Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/camwa

Characterizations of regular semigroups by (α, β) -fuzzy ideals

Muhammad Shabir^{a,*}, Young Bae Jun^b, Yasir Nawaz^c

^a Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

^b Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Republic of Korea

^c Department of Basic Sciences, HITEC University, Taxila Cantt, Pakistan

ARTICLE INFO

Article history: Received 21 September 2008 Accepted 28 July 2009

Keywords: (α, β) -fuzzy subsemigroups (α, β) -fuzzy ideals (α, β) -fuzzy bi-ideals (α, β) -fuzzy quasi-ideals

1. Introduction

ABSTRACT

Using the ideas of belonging and quasi-coincidence of a fuzzy point with a fuzzy set, the concepts of (α, β) -fuzzy ideals and (α, β) -fuzzy generalized bi-ideals, which are generalization of fuzzy ideals and fuzzy generalized bi-ideals, in a semigroup are introduced, and related properties are investigated. We also define the lower and upper parts of fuzzy subsets of a semigroup. Characterizations of regular semigroups by the properties of the lower part of $(\in, \in \lor q)$ -fuzzy left ideals, $(\in, \in \lor q)$ -fuzzy quasi-ideals and $(\in, \in \lor q)$ -fuzzy generalized bi-ideals are given.

© 2009 Elsevier Ltd. All rights reserved.

The fundamental concept of a fuzzy set, introduced by L. A. Zadeh in his definitive paper [1] of 1965, provides a natural framework for generalizing several basic notions of algebra. Kuroki initiated the theory of fuzzy Semigroups in his papers [2,3]. A systematic exposition of fuzzy semigroups by Mordeson et al. appeared in [4], where one can find theoretical results on fuzzy semigroups and their use in fuzzy coding, fuzzy finite state machines and fuzzy Languages. Fuzziness has a natural place in the field of formal languages. The monograph by Mordeson and Malik [5] deals with the application of fuzzy approach to the concepts of automata and formal languages. Murali [6] proposed a definition of a fuzzy point belonging to fuzzy subset under a natural equivalence on fuzzy subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [7], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [8,9] gave the concepts of (α , β)-fuzzy subgroups by using the "belongs to" relation (\in) and "quasi-coincident with" relation (q) between a fuzzy point and a fuzzy subgroup, and introduced the concept of an (\in , $\in \lor q$)-fuzzy subgroup. In [10] (\in , $\in \lor q$)-fuzzy subrings and ideals are defined. In [11] Davvaz define (\in , $\in \lor q$)-fuzzy subnearring and ideals of a near ring. In [12] Jun and Song initiated the study of (α , β)-fuzzy interior ideals of a semigroup. In [13] Kazanci and Yamak study (\in , $\in \lor q$)-fuzzy bi-ideals of a semigroup. In [14] Bhakat define ($\in \lor q$)-level subset of a fuzzy set. In this paper we introduce the concept of (α , β)-fuzzy generalized bi-ideal, and characterize regular semigroups by the properties of these ideals.

2. Preliminaries

A semigroup is an algebraic system (S, .) consisting of a nonempty set *S* together with an associative binary operation ".". By a subsemigroup of *S* we mean a nonempty subset *A* of *S* such that $A^2 \subseteq A$. A nonempty subset *A* of *S* is called a left (right) ideal of *S* if $SA \subseteq A$ ($AS \subseteq A$). A nonempty subset *A* of *S* is called a two-sided ideal or simply an ideal of *S* if it is both a left and a right ideal of *S*. A nonempty subset *Q* of *S* is called a quasi-ideal of *S* if $QS \cap SQ \subseteq Q$. A subsemigroup *B* of a

^{*} Corresponding author. E-mail addresses: mshabirbhatti@yahoo.co.uk (M. Shabir), skywine@gmail.com (Y.B. Jun), yasir_maths@yahoo.com (Y. Nawaz).

^{0898-1221/\$ –} see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2009.07.062

semigroup *S* is called a bi-ideal of *S* if $BSB \subseteq B$. A nonempty subset *B* of *S* is called a generalized bi-ideal of *S* if $BSB \subseteq B$. A subsemigroup *A* of a semigroup *S* is called an interior ideal of *S* if $SAS \subseteq A$. Obviously every one-sided ideal of a semigroup *S* is a quasi-ideal, every quasi-ideal is a bi-ideal and every bi-ideal is a generalized bi-ideal. An element *a* of a semigroup *S* is called a regular element if there exists an element *x* in *S* such that a = axa. A semigroup *S* is called regular if every element of *S* is regular. It is well known that for a regular semigroup the concepts of quasi-ideal, bi-ideal and generalized bi-ideal coincide.

A fuzzy subset f of a universe X is a function from X into the unit closed interval [0, 1], i.e. $f : X \rightarrow [0, 1]$. A fuzzy subset f in a universe X of the form

$$f(y) = \begin{cases} t \in (0, 1] & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t . For a fuzzy point x_t and a fuzzy set f in a set X, Pu and Liu [7] gave meaning to the symbol $x_t \alpha f$, where $\alpha \in \{\in, q, \in \lor q, \in \land q\}$. A fuzzy point x_t is said to belong to (resp. quasi-coincident with) a fuzzy set f written $x_t \in f$ (resp. $x_t qf$) if $f(x) \ge t$ (resp. f(x) + t > 1), and in this case, $x_t \in \lor qf$ (resp. $x_t \in \land qf$) means that $x_t \in f$ or $x_t qf$ (resp. $x_t qf$). To say that $x_t \overline{\alpha} f$ means that $x_t \alpha f$ does not hold. For any two fuzzy subsets f and g of S, $f \le g$ means that, for all $x \in S$, $f(x) \le g(x)$ (cf. [16]). The symbols $f \land g$, and $f \lor g$ will mean the following fuzzy subsets of S

$$(f \land g)(x) = f(x) \land g(x)$$

(f \langle g)(x) = f(x) \langle g(x).

for all $x \in S$.

Let *f* and *g* be two fuzzy subsets of a semigroup *S*. The product $f \circ g$ is defined by

$$(f \circ g)(x) = \begin{cases} \forall_{x=yz} \{f(y) \land g(z)\}, & \text{if } \exists y, z \in S, \text{ such that } x = yz \\ 0 & \text{otherwise }. \end{cases}$$

Definition 1 ([4]). A fuzzy subset f of S is called a fuzzy subsemigroup of S if for all $x, y \in S$

 $f(xy) \ge \min \left\{ f(x), f(y) \right\}.$

Definition 2 ([4]). A fuzzy subset f of S is called a fuzzy left (right) ideal of S if for all $x, y \in S$

 $f(xy) \ge f(y)$ $(f(xy) \ge f(x))$.

A fuzzy subset *f* of *S* is called a fuzzy ideal of *S* if it is both a fuzzy left and a fuzzy right ideal of *S*.

Definition 3 ([4]). A fuzzy subset f of S is called a fuzzy quasi-ideal of S if

 $(f \circ \delta) \land (\delta \circ f) \leq f$

where δ is the fuzzy subset of *S* mapping every element of *S* on 1.

Definition 4 ([4]). A fuzzy subsemigroup f of S is called a fuzzy bi-ideal of S if for all $x, y, z \in S$,

 $f(xyz) \ge \min \left\{ f(x), f(z) \right\}.$

Definition 5 ([4]). A fuzzy subset f of S is called a fuzzy generalized bi-ideal of S if for all $x, y, z \in S$,

 $f(xyz) \ge \min\left\{f(x), f(z)\right\}.$

Definition 6 ([4,17]). A fuzzy subsemigroup f of S is called a fuzzy interior ideal of S if for all $x, a, y \in S$,

 $f(xay) \ge f(a)$.

Definition 7 ([12]). A fuzzy subset f of S is called an (α, β) -fuzzy interior ideal of S, where $\alpha \neq \in \land q$, if it satisfies, (i) For all $x, y \in S$ and for all $t_1, t_2 \in (0, 1], x_{t_1} \alpha f$ and $y_{t_2} \alpha f \Rightarrow (xy)_{\min\{t_1, t_2\}} \beta f$, (ii) For all $x, a, y \in S$ and for all $t \in (0, 1], a_t \alpha f \Rightarrow (xay)_t \beta f$.

Theorem 1 ([12]). Let f be a fuzzy subset of S. Then f is an $(\in, \in \lor q)$ -fuzzy interior ideal of S if and only if it satisfies the following conditions.

(1) $f(xy) \ge \min \{f(x), f(y), 0.5\}$ (2) $f(xay) \ge \min \{f(a), 0.5\}.$

Theorem 2 ([15,18]). For a semigroup S the following conditions are equivalent.

(1) S is regular.

- (2) $R \cap L = RL$ for every right ideal R and every left ideal L of S.
- (3) ASA = A for every quasi-ideal A of S.

