnp , where 4k = g2r+1 − 1 for r = 1,2, . . . , 1

2 (p − 1),
g denotes the smallest positive integer which is a primitive root (mod p).

Since G is metabelian, 1 = [c, b, a] = [c, a, b], implying G is one group of type (1).
Conversely, if G is one group of type (1), then [c, aibj ] ≡ ajpbiνp (mod G4) and

[c, aibj , aibj ] = c(j2−i2ν)p . Let K be any maximal subgroup of G. Then we may let K =
〈aibj , c, ap, bp〉 where p � ij . It is easy to see that K ′ = 〈ajpbiνp, cp〉 and G′ = 〈c, ap, bp〉 is
an abelian maximal subgroup of K . Since K/K ′ has type invariants (p2,p) and G′/K ′ has type
invariants (p,p), Theorem 3.3 gives that K ∈D′

p(2) and hence G ∈M′
p .

Let G̃ be such a group with parameters (m̃, ñ). Using the similar method as in the proof of
Theorem 3.9, we can get G̃ ∼= G if and only if (m̃ − 1)2 − ν−1(ñ + ν)2 ≡ (m − 1)2 − ν−1(n +
ν)2 (mod p). So there are p non-isomorphic groups depending only on the value of (m − 1)2 −
ν−1(n + ν)2. �
Theorem 5.6. Suppose that G ∈ M′

3 and G has no minimal non-abelian maximal subgroup.
Then G is one of following non-isomorphic groups (where the trivial commutators are omitted):

(1) 〈a, b | a9 = b9 = c3 = d3 = 1, [a, b] = c, [c, b] = a3, [c, a] = b−3, [a3, b] = [a, b3] = d〉;
(2) 〈a, b | a9 = b9 = c3 = d3 = 1, [a, b] = c, [c, b] = a3d, [c, a] = b−3d, [a3, b] =

[a, b3] = d〉.

Proof. According to Theorem 5.4, G′ is abelian, G3 = �1(G), c(G) = 4 and |G| = 36. Let
G = G/G4 and K � G. Then G is not metacyclic and K/G4 = K/K3 ∈ A1. It follows that G

is a group of Lemma 5.3. Let G4 = 〈d〉, G = 〈a, b〉 and ā, b̄ have the relations described in
Lemma 5.3. Then G has one of following relations

(a) a9 = dn1 , b9 = dn2 , c3 = dn3 , d3 = 1, [a, b] = cdl , [c, b] = a3dm, [c, a] = b−3dn; or
(b) a9 = dn1 , b9 = dn2 , c3 = dn3 , d3 = 1, [a, b] = cdl , [c, b] = a−3dm, [c, a] = a3b3dn

and G′ = 〈c, a3, b3, d〉, G3 = 〈a3, b3, d〉. Since �1(G) = G3, 1 = [x, y, z3] = [x, y, z]3 for any
x, y, z ∈ G, implying exp(G3) = 3. Then a9 = b9 = 1. We claim that G is not a group of type (b).
Otherwise, since G is metabelian, 1 = [c, b, a] = [c, a, b] = [a3, b], implying a3 ∈ Z(G). Then
K = 〈b, c, a3, d〉 ∈A1 and K is maximal in G, a contradiction.

Without loss of generality we may assume that [a, b] = c, that is, l = 0. Then [a3, b] =
c3[c, a, a] = c3[b−3, a] = c3[a, b3] = c6[c, b, b] = c6[a3, b]. It follows that c3 = 1 and
[c, a, a] = [c, b, b]. Since [c, a, b] = [c, b, a] = 1, [c, a, a] �= 1. Let [c, a, a] = [c, b, b] = d .
Then G = 〈a, b〉 has the defining relations

a9 = b9 = c3 = d3 = 1, [a, b] = c, [c, b] = a3dm,

[c, a] = b−3dn, [c, a, a] = [c, b, b] = d,

where the trivial commutators are omitted.
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Conversely, suppose G has the above defining relations. Let K1 = 〈Φ(G),a〉, K2 =
〈Φ(G),b〉, K3 = 〈Φ(G),ba〉 and K4 = 〈Φ(G),ba−1〉. Then maximal subgroups of G are Ks

(s = 1,2,3,4). It is easy to see that |K ′
s | = 9. According to Lemma 5.3, d(K̄s) = 2 and hence

d(Ks) = 2. Since c(Ks) = 3, Φ(Ks)/K
′
s is cyclic and Ks have abelian maximal subgroup G′

such that G′/K ′
s is not cyclic, Corollary 3.4 gives that Ks ∈ D′

3(2), and hence G ∈ M′
3.

