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SUMMARY

Inflammatory bowel disease (IBD) is a chronic inflam-
matory disease thought to be mediated by dysfunc-
tional innate and/or adaptive immunity. This aberrant
immune response leads to the secretion of harmful
cytokines that destroy the epithelium of the gastroin-
testinal tract and thus cause further inflammation.
Interleukin-22 (IL-22) is a T helper 17 (Th17) T cell-
associated cytokine that is bifunctional in that it has
both proinflammatory and protective effects on tis-
sues depending on the inflammatory context. We
show herein that IL-22 protected mice from IBD. In-
terestingly, not only was this protection mediated
by CD4+ T cells, but IL-22-expressing natural killer
(NK) cells also conferred protection. In addition,
IL-22 expression was differentially regulated be-
tween NK cell subsets. Thus, both the innate and
adaptive immune responses have developed protec-
tive mechanisms to counteract the damaging effects
of inflammation on tissues.

INTRODUCTION

Interleukin-22 (IL-22) is a member of the IL-10-related family of

cytokines, which also include IL-19, IL-20, IL-24, and in humans,

IL-26, which are expressed during chronic inflammation. These

cytokines share 20%–30% amino acid identity and also have ho-

mologous secondary structures (Kotenko, 2002). IL-22 signals

through a heterodimeric receptor that consists of IL-22R and

IL-10Rb, whereas IL-10 signals through IL-10Ra and IL-10Rb

(Kotenko et al., 2001). Because IL-10Rb is ubiquitously ex-

pressed, signaling specificity is conferred by IL-10Ra and IL-22R

expression; IL-10Ra is limited to cells of the immune system,

whereas IL-22R expression is limited to tissue cells, such as ep-

ithelial cells (Wolk et al., 2004). Just as IL-10 protects the immune

system from overwhelming itself, IL-22 is proposed to protect

the tissues during inflammation via a signal transducer and acti-

vator of transcription 3 (Stat3)-mediated mechanism. IL-22 has

recently been shown to be protective during acute inflammation

in a hepatitis model (Radaeva et al., 2004; Zenewicz et al., 2007).

In contrast, IL-22 has been shown to mediate dermal inflamma-
tion (Ma et al., 2008; Zheng et al., 2007). The dual nature of this

cytokine, protective versus inflammatory, probably depends on

the inflammatory context. This includes, but is not limited to,

the duration and amount of IL-22 present, the overall cytokine

milieu, and the involved tissues.

IL-22 is highly expressed by Th17 cells and is strongly linked to

chronic inflammation (Chung et al., 2006; Liang et al., 2006;

Zheng et al., 2007). Th17 cells were first defined by their expres-

sion of IL-17A but have since also been shown to preferentially

express IL-22, as well as IL-17F and IL-21 (Korn et al., 2007;

Liang et al., 2006; Nurieva et al., 2007; Weaver et al., 2006). In

mice, IL-23 was once thought to control Th17 differentiation,

but it now appears that its role is in survival and expansion of

Th17 cells (Aggarwal et al., 2003; Cua et al., 2003; Veldhoen

et al., 2006). Differentiation in mice appears to be directed by

the presence of both transforming growth factor-beta (TGF-b)

and inflammatory cytokines, such as IL-6 or IL-21, that activate

Stat3 signaling pathways in the T cells (Korn et al., 2007; Nurieva

et al., 2007; Veldhoen et al., 2006). However, it is becoming in-

creasingly apparent that the IL-22 expression profile differs

from that of IL-17A. Whereas TGF-b and IL-6 are both necessary

for induction of IL-17A, IL-22 can be induced via IL-6 alone, and

increasing amounts of TGF-b are actually inhibitory to its expres-

sion (Zheng et al., 2007 and our unpublished observations).

Inflammatory bowel disease (IBD) is a chronic inflammatory

disease of the gastrointestinal tract and is caused by aberrant in-

nate and/or adaptive immune responses (Podolsky, 2002). IBD

has long been described as a Th1-mediated disease because in-

terferon-gamma (IFN-g) is essential for disease progression

(Powrie et al., 1994b). However, the recent discovery of Th17

cells has led to a re-evaluation of the role of T cells in disease.

IL-23, important for the maintenance of Th17 cells, is essential

for development of IBD in mouse models (Kullberg et al.,

2006), and protective IL-23R polymorphisms in the human pop-

ulation have been identified through a genome association study

(Duerr et al., 2006). However, the role of individual Th17 cyto-

kines, such as IL-22, in IBD remains elusive. IL-22 has been

shown to be highly upregulated in the sera and in lesions of pa-

tients with either Crohn’s disease or ulcerative colitis (Andoh

et al., 2005). IL-22 can have proinflammatory effects on colon ep-

ithelial cells and induce secretion of IL-6 and IL-8, as well as ac-

tivate the transcription factors nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) and activator protein-1

(AP-1) (Andoh et al., 2005). On the other hand, ectopic
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expression of IL-22 in the gastrointestinal tract by targeted

micro-injection is protective to colitis (Sugimoto et al., 2008).

However, it remains to be determined whether the immune re-

sponse itself has this protection mechanism during IBD.