3. (α, β) -fuzzy ideals

Let *S* be a semigroup and α and β denote any one of \in , q, $\in \lor q$ or $\in \land q$ unless otherwise specified.

Definition 8. A fuzzy subset *f* of a semigroup *S* is called an (α, β) -fuzzy subsemigroup of *S*, where $\alpha \neq \in \land q$ if $x_{t_1} \alpha f$, and $y_{t_2} \alpha f \Rightarrow (xy)_{\min\{t_1, t_2\}} \beta f$.

Let *f* be a fuzzy subset of *S* such that $f(x) \le 0.5$ for all $x \in S$. Let $x \in S$ and $t \in (0, 1]$ be such that $x_t \in \wedge qf$. Then $f(x) \ge t$ and f(x) + t > 1. It follows that $1 < f(x) + t \le f(x) + f(x) = 2f(x)$, so that $f(x) \ge 0.5$. This means that $\{x_t : x_t \in \wedge q\} = \emptyset$. Therefore the case $\alpha = \in \wedge q$ in the above definition is omitted.

Definition 9. A fuzzy subset *f* of a semigroup *S* is called an (α, β) -fuzzy left (right) ideal of *S*, where $\alpha \neq \in \land q$ if it satisfies, $y_t \alpha f$ and $x \in S \Rightarrow (xy)_t \beta f$ ($(yx)_t \beta f$) for all $x, y \in S$.

A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy ideal of S if it is both an (α, β) -fuzzy left ideal and (α, β) -fuzzy right ideal of S.

Definition 10. A fuzzy subset *f* of a semigroup *S* is called an (α, β) -fuzzy bi-ideal of *S*, where $\alpha \neq \in \land q$, if it satisfies the following two conditions.

(i) For all $x, y \in S$ and for all $t_1, t_2 \in (0, 1], x_{t_1} \alpha f, y_{t_2} \alpha f \Rightarrow (xy)_{\min\{t_1, t_2\}} \beta f$. (ii) For all $x, y, z \in S$ and for all $t_3, t_4 \in (0, 1], x_{t_3} \alpha f, z_{t_4} \alpha f \Rightarrow (xyz)_{\min\{t_3, t_4\}} \beta f$.

Definition 11. A fuzzy subset *f* of a semigroup *S* is called an (α, β) -fuzzy generalized bi-ideal of *S*, where $\alpha \neq \in \land q$, if it satisfies,

For all $x, y, z \in S$ and for all $t_3, t_4 \in (0, 1], x_{t_3} \alpha f, z_{t_4} \alpha f \Rightarrow (xyz)_{\min\{t_3, t_4\}} \beta f$.

Lemma 1. A fuzzy subset f of a semigroup S is a fuzzy subsemigroup of S if and only if it satisfies,

For all $x, y \in S$ and for all $t_1, t_2 \in (0, 1], x_{t_1} \in f, y_{t_2} \in f \Rightarrow (xy)_{\min\{t_1, t_2\}} \in f$.

Proof. Suppose *f* is a fuzzy subsemigroup of a semigroup *S*. Let $x, y \in S$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in f$ and $y_{t_2} \in f$. Then $f(x) \ge t_1$ and $f(y) \ge t_2$. Since *f* is a fuzzy subsemigroup of *S*. So $f(xy) \ge \min\{f(x), f(y)\} \ge \min\{t_1, t_2\}$. Hence $(xy)_{\min\{t_1, t_2\}} \in f$.

Conversely, assume that f satisfies the given condition. We show that $f(xy) \ge f(x) \land f(y)$. On the contrary assume that there exist $x, y \in S$ such that $f(xy) < f(x) \land f(y)$. Let $t \in (0, 1]$ be such that $f(xy) < t < f(x) \land f(y)$. Then $x_t \in f$ and $y_t \in f$ but $(xy)_t \in f$. This contradicts our hypothesis. Thus $f(xy) \ge f(x) \land f(y)$.

Lemma 2. A fuzzy subset f of a semigroup S is a fuzzy left (resp. right) ideal of S if and only if it satisfies,

For all $x, y \in S$ and for all $t \in (0, 1]$, $y_t \in f \Rightarrow (xy)_t \in f ((yx)_t \in f)$.

Proof. Suppose *f* is a fuzzy left ideal of a semigroup *S*. Let $y_t \in f$, then $f(y) \ge t$. Since *f* is a fuzzy left ideal of *S*, so $f(xy) \ge f(y) \ge t$. Hence $(xy)_t \in f$.

Conversely, suppose that f satisfies the given condition. We show that $f(xy) \ge f(y)$. On the contrary assume that there exist $x, y \in S$ such that f(xy) < f(y). Let $t \in (0, 1]$ be such that f(xy) < t < f(y). Then $y_t \in f$ but $(xy)_t \in f$. Which contradicts our hypothesis. Hence $f(xy) \ge f(y)$.

Remark 1. The above Lemma shows that every fuzzy left (right) ideal of *S* is an (\in, \in) -fuzzy left (right) ideal of *S*.

The proofs of the following Lemmas are similar to the proof of above Lemma.

Lemma 3. A fuzzy subset f of a semigroup S is a fuzzy bi-ideal of S if and only if it satisfies,

- (1) For all $x, y \in S$ and for all $t_1, t_2 \in (0, 1], x_{t_1} \in f, y_{t_2} \in f \Rightarrow (xy)_{\min\{t_1, t_2\}} \in f.$ (2) For all $x, y, z \in S$ and for all $t_3, t_4 \in (0, 1], x_{t_3} \in f, z_{t_4} \in f \Rightarrow (xyz)_{\min\{t_3, t_4\}} \in f.$
- **Lemma 4.** A fuzzy subset f of a semigroup S is a fuzzy generalized bi-ideal of S if and only if it satisfies,

For all $x, y, z \in S$ and for all $t_3, t_4 \in (0, 1], x_{t_3} \in f, z_{t_4} \in f \Rightarrow (xyz)_{\min\{t_3, t_4\}} \in f$.

Theorem 3. Let f be a nonzero (α, β) -fuzzy subsemigroup of S. Then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a subsemigroup of S.

Proof. Let $x, y \in f_0$. Then f(x) > 0 and f(y) > 0. Let f(xy) = 0. If $\alpha \in \{\epsilon, \epsilon \lor q\}$, then $x_{f(x)}\alpha f$ and $y_{f(y)}\alpha f$ but $f(xy) = 0 < \min\{f(x), f(y)\}$ and $f(xy) + \min\{f(x), f(z)\} \le 0 + 1 = 1$. So $(xy)_{\min\{f(x), f(y)\}}\overline{\beta}f$ for every $\beta \in \{\epsilon, q, \epsilon \lor q, \epsilon \land q\}$, a contradiction. Hence f(xy) > 0, that is $xy \in f_0$. Also x_1qf and y_1qf but $(xy)_1\overline{\beta}f$ for every $\beta \in \{\epsilon, q, \epsilon \lor q, \epsilon \land q\}$. Hence f(xy) > 0, that is, $xy \in f_0$. Thus f_0 is a subsemigroup of *S*.

Theorem 4. Let f be a nonzero (α, β) -fuzzy generalized bi-ideal of S. Then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a generalized bi-ideal of S.

Proof. Let $x, z \in f_0$ and $y \in S$. Then f(x) > 0 and f(z) > 0. Let f(xyz) = 0. If $\alpha \in \{\in, \in \lor q\}$, then $x_{f(x)}\alpha f$ and $z_{f(z)}\alpha f$ but $f(xyz) = 0 < \min\{f(x), f(z)\}$ and $f(xyz) + \min\{f(x), f(z)\} \le 0 + 1 = 1$. So $(xyz)_{\min\{f(x), f(z)\}} \overline{\beta} f$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$, a contradiction. Hence f(xyz) > 0, that is, $xyz \in f_0$. Also x_1qf and z_1qf but $(xyz)_1 \overline{\beta} f$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$. Hence f(xyz) > 0, that is, $xyz \in f_0$. Thus f_0 is a generalized bi-ideal of *S*.

Theorem 5. Let f be a nonzero (α, β) -fuzzy bi-ideal of S. Then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a bi-ideal of S.

Proof. Follows from Theorems 3 and 4.

Theorem 6. Let f be a nonzero (α, β) -fuzzy left (resp. right) ideal of S. Then the set $f_0 = \{x \in S \mid f(x) > 0\}$ is a left (resp. right) ideal of S.

Proof. Proof is similar to the proofs of Theorems 3 and 4.

Theorem 7. Let L be a left (resp. right) ideal of S and let f be a fuzzy subset in S such that,

$$f(x) = \begin{cases} 0 & \text{if } x \in S - L \\ \ge 0.5 & \text{if } x \in L. \end{cases}$$

Then

(1) *f* is a $(q, \in \lor q)$ -fuzzy left (resp. right) ideal of *S*. (2) *f* is an $(\in, \in \lor q)$ -fuzzy left (resp. right) ideal of *S*.