Next we determine non-isomorphic types. By substitution, we can get that G is the group of
type (2) for m = n = 1 and G is the group of type (1) for others. (Details are omitted.)

Finally, using the similar method as Theorem 3.9, we can show that the two groups of types (1)
and (2) are not isomorphic to each other. (Details are omitted.) �
Theorem 5.7. Suppose that G has a minimal non-abelian maximal subgroup. Then G ∈ M′

p if
and only if G = 〈a1, b〉 has following defining relations:

(a) ai = [ai−1, b], i = 2,3, . . . , n;
(b) [a1, a2] = c;
(c) c3 = 1;
(d) [c, a1] = [c, b] = 1;
(e) [an−2, b] = 1;
(f) [a1, ai] = 1, i = 3,4, . . . , n − 2;
(g) [ai, aj ] = 1, i, j = 2,3, . . . , n − 2;
(h) b3 = caδ

n−2;
(i) a3

1a3
2a3 = a

γ

n−2;
(j) a3

i a
3
i+1ai+2 = 1, i = 2,3, . . . , n − 2,

where n � 6, 0 � δ, γ � 2.

Proof. Let G ∈M′
p , |G| = pn and G1 be the minimal non-abelian maximal subgroup of G. By

Theorem 5.4, n � 6, d(G) = 2, G′ = Φ(G) is abelian, G3 = �1(G) = Φ(G1) and c(G) = n−2.
First we claim that p = 3. Otherwise, p � 5. Let G = G/G′

1. Since G has an abelian maximal
subgroup G1 = G1/G′

1 and |G/G′| = p2, G is of maximal class by Theorem 2.5. Since c(G) =
n − 2 � 4, Corollary 3.8(3) gives that d(G1) � 3, a contradiction.

Let b ∈ G\G1 and a1 ∈ G1\G′. Then G = 〈a1, b〉. Let ai = [ai−1, b], where 2 � i � n

and [a1, a2] = c. Then G′ = 〈a2,G3〉 and hence G1 = 〈a1, a2〉. Since |G′
1| = 3, (c) holds.

Since G′
1 charG1 charG, G′

1 � Z(G). It follows that G3 = 〈c, a3,G4〉, G4 = 〈a4, . . . , an−2〉, . . . ,
Gn−2 = 〈an−2〉 and Z(G) = 〈c, an−2〉. Then (d), (e) holds.

Since G3 = Z(G1), ai ∈ Z(G1) for i = 3,4, . . . , n − 2. Then (f) holds. Since G′ is abelian,
(g) holds. Since b3 ∈ G3 = Z(G1), [ai, b

3] = 1 for i = 1,2, . . . , n − 2. Then Proposition 2.12(1)
gives that

(j) a3
i a

3
i+1ai+2 = 1, i = 2,3, . . . , n − 2.

By Proposition 2.12(1), we have [a3
1, b] = [a1, b]3[a1, b, a1]3[a1, b, a1, a1] = a3

2 and hence
[a3

1a3
2a3, b] = a3

2a3
3a4 = 1. Obviously, [a3

1a3
2a3, a1] = 1. Hence a3

1a3
2a3 ∈ Z(G) and we may

assume a3
1a3

2a3 = cαa
γ

n−2 for 0 � α,γ � 2. Replacing b by b′ = baα
1 , we have a3

1(a′
2)

3a′
3 =

a3a3a3c
−α = a

γ . So we get (i) (changing the generator b when necessary).
1 2 n−2
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Finally, since b3 ∈ Z(G), we may assume that b3 = cβaδ
n−2, 0 � β, δ � 2. By Proposi-

tion 2.12(2), we have (ba−1
1 )3 = b3[b, a1]3[b, a1, b][b, a1, a1]a−3

1 = b3c(a3
1a3

2a3)
−1 =

cβ+1a
δ−γ

n−2 . Let M = 〈b,G′〉. Then M �= G1 and hence M is a D′
3(2)-group by Theorem 5.4.