Proof. (1) Let $x, y \in S$ and $t \in (0, 1]$ such that $y_t qf$. Then f(y) + t > 1. So $y \in L$. Therefore $xy \in L$. Thus if $t \le 0.5$, then $f(xy) \ge 0.5 \ge t$ and so $(xy)_t \in f$. If t > 0.5, then f(xy) + t > 0.5 + 0.5 = 1 and so $(xy)_t qf$. Therefore $(xy)_t \in \lor qf$. Thus f is $a(q, \in \lor q)$ -fuzzy left ideal of S.

(2) Let $x, y \in S$ and $t \in (0, 1]$ such that $y_t \in f$. Then $f(y) \ge t$. Thus $y \in L$, and so $xy \in L$. Thus if $t \le 0.5$, then $f(xy) \ge 0.5 \ge t$ and so $(xy)_t \in f$. If t > 0.5, then f(xy) + t > 0.5 + 0.5 = 1 and so $(xy)_t qf$. Therefore $(xy)_t \in \lor qf$. Thus f is an $(\in, \in \lor q)$ -fuzzy left ideal of S.

Similarly we can prove the following Theorems.

Theorem 8. Let A be a subsemigroup of S and let f be a fuzzy subset in S such that

$$f(x) = \begin{cases} 0 & \text{if } x \in S - A \\ \ge 0.5 & \text{if } x \in A. \end{cases}$$

Then

(1) *f* is a $(q, \in \lor q)$ -fuzzy subsemigroup of *S*. (2) *f* is an $(\in, \in \lor q)$ -fuzzy subsemigroup of *S*.

Theorem 9. Let B be a generalized bi-ideal of S and let f be a fuzzy subset in S such that

$$f(x) = \begin{cases} 0 & \text{if } x \in S - B \\ \ge 0.5 & \text{if } x \in B. \end{cases}$$

Then

(1) *f* is a $(q, \in \lor q)$ -fuzzy generalized bi-ideal of *S*. (2) *f* is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of *S*.

Theorem 10. Let B be a bi-ideal of S and let f be a fuzzy subset in S such that

$$f(x) = \begin{cases} 0 & \text{if } x \in S - B \\ \ge 0.5 & \text{if } x \in B. \end{cases}$$

Then

(1) *f* is a $(q, \in \lor q)$ -fuzzy bi-ideal of *S*. (2) *f* is an $(\in, \in \lor q)$ -fuzzy bi-ideal of *S*.

4. $(\in, \in \lor q)$ -fuzzy ideals

Lemma 5. Let f be a fuzzy subset of a semigroup S. Then f is an $(\in, \in \lor q)$ -fuzzy left (right) ideal of S if and only if $f(xy) \ge \min\{f(y), 0.5\}$ (f $(xy) \ge \min\{f(x), 0.5\}$).

Proof. Let *f* be an $(\in, \in \lor q)$ -fuzzy left ideal of *S*. On the contrary assume that $f(xy) < \min\{f(y), 0.5\}$. Choose $t \in (0, 1]$ such that $f(xy) < t < \min\{f(y), 0.5\}$. Then $y_t \in f$ but $(xy)_t \in \lor qf$, which is a contradiction. Hence $f(xy) \ge \min\{f(y), 0.5\}$.

Conversely, assume that $f(xy) \ge \min\{f(y), 0.5\}$. Let $y_t \in f$ then $f(y) \ge t$. Now $f(xy) \ge \min\{f(y), 0.5\} \ge \min\{t, 0.5\}$. If $t \le 0.5$, then $f(xy) \ge t$. So $(xy)_t \in f$. If t > 0.5 then $f(xy) \ge 0.5$. So f(xy) + t > 0.5 + 0.5 = 1. Thus $(xy)_t qf$. Hence $(xy)_t \in \lor qf$. Thus f is an $(\in, \in \lor q)$ -fuzzy left ideal of S.

Corollary 1. Let f be a fuzzy subset of a semigroup S. Then f is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of S if and only if $f(xy) \ge \min\{f(y), 0.5\}$ and $f(xy) \ge \min\{f(x), 0.5\}$.

Theorem 11. If f is an $(\in, \in \lor q)$ -fuzzy left ideal and g is an $(\in, \in \lor q)$ -fuzzy right ideal of a semigroup S then $f \circ g$ is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of S.

Proof. Let $x, y \in S$. Then

 $(f \circ g) (y) \wedge 0.5 = (\bigvee_{y=pq} \{f (p) \land g (q)\}) \land 0.5$ $= \bigvee_{y=pq} \{f (p) \land g (q) \land 0.5\}$ $= \bigvee_{y=pq} \{f (p) \land 0.5 \land g (q)\}.$

(If y = pq, then xy = x (pq) = (xp) q. Since f is an (\in , $\in \lor q$)-fuzzy left ideal so by Lemma 5 f (xp) $\ge \min\{f(p), 0.5\}$.) Thus

$$\begin{split} (f \circ g) (y) \wedge 0.5 &= \lor_{y=pq} \{ f (p) \wedge 0.5 \wedge g (q) \} \\ &\leq \lor_{y=pq} \{ f (xp) \wedge g (q) \} \\ &\leq \lor_{xy=ab} \{ f (a) \wedge g (b) \} \\ &= (f \circ g) (xy) \,. \end{split}$$

So

 $\min\{(f \circ g)(y), 0.5\} \le (f \circ g)(xy).$

Similarly we can show that $(f \circ g)(xy) \ge \min\{(f \circ g)(x), 0.5\}$. Thus $f \circ g$ is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S*.

Lemma 6. Intersection of $(\in, \in \lor q)$ -fuzzy left ideals of a semigroup S is an $(\in, \in \lor q)$ -fuzzy left ideal of S.

Proof. Let $\{f_i\}_{i \in I}$ be a family of $(\in, \in \lor q)$ -fuzzy left ideals of *S*. Let $x, y \in S$. Then $(\land_{i \in I} f_i)(xy) = \land_{i \in I}(f_i(xy))$ (Since each f_i is an $(\in, \in \lor q)$ -fuzzy left ideal of *S*, so $f_i(xy) \ge f_i(y) \land 0.5$ for all $i \in I$) Thus

 $\begin{aligned} (\wedge_{i \in I} f_i) (xy) &= \wedge_{i \in I} (f_i (xy)) \\ &\geq \wedge_{i \in I} (f_i (y) \wedge 0.5) \\ &= (\wedge_{i \in I} f_i (y)) \wedge 0.5 \\ &= (\wedge_{i \in I} f_i) (y) \wedge 0.5. \end{aligned}$

Hence $\wedge_{i \in I} f_i$ is an $(\in, \in \lor q)$ -fuzzy left ideal of S.

Similarly we can prove that intersection of $(\in, \in \lor q)$ -fuzzy right ideals of a semigroup *S* is an $(\in, \in \lor q)$ -fuzzy right ideal of *S*. Thus intersection of $(\in, \in \lor q)$ -fuzzy two-sided ideals of a semigroup *S* is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S*. Now we show that if *f* and *g* are $(\in, \in \lor q)$ -fuzzy ideals of a semigroup *S*, then $f \circ g \leq f \cap g$.

Example 1. Consider the semigroup $S = \{a, b, c, d\}$.

	a	b	С	d
а	а	а	а	а
b	а	а	а	а
С	а	а	b	а
d	а	а	b	b

Fact 1. A fuzzy subset f of S is an $(\in, \in \lor q)$ -fuzzy left ideal of S if and only if

(i) $f(a) \ge f(x) \land 0.5$ for every $x \in S$,

(ii) $f(b) \ge f(y) \land 0.5$ for y = c and y = d.

Proof. Suppose *f* is an $(\in, \in \lor q)$ -fuzzy left ideal of *S*. Now *f* (*a*) = *f* (*ax*) \ge *f* (*x*) \land 0.5 for every $x \in S$. As b = cc or b = dc or b = dd. Thus *f* (*b*) = *f* (*cc*) \ge *f* (*c*) \land 0.5 and *f* (*b*) = *f* (*dd*) \ge *f* (*d*) \land 0.5.

Conversely, assume that (i) and (ii) hold. Since b = cc, b = dc and b = dd, thus by given conditions $f(xy) \ge f(x) \land 0.5$ for every $x, y \in S$. Hence f is an $(e, e \lor q)$ -fuzzy left ideal of S.

Similarly we can prove that

Fact 2. A fuzzy subset f of S is an $(\in, \in \lor q)$ -fuzzy right ideal of S if and only if

(iii) $f(a) \ge f(x) \land 0.5$ for every $x \in S$, (iv) $f(b) \ge f(y) \land 0.5$ for y = c and y = d.

Fact 3. A fuzzy subset f of S is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of S if and only if

(v) $f(a) \ge f(x) \land 0.5$ for every $x \in S$, (vi) $f(b) \ge f(y) \land 0.5$ for y = c and y = d.

Let *f* and *g* be fuzzy subsets of *S* such that

f(a) = 0.5, f(b) = 0.6, f(c) = 0.7, f(d) = 0g(a) = 0.7, g(b) = 0.5, g(c) = 0.6, g(d) = 0.2.

Then *f* and *g* are $(\in, \in \lor q)$ -fuzzy ideals of *S*.

Now

 $f \circ g (b) = \bigvee_{b=xy} \{f (x) \land g (y)\}$ = $\lor \{0.6, 0, 0\}$ = $0.6 \leq (f \land g) (b) = 0.5$ Hence $f \circ g \leq f \land g$ in general.

Theorem 12. A fuzzy subset f of a semigroup S is an $(\in, \in \lor q)$ -fuzzy subsemigroup of S if and only if $f(xy) \ge \min\{f(x), f(y), 0.5\}$ for all $x, y \in S$.

Lemma 7. A fuzzy subset f of a semigroup S is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of S if and only if $f(xyz) \ge \min\{f(x), f(z), 0.5\}$ for all $x, y, z \in S$.

Proof. Suppose *f* is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of *S*. On the contrary suppose that there exist *x*, *y*, *z* \in *S* such that *f* (*xyz*) < min{*f* (*x*), *f* (*z*), 0.5}. Choose *t* \in (0, 1] such that *f* (*xyz*) < *t* < min{*f* (*x*), *f* (*z*), 0.5}. Then *x*_t \in *f* and *z*_t \in *f* but (*xyz*)_{min{t,t]} = (*xyz*)_t $\in \lor qf$, which is a contradiction. Thus *f* (*xyz*) \geq min{*f* (*x*), *f* (*z*), 0.5} for all *x*, *y*, *z* \in *S*.

Conversely, assume that $f(xyz) \ge \min\{f(x), f(z), 0.5\}$ for all $x, y, z \in S$. Let $x_{t_1} \in f$ and $z_{t_2} \in f$ for $t_1, t_2 \in (0, 1]$. Then $f(x) \ge t_1$ and $f(z) \ge t_2$. So $f(xyz) \ge \min\{f(x), f(z), 0.5\} \ge \min\{t_1, t_2, 0.5\}$. Now if $\min\{t_1, t_2\} \le 0.5$, then $f(xyz) \ge \min\{t_1, t_2\}$. So $(xyz)_{\min\{t_1, t_2\}} \in f$. If $\min\{t_1, t_2\} > 0.5$. Then $f(xyz) \ge 0.5$. So $f(xyz) + \min\{t_1, t_2\} > 0.5 + 0.5 = 1$, which implies that $(xyz)_{\min\{t_1, t_2\}} qf$. Hence $(xyz)_{\min\{t_1, t_2\}} \in \lor qf$. Thus f is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of S.

Theorem 13 ([10]). A fuzzy subset f of a semigroup S is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S if and only if it satisfies the following conditions,

(1) $f(xy) \ge \min\{f(x), f(y), 0.5\}$ for all $x, y \in S$, (2) $f(xyz) \ge \min\{f(x), f(z), 0.5\}$ for all $x, y, z \in S$.

Proof. Follows from Theorem 12 and Lemma 7.

It is clear that every $(\in, \in \lor q)$ -fuzzy bi-ideal of a semigroup *S* is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of *S*. The next example shows that the fuzzy generalized bi-ideal of *S* is not necessarily a fuzzy bi-ideal of *S*.

Example 2. Consider the semigroup $S = \{a, b, c, d\}$.

	a	b	С	d
а	а	а	а	а
b	а	а	а	а
С	а	а	b	а
d	а	а	b	b

Let f be a fuzzy subset of S such that

f(a) = 0.5, f(b) = 0, f(c) = 0.2, f(d) = 0.

Then *f* is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of *S*. Because $f(xyz) = f(a) = 0.5 \ge f(x) \land f(z) \land 0.5$. But *f* is not $(\in, \in \lor q)$ -fuzzy bi-ideal of *S*. Because $f(cc) = f(b) = 0 \ge 0.2 = f(c) \land f(c) \land 0.5$.

Lemma 8. Every $(\in, \in \lor q)$ -fuzzy generalized bi -ideal of a regular semigroup S is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S.

Proof. Let *f* be any $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of *S* and let *a*, *b* be any elements of *S*. Then there exists an element $x \in S$ such that b = bxb. Thus we have $f(ab) = f(a(bxb)) = f(a(bx)b) \ge \min\{f(a), f(b), 0.5\}$. This shows that *f* is an $(\in, \in \lor q)$ -fuzzy subsemigroup of *S* and so *f* is an $(\in, \in \lor q)$ -fuzzy bi-ideal of *S*.

Definition 12. A fuzzy subset f of a semigroup S is called an $(\in, \in \lor q)$ -fuzzy quasi-ideal of S, if it satisfies,

$$f(x) \ge \min\{(f \circ \mathscr{S})(x), (\mathscr{S} \circ f)(x), 0.5\}$$

where δ is the fuzzy subset of S mapping every element of S on 1.

Theorem 14. Let f be an $(\in, \in \lor q)$ -fuzzy quasi-ideal of a semigroup S, then the set $f_0 = \{x \in S : f(x) > 0\}$ is a quasi-ideal of S. **Proof.** In order to show that f_0 is a quasi-ideal of S, we have to show that $Sf_0 \cap f_0S \subseteq f_0$. Let $a \in Sf_0 \cap f_0S$. This implies that $a \in Sf_0$ and $a \in f_0S$. So a = sx and a = yt for some $s, t \in S$ and $x, y \in f_0$. Thus f(x) > 0 and f(y) > 0. Now $f(a) \ge \min\{(f \circ \delta)(a), (\delta \circ f)(a), 0.5\}$.

$$(\mathscr{X} \circ f)(\mathfrak{a})$$

 $(\delta \circ f) (a) = \bigvee_{a=pq} \{ \delta (p) \land f (q) \}$ $\geq \{ \delta (s) \land f (x) \} \text{ because } a = sx$ = f (x) .

Similarly $(f \circ \mathscr{S})(a) \ge f(y)$. Thus

 $f(a) \ge \min \{ (f \circ \mathscr{S}) (a), (\mathscr{S} \circ f) (a), 0.5 \}$ $\ge \min \{ f(x), f(y), 0.5 \}$ $> 0 \quad \text{because } f(x) > 0 \text{ and } f(y) > 0.$

Thus $a \in f_0$. Hence f_0 is a quasi-ideal of S.

Remark 2. Every fuzzy quasi-ideal of *S* is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*.

Lemma 9. A nonempty subset Q of a semigroup S is a quasi-ideal of S if and only if the characteristic function C_Q is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of S.

Proof. Suppose *Q* is a quasi-ideal of *S*. Let C_Q be the characteristic function of *Q*. Let $x \in S$. If $x \notin Q$ then $x \notin SQ$ or $x \notin QS$. If $x \notin SQ$ then $(\$ \circ C_Q)(x) = 0$ and so min $\{(C_Q \circ \$)(x), (\$ \circ C_Q)(x), 0.5\} = 0 = C_Q(x)$. If $x \in Q$ then $C_Q(x) = 1 \ge \min\{(C_Q \circ \$)(x), (\$ \circ C_Q)(x), 0.5\}$. Hence C_Q is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*.

Conversely, assume that C_Q is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*. Let $a \in QS \cap SQ$. Then there exist *b*, $c \in S$ and $x, y \in Q$ such that a = xb and a = cy. Then

$$\left(C_{\mathbb{Q}} \circ \$ \right) (a) = \bigvee_{a=pq} \left\{ C_{\mathbb{Q}} \left(p \right) \land \$ \left(q \right) \right\}$$

$$\geq C_{\mathbb{Q}} \left(x \right) \land \$ \left(b \right)$$

$$= 1 \land 1$$

$$= 1.$$

So $(C_Q \circ \delta)(a) = 1$. Similarly $(\delta \circ C_Q)(a) = 1$.

Hence $C_Q(a) \ge \min \{ (C_Q \circ \delta)(a), (\delta \circ C_Q)(a), 0.5 \} = 0.5$. Thus $C_Q(a) = 1$, which implies that $a \in Q$. Hence $SQ \cap QS \subseteq Q$, that is Q is a quasi-ideal of S.

The proof of the following Lemma is straight forward.

Lemma 10. The characteristic function C_L is an $(\in, \in \lor q)$ -fuzzy left ideal of S if and only if L is a left ideal of S.