According to Theorem 3.2(4), b3 /∈ Gn−2 = Mn−3. Similarly, (ba−1
1 )3 /∈ Gn−2. Then β �= 0,2.

Hence we have b3 = caδ
n−2, (h) holds.

Conversely, if G = 〈b, a1〉 satisfies the above relations (a)–(j), we show that G ∈ M′
p . (Note

that (j) can be derived from (a)–(g) and (i), so the relations (a)–(i) are already the defining rela-
tions of G.)

Let M = 〈b,G′〉 = 〈b, a2〉 and A = 〈c, a2, . . . , an−2〉. According to Theorem 3.6, M ∈D′
3(2),

M ′ = 〈a3, . . . , an−2〉, |M| = 3n−1 and A is the unique abelian maximal subgroup of M . By
Lemma 3.11, M ′ = 〈a3, a4〉. By (a), (b), (d), (f), (i), a1 induce an automorphism of M and a3

1a3
2a3

induce an identical automorphism of M . Hence G = 〈b, a1〉 and |G| = 3n by cyclic extension
theory. Moreover, G′ = A, G3 = 〈c, a3,G4〉, G4 = 〈a4,G5〉 and so on. Let G1 = 〈a1,G

′〉. Since
M ′ = 〈a3, a4〉, by (i), (j), (b) and (c), G1 = 〈a1, a2〉 is a minimal non-abelian maximal subgroup
of G.

Let Mj = 〈ba
j

1 , a2,G3〉, j = 1,2. Then Mj are other maximal subgroups of G, M ′
j =

〈a3, a4, . . . , an−2〉 and G′ = A is an abelian maximal subgroup of Mj . By calculation, (ba
j

1 )3 =
b3ca

jγ

n−2 = c2a
δ+jγ

n−2 (details omitted), which implies Φ(Mj) = 〈c,M ′
j 〉 = G3. Hence Mj/M

′
j

has type invariants (32,3), and A/M ′
j has type invariants (3,3). By Theorem 3.3, Mj ∈ D′

3(2).
Therefore G ∈ M′

3. �
By using similar calculations and arguments as in the proof of Theorem 3.9, we get the fol-

lowing theorem. The details are omitted.

Theorem 5.8. Let G and G̃ be two groups having defining relations in Theorem 5.7 with para-
meters (δ, γ ) and (δ̃, γ̃ ), respectively. Then G and G̃ are isomorphic if and only if there exist
integers s, t1 with p � st1 such that

(1) sn−4t1δ̃ ≡ δ (mod 3);
(2) γ̃ sn−3 ≡ γ (mod 3).

As an immediate consequence of the above theorem, the number of non-isomorphic groups
in Theorem 5.7 is 6 if n is odd, or 4 if n is even.

Theorem 5.9. Suppose that G ∈ M′
p and G possess a minimal non-abelian maximal subgroup.

Then p = 3, |G| � 36 and:

(1) If |G| = 32q+4, where q � 1, then G = 〈a1, b〉 and

a3q+1

1 = a3q+1

2 = b32 = c3 = 1, [a1, b] = a2, [a2, b] = a3,

[a1, a2] = c, [c, a1] = [c, a2] = 1, a3
1a3

2a3 = a
k(−3)q

2 , b3 = a
s(−3)q

2 c,

where s = 0,1, k = 0,1.
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(2) If |G| = 32q+5, where q � 1, then G = 〈a1, b〉 and

a3q+2

1 = a3q+1

2 = b32 = c3 = 1, [a1, b] = a2, [a2, b] = a3,

[a1, a2] = c, [c, a1] = [c, a2] = 1, a3
1a3

2a3 = a
k(−3)q+1

1 , b3 = a
s(−3)q+1

1 c,

where s = 0,1, k = 0,1,2.

Summarizing, we have the following

Main Theorem. Suppose that all non-abelian proper subgroups of a p-group G are generated
by two elements. Then one of the following holds:

(1) All subgroups of G of index p2 are abelian;
(2) G is metacyclic;
(3) G is of maximal class and has an abelian maximal subgroup;
(4) G is 3-group of maximal class;
(5) G is a D′

p(2)-group, namely one group of Theorem 3.13;
(6) G is an M′

3-group and G has a unique minimal non-abelian maximal subgroup, namely one
group of Theorem 5.9;

(7) G is one group of Theorems 5.5, 5.6.
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