Similarly the characteristic function C_R is an $(\in, \in \lor q)$ -fuzzy right ideal of *S* if and only if *R* is a right ideal of *S*. Hence it follows that characteristic function C_I is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S* if and only if *I* is a two-sided ideal of *S*.

Theorem 15. Every $(\in, \in \lor q)$ -fuzzy left ideal of *S* is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*.

Proof. Let $x \in S$, then

 $(\mathscr{S} \circ f)(x) = \bigvee_{x=yz} \{\mathscr{S}(y) \land f(z)\} = \bigvee_{x=yz} f(z)$

This implies that

$$(\$ \circ f) (x) \land 0.5 = (\lor_{x=yz} f(z)) \land 0.5$$

= $\lor_{x=yz} (f(z) \land 0.5)$
 $\leq f (yz)$
= $f(x)$ (because f is an $(\in, \in \lor q)$ -fuzzy left ideal of S.).

Thus $(\$ \circ f)(x) \land 0.5 \le f(x)$. Hence $f(x) \ge (\$ \circ f)(x) \land 0.5 \ge \min \{(f \circ \$)(x), (\$ \circ f)(x), 0.5\}$. Thus f is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of S.

Similarly we can show that every $(\in, \in \lor q)$ -fuzzy right ideal of *S* is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*.

Lemma 11. Every $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S* is an $(\in, \in \lor q)$ -fuzzy bi-ideal of *S*. **Proof.** Suppose *f* is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of a semigroup *S*. Now

$$\begin{split} f(xy) &\geq (f \circ \delta) (xy) \land (\delta \circ f) (xy) \land 0.5 \\ &= [\lor_{xy=ab} \{f(a) \land \delta(b)\}] \land [\lor_{xy=pq} \{\delta(p) \land f(q)\}] \land 0.5 \\ &\geq [f(x) \land \delta(y)] \land [\delta(x) \land f(y)] \land 0.5 \\ &\geq [f(x) \land 1] \land [1 \land f(y)] \land 0.5 \\ &= f(x) \land f(y) \land 0.5. \end{split}$$
So f(xy) $\geq \min\{f(x), f(y), 0.5\}.$ Also $f(xyz) \geq (f \circ \delta) (xyz) \land (\delta \circ f) (xyz) \land 0.5 \\ &= [\lor_{xyz=ab} \{f(a) \land \delta(b)\}] \land [\lor_{xyz=pq} \{\delta(p) \land f(q)\}] \land 0.5 \\ &\geq [f(x) \land \delta(yz)] \land [\delta(xy) \land f(z)] \land 0.5 \\ &\geq [f(x) \land 1] \land [1 \land f(z)] \land 0.5 \end{split}$

So $f(xyz) \ge \min\{f(x), f(z), 0.5\}$. Thus f is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S.

Lemma 12. Every $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S* is an $(\in, \in \lor q)$ -fuzzy interior ideal of *S*.

Proof. Let *f* be an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S*. Now $f(xy) \ge f(y) \land 0.5 \ge f(x) \land f(y) \land 0.5$. So $f(xy) \ge f(x) \land f(y) \land 0.5$. Also for all *x*, *a*, *y* \in *S*. *f* (*xay*) $\ge f(x(ay)) \ge f(ay) \land 0.5 \ge f(a) \land 0.5$. So $f(xay) \ge f(a) \land 0.5$. Hence *f* is an $(\in, \in \lor q)$ -fuzzy interior ideal of *S*.

The following example shows that the converse of Lemma 12 does not hold in general.

Example 3. Consider the semigroup $S = \{0, a, b, c\}$.

 $= f(x) \wedge f(z) \wedge 0.5.$

	0	а	b	С
0	0	0	0	0
а	0	0	0	0
b	0	0	0	а
С	0	0	а	b

Let *f* be a fuzzy subset of *S* such that

$$f(0) = 0.7,$$
 $f(a) = 0.4,$ $f(b) = 0.6,$ $f(c) = 0.6,$

Then *f* is an $(\in, \in \lor q)$ -fuzzy interior ideal of *S* which is not an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S*. In fact *f* (*xyz*) = $f(0) = 0.7 > 0.5 \ge f(y) \land 0.5$. Also if xy = 0, then $f(xy) = f(0) = 0.7 > 0.5 \ge f(x) \land f(y) \land 0.5$. If xy = a, then $f(xy) = f(a) = 0.4 > 0 = f(x) \land f(y) \land 0.5$. And if xy = b, then $f(xy) = f(b) = 0.6 > 0 = f(x) \land f(y) \land 0.5$ for every $x, y, z \in S$. Thus *f* is an $(\in, \in \lor q)$ -fuzzy interior ideal of *S*. But since $f(bc) = f(a) = 0.4 < 0.5 = f(b) \land 0.5$. So *f* is not an $(\in, \in \lor q)$ -fuzzy right ideal of *S*, that is, it is not an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S*.

5. Lower and upper parts of $(\in, \in \lor q)$ -fuzzy ideals

Definition 13. Let *f* be a fuzzy subset of a semigroup *S*. We define the upper part f^+ and the lower part f^- of *f* as follows, $f^+(x) = f(x) \lor 0.5$ and $f^-(x) = f(x) \land 0.5$.

Lemma 13. Let *f* and *g* be fuzzy subsets of a semigroup *S*. Then the following holds.

(1) $(f \land g)^- = (f^- \land g^-)$ (2) $(f \lor g)^- = (f^- \lor g^-)$ (3) $(f \circ g)^- = (f^- \circ g^-)$ **Proof.** For all $a \in S$. (1) $(f \land g)^- (a) = (f \land g) (a) \land 0.5$ $= f(a) \land g(a) \land 0.5$ $= (f(a) \land 0.5) \land (g(a) \land 0.5)$ $= f^- (a) \land g^- (a)$ $= (f^- \land g^-) (a)$.

$$(f \lor g)^{-} (a) = (f \lor g) (a) \land 0.5$$

= $(f (a) \lor g (a)) \land 0.5$
= $(f (a) \land 0.5) \lor (g (a) \land 0.5)$
= $f^{-} (a) \lor g^{-} (a)$
= $(f^{-} \lor g^{-}) (a)$.

(3) If *a* is not expressible as a = bc for some $b, c \in S$, then $(f \circ g)(a) = 0$. Thus $(f \circ g)^-(a) = (f \circ g)(a) \land 0.5 = 0$. Since *a* is not expressible as a = bc, so $(f^- \circ g^-)(a) = 0$. Thus in this case $(f \circ g)^- = (f^- \circ g^-)$. And if *a* is expressible a = xy for some $x, y \in S$. Then

$$(f \circ g)^{-} (a) = (f \circ g) (a) \land 0.5 = \lor_{a=xy} \{ f (x) \land g (y) \} \land 0.5 = \lor_{a=xy} \{ f (x) \land 0.5 \land g (y) \land 0.5 \} = \lor_{a=xy} \{ f^{-} (x) \land g^{-} (y) \} = (f^{-} \circ g^{-}) (a).$$

Lemma 14. Let *f* and *g* be fuzzy subsets of a semigroup *S*. Then the following holds.

 $\begin{array}{l} (1) \ (f \wedge g)^+ = \left(f^+ \wedge g^+\right) \\ (2) \ (f \vee g)^+ = \left(f^+ \vee g^+\right) \\ (3) \ (f \circ g)^+ \ge \left(f^+ \circ g^+\right). \end{array}$

If every element x of S is expressible as x = bc, then $(f \circ g)^+ = (f^+ \circ g^+)$. **Proof.** For all $a \in S$.

$$(1) (f \wedge g)^{+} (a) = (f \wedge g) (a) \vee 0.5$$

= $(f (a) \wedge g (a)) \vee 0.5$
= $(f (a) \vee 0.5) \wedge (g (a) \vee 0.5)$
= $f^{+} (a) \wedge g^{+} (a)$
= $(f^{+} \wedge g^{+}) (a)$.

(2)

$$(f \lor g)^{+} (a) = (f \lor g) (a) \lor 0.5$$

= f (a) \lap g (a) \lap 0.5
= (f (a) \lap 0.5) \lap (g (a) \lap 0.5)
= f^{+} (a) \lap g^{+} (a)
= (f^{+} \lap g^{+}) (a) .

(3) If *a* is not expressible as a = bc for some $b, c \in S$, then $(f \circ g)(a) = 0$. Thus $(f \circ g)^+(a) = (f \circ g)(a) \lor 0.5 = 0.5$. But $(f^+ \circ g^+)(a) = 0$. So $f^+ \circ g^+ \le (f \circ g)^+$. But if *a* is expressible as a = bc for some $b, c \in S$, then

$$(f \circ g)^{+} (a) = (f \circ g) (a) \lor 0.5$$

= $(\lor_{a=xy} \{f(x) \land g(y)\}) \lor 0.5$
= $\lor_{a=xy} \{(f(x) \land g(y)) \lor 0.5\}$
= $\lor_{a=xy} \{(f(x) \lor 0.5) \land (g(y) \land 0.5)\}$
= $\lor_{a=xy} \{f^{+} (x) \land g^{+} (y)\}$
= $(f^{+} \circ g^{+}) (a)$.

Definition 14. Let A be a nonempty subset of a semigroup S. Then the lower and upper parts of the characteristic function is,

$$C_A^-(a) = \begin{cases} 0.5 & \text{if } a \in A \\ 0 & \text{if } a \notin A \end{cases}$$

and

$$C_A^+(a) = \begin{cases} 1 & \text{if } a \in A \\ 0.5 & \text{if } a \notin A. \end{cases}$$

Lemma 15. Let A and B be nonempty subsets of a semigroup S. Then the following properties hold.

(1) $(C_A \wedge C_B)^- = C_{A \cap B}^-$ (2) $(C_A \vee C_B)^- = C_{A \cup B}^-$ (3) $(C_A \circ C_B)^- = C_{AB}^-$.

Lemma 16. The lower part of characteristic function C_1^- is an $(\in, \in \lor q)$ -fuzzy left ideal of S if and only if L is a left ideal of S.

Proof. Let *L* be a left ideal of *S*. Then by Theorem 7 C_l^- is an $(\in, \in \lor q)$ -fuzzy left ideal of *S*.

Conversely, assume that C_L^- is an $(\in, \in \lor q)$ -fuzzy left ideal of *S*. Let $y \in L$. Then $C_L^-(y) = 0.5$. So $y_{0.5} \in C_L^-$. Since C_L^- is an $(\in, \in \lor q)$ -fuzzy left ideal of *S*. So $(xy)_{0.5} \in \lor qC_L^-$, which implies that $(xy)_{0.5} \in C_L^-$ or $(xy)_{0.5} qC_L^-$. Hence $C_L^-(xy) \ge 0.5$ or $C_L^-(xy) + 0.5 > 1$. If $C_L^-(xy) + 0.5 > 1$, this is not possible, because $C_L^-(xy) \le 0.5$. Thus $C_L^-(xy) \ge 0.5$, which implies that $C_L^-(xy) = 0.5$. Hence $xy \in L$. Thus *L* is a left ideal of *S*.

Similarly we can prove that the lower part of characteristic function C_R^- is an $(\in, \in \lor q)$ -fuzzy right ideal of *S* if and only if *R* is a right ideal of *S*. Thus the lower part of characteristic function C_l^- is an $(\in, \in \lor q)$ -fuzzy two-sided ideal of *S* if and only if *l* is a two-sided ideal of *S*.

Lemma 17. Let Q be a nonempty subset of a semigroup S. Then Q is a quasi-ideal of S if and only if the lower part of characteristic function C_0^- is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of S.

We have shown in Lemma 2 that every fuzzy left (right) ideal of a semigroup S is an (\in, \in) -fuzzy left (right) ideal of S. Obviously every (\in, \in) -fuzzy left (right) ideal of S is an $(\in, \in \lor q)$ -fuzzy left ideal of S. But $(\in, \in \lor q)$ -fuzzy left (right) ideal of S need not be fuzzy left (right) ideal of S.

Example 4. Consider the semigroup given in Example 1. Then the fuzzy subset f of S defined by f(a) = 0.5, f(b) = 0.6, f(c) = 0.7 and f(d) = 0 is an $(\in, \in \lor q)$ -fuzzy left ideal of S but f is not fuzzy left ideal of S. Because f(a) = f(ab) = 0.5 and f(b) = 0.6, so $f(ab) \not\ge f(b)$.

Next we show that if f is an $(\in, \in \lor q)$ -fuzzy left (right) ideal of S then f^- is a fuzzy left (right) ideal of S.

Proposition 1. Let f be an $(\in, \in \lor q)$ -fuzzy left (right) ideal of S, then f^- is a fuzzy left (right) ideal of S.

Proof. Let *f* be an $(\in, \in \lor q)$ -fuzzy left ideal of *S*, then for all *a*, *b* \in *S*, we have

 $f(ab) \ge f(b) \land 0.5$. This implies that $f(ab) \land 0.5 \ge f(b) \land 0.5$. So $f^{-}(ab) \ge f^{-}(b)$. Thus f^{-} is a fuzzy left ideal of *S*. Similarly if *f* is an $(\in, \in \lor q)$ -fuzzy right ideal of *S*, then for all $a, b \in S$, we have

 $f(ab) \ge f(a) \land 0.5$ implies that $f(ab) \land 0.5 \ge f(a) \land 0.5$. So $f^-(ab) \ge f^-(a)$. Thus f^- is a fuzzy right ideal of S.

Next we show that every fuzzy left ideal of *S* is not of the form f^- for some $(\in, \in \lor q)$ -fuzzy left ideal *f* of *S*.

Example 5. Consider the semigroup of Example 1. A fuzzy subset f of S is a fuzzy left ideal of S if and only if (i) $f(a) \ge f(x)$ for all $x \in S$ and (ii) $f(b) \ge f(y)$ for y = c or d. Thus f(a) = 0.9, f(b) = 0.8, f(c) = 0.7, f(d) = 0.7 is a fuzzy left ideal of S but this is not of the form g^- for some $(\in, \in \lor q)$ -fuzzy left ideal g of S.

In [4] regular semigroups are characterized by the properties of their fuzzy ideals, fuzzy bi-ideals and fuzzy generalized bi-ideals. Next we are characterizing the regular semigroups by the properties of lower parts of $(\in, \in \lor q)$ -fuzzy ideals, bi-ideals and generalized bi-ideals.

Theorem 16. For a semigroup S the following conditions are equivalent.

(1) S is regular.

(2) $(f \land g) = (f \circ g)$ for every $(\in, \in \lor q)$ -fuzzy right ideal f and every $(\in, \in \lor q)$ -fuzzy left ideal g of S.

Proof. First assume that (1) holds. Let *f* be an $(\in, \in \lor q)$ -fuzzy right ideal and *g* be an $(\in, \in \lor q)$ -fuzzy left ideal of *S*. Now $a \in S$, we have

$$(f \circ g)^{-}(a) = (f \circ g)(a) \land 0.5$$

= $(\lor_{a=yz} \{f(y) \land g(z)\}) \land 0.5$
= $\lor_{a=yz} \{f(y) \land g(z) \land 0.5\}$
= $\lor_{a=yz} \{f(y) \land 0.5\} \land \{g(z) \land 0.5\} \land 0.5\}$
 $\leq \lor_{a=yz} (\{f(yz) \land (g(yz)\} \land 0.5)$
= $f(a) \land g(a) \land 0.5)$
= $(f \land g)(a) \land 0.5$
= $(f \land g)^{-}(a).$

So $(f \circ g)^- \le (f \wedge g)^-$. Since *S* is regular, so there exists an element $x \in S$ such that a = axa. So

$$(f \circ g)^{-}(a) = (f \circ g)(a) \land 0.5$$

= $(\lor_{a=yz} \{f(y) \land g(z)\}) \land 0.5$
 $\geq \{f(ax) \land g(a)\} \land 0.5$
 $\geq \{f(a) \land 0.5 \land g(a)\} \land 0.5$
= $f(a) \land g(a) \land 0.5$
= $(f \land g)(a) \land 0.5$
= $(f \land g)^{-}(a).$

So $(f \circ g)^- \ge (f \wedge g)^-$. Thus $(f \wedge g) = (f \circ g)^-$ and so (1) implies (2).

Conversely, assume that (2) holds. Let *R* and *L* be right ideal and left ideal of *S*, respectively. In order to see that $R \cap L = RL$ holds. Let *a* be any element of $R \cap L$. Then by Lemma 16, the lower part of characteristic functions C_R^- and C_L^- of *R* and *L* are $(\in, \in \lor q)$ -fuzzy right ideal and $(\in, \in \lor q)$ -fuzzy left ideal of *S*, respectively. Thus we have

 $C_{RL}^{-} = (C_R \circ C_L)^{-} \text{ by Lemma 15}$ $= (C_R \wedge C_L)^{-} \text{ by (1)}$ $= C_{R \cap L}^{-} \text{ by Lemma 15.}$

Thus $R \cap L = RL$. Hence it follows from Theorem 2 that *S* is regular and so (2) implies (1).

Theorem 17. For a semigroup S, the following conditions are equivalent.

- (1) S is regular.
- (2) $(h \land f \land g)^- \leq (h \circ f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy right ideal h, every $(\in, \in \lor q)$ -fuzzy generalized bi-ideal f and every $(\in, \in \lor q)$ -fuzzy left ideal g of S.
- (3) $(h \land f \land g)^- \leq (h \circ f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy right ideal h, every $(\in, \in \lor q)$ -fuzzy bi-ideal f, and every $(\in, \in \lor q)$ -fuzzy left ideal g of S.
- (4) $(h \wedge f \wedge g)^- \leq (h \circ f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy right ideal h, every $(\in, \in \lor q)$ -fuzzy quasi-ideal f, and every $(\in, \in \lor q)$ -fuzzy left ideal g of S.

Proof. (1) \Rightarrow (2) : Let h, f and g be any $(\in, \in \lor q)$ -fuzzy right ideal, $(\in, \in \lor q)$ -fuzzy generalized bi-ideal, and any $(\in, \in \lor q)$ -fuzzy left ideal of S, respectively. Let a be any element of S. Since S is regular, so there exists an element $x \in S$ such that a = axa. Hence we have

 $(h \circ f \circ g)^{-} (a) = (\bigvee_{a=yz} \{h(y) \land (f \circ g)(z)\}) \land 0.5$ $\geq h(ax) \land (f \circ g)(a) \land 0.5$ $\geq (h(a) \land 0.5) \land (\bigvee_{a=pq} \{f(p) \land g(q)\}) \land 0.5$ $\geq h(a) \land (f(a) \land g(xa)) \land 0.5$ $\geq h(a) \land (f(a) \land g(a) \land 0.5) \land 0.5$ $= h(a) \land f(a) \land g(a) \land 0.5$ $= (h \land f \land g)^{-}.$

So (1) implies (2). (2) \Rightarrow (3) \Rightarrow (4) straight forward.

 $(4) \Rightarrow (1)$: Let *h* and *g* be any $(\in, \in \lor q)$ -fuzzy right ideal and any $(\in, \in \lor q)$ -fuzzy left ideal of *S*, respectively. Since *s* is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*, by the assumption, we have

$$(h \land g)^{-} (a) = (h \land g) (a) \land 0.5$$

= $(h \land \$ \land g) (a) \land 0.5$
= $(h \land \$ \land g)^{-} (a)$
 $\leq (h \circ \$ \circ g)^{-} (a)$
 $\leq (h \circ \$ \circ g) (a) \land 0.5$
= $(\lor_{a=bc} \{(h \circ \$) (b) \land g (c)\}) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} \{h (p) \land \$ (q)\}) \land g (c)\}) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} \{h (p) \land 1\}) \land g (c)\}) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} h (p)) \land g (c)\}) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} h (p)) \land g (c)\} \land 0.5) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} h (p)) \land g (c)\} \land 0.5) \land 0.5$
= $(\lor_{a=bc} \{(\lor_{b=pq} \{h (p) \land 0.5\}) \land g (c)\}) \land 0.5$

$$\leq (\bigvee_{a=bc} \{\bigvee_{b=pq} \{h(pq)\} \land g(c)\}) \land 0.5$$

= $(\bigvee_{a=bc} \{h(b) \land g(c)\}) \land 0.5$
= $(h \circ g)(a) \land 0.5$
= $(h \circ g)^{-}(a)$.

Thus it follows that $(h \land g)^- \le (h \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy right ideal h and every $(\in, \in \lor q)$ -fuzzy left ideal g of S. But $(h \circ g)^- \le (h \land g)^-$ always. So $(h \circ g)^- = (h \land g)^-$. Hence it is follows from Theorem 16 that S is regular.

Theorem 18. For a semigroup S, the following conditions are equivalent.

(1) *S* is regular. (2) $f^- = (f \circ \delta \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy generalized bi-ideal *f* of *S*. (3) $f^- = (f \circ \delta \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy bi-ideal *f* of *S*. (4) $f^- = (f \circ \delta \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy quasi-ideal *f* of *S*.

Proof. (1) \Rightarrow (2) : Let *f* be an (\in , $\in \lor q$)-fuzzy generalized bi-ideal of *S* and let *a* be any element of *S*. Since *S* is regular, so there exists an element *x* \in *S* such that *a* = *axa*. Hence we have

$$(f \circ \$ \circ f)^{-} (a) = (f \circ \$ \circ f) (a) \land 0.5 = (\lor_{a=yz} \{ (f \circ \$) (y) \land f (z) \}) \land 0.5 \ge (f \circ \$) (ax) \land f (a) \land 0.5 = (\lor_{ax=pq} \{ (f (p) \land \$ (q) \}) \land f (a)) \land 0.5 \ge (f (a) \land \$ (x)) \land f (a) \land 0.5 = (f (a) \land 1) \land f (a) \land 0.5 = f (a) \land 0.5 = f^{-} (a) .$$

Thus $(f \circ \mathscr{S} \circ f)^- \ge f^-$.

Since f is an $(e, e \lor q)$ -fuzzy generalized bi-ideal of S. So we have

$$(f \circ \$ \circ f)^{-} (a) = (f \circ \$ \circ f) (a) \land 0.5$$

= $(\lor_{a=yz} \{ (f \circ \$) (y) \land f (z) \}) \land 0.5$
= $(\lor_{a=yz} \{ (\lor_{y=pq} \{ f (p) \land \$ (q) \}) \land f (z) \}) \land 0.5$
= $(\lor_{a=yz} \{ (\lor_{y=pq} \{ f (p) \land 1 \}) \land f (z) \}) \land 0.5$
= $(\lor_{a=yz} \{ \lor_{y=pq} \{ f (p) \} \land f (z) \}) \land 0.5$
= $\lor_{a=yz} \{ \lor_{y=pq} \{ (p) \land f (z) \land 0.5 \}$
 $\leq \lor_{a=(pq)z} \{ f (pqz) \land 0.5 \}$ (because f is an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of S.)
= $f (a) \land 0.5$
= $f^{-} (a)$.

So, $(f \circ \vartheta \circ f)^- \leq f^-$. Thus $f^- = (f \circ \vartheta \circ f)^-$. Now $(2) \Rightarrow (3) \Rightarrow (4)$ are obvious. (4) $\Rightarrow (1)$: Let *A* be any quasi-ideal of *S*. Then we have $ASA \subseteq A(SS) \cap (SS) A \subseteq AS \cap SA \subseteq A$. Let *a* be any element of *A*. Since by Lemma 9 C_A is an $(\in, \in \lor q)$ -fuzzy quasi-ideal of *S*. So we have

$$(\lor_{a=yz}\{(C_A \circ \mathscr{S}) (y) \land C_A (z)\}) \land 0.5 = ((C_A \circ \mathscr{S}) \circ C_A) (a) \land 0.5$$
$$= ((C_A \circ \mathscr{S}) \circ C_A)^- (a)$$
$$= C_A^- (a)$$
$$= 0.5$$

implies that

 $\bigvee_{a=yz} \{ (C_A \circ \mathscr{S}) (y) \land C_A (z) \} \ge 0.5$

since

 $\bigvee_{a=vz} \{ (C_A \circ \mathscr{S})(y) \land C_A(z) \} \neq 0.5$

So

 $\bigvee_{a=yz}\{(C_A\circ \mathscr{S})(y)\wedge C_A(z)\}>0.5.$

Hence

 $\vee_{a=yz}\{(C_A\circ \mathscr{S})(y)\wedge C_A(z)\}=1.$

This implies that there exist elements *b* and *c* of *S* such that $(C_A \circ \mathscr{S})(b) = 1$ and $C_A(c) = 1$ with a = bc. Thus we have

 $\vee_{b=pq} \{ C_A(p) \land \mathscr{S}(q) \} = (C_A \circ \mathscr{S})(b) = 1.$

This implies that there exist elements *d* and *e* of *S* such that

 $C_A(d) = 1$ and &(e) = 1

with b = de. Thus $d, c \in A$ and $e \in S$ and so $a = bc = (de) c \in ASA$. Therefore, $A \subseteq ASA$, and so A = ASA. Hence it follows from Theorem 2 that S is regular.

Theorem 19. For a semigroup *S*, the following conditions are equivalent.

(1) *S* is regular. (2) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy quasi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy two-sided ideal *g* of *S*. (3) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy quasi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy interior ideal *g* of *S*. (4) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy bi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy two-sided ideal *g* of *S*. (5) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy bi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy interior ideal *g* of *S*. (6) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy generalized bi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy two-sided ideal *g* of *S*. (7) $(f \land g)^- = (f \circ g \circ f)^-$ for every $(\in, \in \lor q)$ -fuzzy generalized bi-ideal *f* and every $(\in, \in \lor q)$ -fuzzy interior ideal *g* of *S*.

Proof. (1) \Rightarrow (7) : Let *f* and *g* be any (\in , $\in \lor q$)-fuzzy generalized bi-ideal and any (\in , $\in \lor q$)-fuzzy interior ideal of *S*, respectively. Then

$$\begin{array}{l} (f \circ g \circ f)^{-} (a) &= (f \circ g \circ f) (a) \wedge 0.5 \\ &\leq (f \circ \delta \circ f) (a) \wedge 0.5 \\ &= \lor_{a=yz} \{ (f \circ \delta) (y) \wedge f (z) \} \wedge 0.5 \\ &= \lor_{a=yz} \{ \lor_{y=pq} \{ f (p) \wedge \delta (q) \} \wedge f (z) \} \wedge 0.5 \\ &= \lor_{a=yz} \{ \lor_{y=pq} \{ f (p) \wedge 1 \} \wedge f (z) \} \wedge 0.5 \\ &= \lor_{a=yz} \{ \lor_{y=pq} f (p) \wedge f (z) \} \wedge 0.5 \\ &= \lor_{a=(pq)z} \{ (p) \wedge f (z) \wedge 0.5 \} \\ &= \lor_{a=(pq)z} \{ f (p) \wedge f (z) \wedge 0.5 \wedge 0.5 \} \\ &\leq \lor_{a=(pq)z} f (pqz) \wedge 0.5 \\ &= f (a) \wedge 0.5 \\ &= f^{-} (a) . \end{array}$$

and

$$\begin{array}{l} (f \circ g \circ f)^{-}(a) \leq (\$ \circ g \circ \$)^{-}(a) \\ &= (\$ \circ g \circ \$)(a) \wedge 0.5 \\ &= (\lor_{a=yz}\{(\$ \circ g)(y) \wedge \$(z)\}) \wedge 0.5 \\ &= (\lor_{a=yz}\{(\lor_{y=pq}\{\$(p) \wedge g(q)\}) \wedge \$(z)\}) \wedge 0.5 \\ &= (\lor_{a=yz}\{(\lor_{y=pq}\{1 \wedge g(q)\}) \wedge 1\}) \wedge 0.5 \\ &= (\lor_{a=yz}\{\lor_{y=pq}g(q)\}) \wedge 0.5 \\ &= \lor_{a=yz}\{\lor_{y=pq}g(q) \wedge 0.5\} \\ &\leq \lor_{a=(pq)z}\{g(pqz) \wedge 0.5\} \\ &= g(a) \wedge 0.5 \\ &= g^{-}(a) \,. \end{array}$$

Thus $(f \circ g \circ f)^- \leq (f^- \wedge g^-) = (f \wedge g)^-$. Now let *a* be any element of *S*. Then, since *S* is regular, there exists an element $x \in S$ such that a = axa (= axaxa). Since *g* is an ($\in, \in \lor q$)-fuzzy interior ideal of *S*, we have

$$(f \circ g \circ f)^{-} (a) = (f \circ g \circ f) (a) \land 0.5 = \lor_{a=yz} \{ f (y) \land (g \circ f) (z) \} \land 0.5 \ge f (a) \land (g \circ f) (xaxa) \land 0.5 = f (a) \land (\bigvee_{xaxa=pq} \{ g (p) \land f (q) \}) \land 0.5 \ge f (a) \land (g (xax) \land f (a)) \land 0.5 = f (a) \land (g (ax) \land f (a)) \land 0.5 \ge f (a) \land (g (a) \land 0.5 \land f (a)) \land 0.5$$

$$= f (a) \land g (a) \land 0.5 = (f \land g) (a) \land 0.5 = (f \land g)^{-} (a) .$$

So $(f \circ g \circ f)^- \leq (f \wedge g)^-$. Hence $(f \circ g \circ f)^- = (f \wedge g)^-$. (7) \Rightarrow (5) \Rightarrow (3) \Rightarrow (2) and (7) \Rightarrow (6) \Rightarrow (4) \Rightarrow (2) are clear.

 $(2) \Rightarrow (1)$: Let f be any $(\in, \in \lor q)$ -fuzzy quasi-ideal of S. Then, since \mathscr{E} itself is an $(\in, \in \lor q)$ -fuzzy two-sided of S, we have

$$f^{-}(a) = f(a) \land 0.5$$

= $(f \land \delta)(a) \land 0.5$
= $(f \land \delta)^{-}(a)$
= $(f \circ \delta \circ f)^{-}(a)$.

Thus it follows from Theorem 18 that S is regular. ■

Theorem 20. For a semigroup *S*, the following conditions are equivalent.

(1) S is regular.

(2) $(f \land g)^- \leq (f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy quasi-ideal f and every $(\in, \in \lor q)$ -fuzzy left ideal g of S. (3) $(f \land g)^- \leq (f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy bi-ideal f and every $(\in, \in \lor q)$ -fuzzy left ideal g of S. (4) $(f \land g)^- \leq (f \circ g)^-$ for every $(\in, \in \lor q)$ -fuzzy generalized bi-ideal f and every $(\in, \in \lor q)$ -fuzzy left ideal g of S.

Proof. (1) \Rightarrow (4) : Let *f* and *g* be any (\in , $\in \lor q$)-fuzzy generalized bi-ideal and any (\in , $\in \lor q$)-fuzzy left ideal of *S* respectively. Let *a* be any element of *S*. Then there exists an element *x* \in *S* such that *a* = *axa*. Thus we have

$$(f \circ g)^{-} (a) = (f \circ g) (a) \wedge 0.5$$

= $(\lor_{a=yz} \{f (y) \land g (z)\}) \land 0.5$
 $\geq f (a) \land g (xa) \land 0.5$
 $\geq f (a) \land g (a) \land 0.5 \land 0.5$
= $(f \land g) (a) \land 0.5$
= $(f \land g)^{-} (a)$.

So $(f \circ g)^- \ge (f \land g)^-$. (4) \Rightarrow (3) \Rightarrow (2) are obvious.

(2) \Rightarrow (1) : Let *f* be an (\in , $\in \lor q$)-fuzzy right ideal and *g* be an (\in , $\in \lor q$)-fuzzy left ideal of *S*. Since every (\in , $\in \lor q$)-fuzzy right ideal of *S* is an (\in , $\in \lor q$)-fuzzy quasi-ideal of *S*. So ($f \circ g$)⁻ $\ge (f \land g)^-$.

$$(f \circ g)^{-}(a) = (f \circ g)(a) \wedge 0.5$$

= $(\lor_{a=yz} \{f(y) \land g(z)\}) \land 0.5$
= $\lor_{a=yz} (\{f(y) \land g(z)\} \land 0.5)$
= $\lor_{a=yz} (\{f(y) \land 0.5\} \land \{g(z) \land 0.5\} \land 0.5)$
 $\leq \lor_{a=yz} (\{f(yz) \land g(yz)\} \land 0.5)$
= $f(a) \land g(a) \land 0.5$
= $(f \land g)(a) \land 0.5$
= $(f \land g)^{-}(a).$

So $(f \circ g)^- \leq (f \wedge g)^-$. Hence $(f \circ g)^- = (f \wedge g)^-$ for every $(\in, \in \lor q)$ -fuzzy right ideal f of S, and every $(\in, \in \lor q)$ -fuzzy left ideal g of S. Thus by Theorem 16 that S is regular.

References

- [1] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
- [2] N. Kuroki, Fuzzy bi-ideals in Semigroups, Commentarii Mathematici Universitatis Sancti Pauli 28 (1979) 17–21.
- [3] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981) 203–215.
- [4] J.N. Mordeson, D.S. Malik, N. Kuroki, Fuzzy Semigroups, in: Studies in Fuzziness and Soft Computing, vol. 131, Springer-Verlag, Berlin, 2003.
- [5] J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages, Theory and Applications, in: Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, 2002.
- [6] V. Murali, Fuzzy points of equivalent fuzzy subsets, Information Science 158 (2004) 277-288.
- [7] P.M Pu, Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980) 571–599.
- [8] S.K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992) 235–241.

- [9] S.K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems 80 (1996) 359–368.
- [10] S.K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996) 383–393. [11] B. Davvaz, $(\in, \in \lor q)$ -fuzzy subrings and ideals, Soft Computing 10 (2006) 206–211.
- [12] Y.B. Jun, S.Z. Song, Generalized fuzzy interior ideals in semigroups, Information Sciences 176 (2006) 3079–3093.

- [13] O. Kazanci, S. Yamak, Generalized fuzzy bi-ideals of semigroup, Soft Computing doi:10.1007/s00500-008-0280-5. [14] S.K. Bhakat, $(\in \lor q)$ -level subset, Fuzzy Sets and Systems 103 (1999) 529–533. [15] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995. [16] S.K. Bhakat, $(\in, \in \lor q)$ -fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000) 299–312.
- [17] S.M. Hong, Y.B. Jun, J. Meng, Fuzzy interior ideals in semigroups, Indian Journal of Pure and Applied Mathematics 26 (9) (1995) 859-863.
- [18] O. Steinfeld, Quasi-ideals in Rings and Semigroups, Akademiaikiado, Budapest, 1978.