In this study, we have investigated the role of IL-22 during IBD.

Using both innate and T cell-driven colitis animal models, we

have found a protective role for IL-22 during IBD. Our data sug-

gest that IL-22 secretion by not only CD4+ T cells but also, sur-

prisingly, NK cells in the colon mediates this protection.

RESULTS

Colon Epithelial Cells Are Responsive to IL-22
The IL-10-related cytokines (IL-10, IL-19, IL-20, IL-22, and IL-24)

share use of a family of heterodimeric cytokine receptors (Ko-

tenko, 2002; Moore et al., 2001). To begin to understand which

of these cytokines play a role in IBD, we compared expression

of the different receptor subunits in the gastrointestinal tract to

other tissues, such as the liver, spleen, and skin (Figure S1A in

the Supplemental Data available online). IL-10Ra, which is only

used by IL-10 and whose expression is primarily limited to im-

mune cells and not tissues, was highly expressed in the spleen

compared to other tissues. IL-10Rb, the b chain for both the

IL-10 and IL-22 receptor, was ubiquitously expressed in all tis-

sues, as previously reported. IL-22R, the a chain for the IL-22 re-

ceptor, was highly expressed in the colon and small intestine and

to a lesser extent in the other tissues we examined. We addition-

ally examined expression of IL-20Ra and IL-20Rb, which recog-

nize IL-19, IL-20, and IL-24, and found that both of these chains

were most highly expressed in the skin, which agrees with pub-

lished data indicating that these cytokines’ primary targets are

keratinocytes (Blumberg et al., 2001; Boniface et al., 2005).

The expression of the IL-22 receptor in the gut suggested that

the gastrointestinal system should be highly responsive to IL-22.

To further examine to which IL-10 family cytokine members co-

lon cells are responsive, and to confirm expression of the func-

tional receptor, we stimulated the human colon epithelial cell

line Caco-2 with recombinant human IL-10, IL-19, IL-20, or

IL-22. Upon recognition of the appropriate receptor, each of

these cytokines activates Stat3 in responsive cell types (Blum-

berg et al., 2001; Dumoutier et al., 2001; Dumoutier et al.,

2000). IL-22, but not IL-10, IL-19, or IL-20 induced detectable

phosphorylation of Stat3 (Figure S1B). Thus, colon epithelial

cells are a target for IL-22 activity.

IL-22 Is Induced in the Colon during IBD
To examine which cytokines are expressed during IBD in mice,

we used the CD45RBhi transfer model of colitis. This T cell-

dependent model involves the transfer of purified naive CD4

T cells (CD45RBhi) into Rag1�/�mice, which lack T cells (Morris-

sey et al., 1993; Powrie et al., 1994a). In the absence of both host

and regulatory T cells, these cells rapidly expand and gain effec-

tor functions, such as IFN-g secretion. In the absence of regula-

tory T cells, these functions are unchecked and result in massive

inflammation primarily of the gut, but eventually of other organs

such as the liver and skin. Five weeks after the transfer, when

mice had lost considerable body mass, we examined cytokine

expression in their inflamed colons. IFN-g has long been associ-

ated with IBD, and accordingly, we found that IFN-g mRNA was

highly induced in the inflamed colons compared to colons from

mice that did not receive T cells (Figure 1A). In contrast to IFN-g,

expression of Th17-associated cytokines is less well character-

ized; however, elevated IL-17A has been observed in several

other mouse models of IBD (Hue et al., 2006; Kullberg et al.,

2006). We found that both IL-22 and IL-17A mRNA were highly

expressed in the colons of Rag1�/� mice that received naive

T cells (Figure 1A). A closer examination of the kinetics of the

induction of the mRNA of these cytokines revealed a 10- to

1000-fold increase in the amount of mRNA by 2 weeks after

the transfer, and this amount remained elevated throughout

the examined disease course (Figure 1B). In addition, when pu-

rified via FACS sorting, the population of transferred CD4+ T cells

recovered from the inflamed colons expressed mRNA for these

cytokines (data not shown). At the protein level, secreted IL-22,

as well as IFN-g, was detected in the supernatant of excised

colons cultured in vitro for 3 days (Figure 1C). Thus, IL-22 is

expressed during IBD in the colon, which includes a CD4+

T cell source.

IL-22 Is Protective during IBD
Because IL-22R is highly expressed in the gastrointestinal tract

and IL-22 expression is highly induced during inflammation of

these tissues, we sought to examine the role of IL-22 in IBD.

IL-22-deficient mice housed under specific-pathogen-free con-

ditions for up to one year did not develop spontaneous colitis,

indicating that IL-22 is not essential for maintenance of normal

intestinal homeostasis. We transferred IL-22-deficient or control

wild-type CD45RBhi CD4+ T cells into Il22�/� Rag1�/� double-

deficient mice. Over the course of several weeks, all mice that

received T cells developed colitis. However, mice that received

IL-22-deficient T cells had lost significantly more mass than

mice that received wild-type cells by 3 weeks after the transfer,

and a greater difference was observed at 4 weeks (Figure 2A)

(p value week 3 = 0.0367, week 4 = 0.0013). A significant differ-

ence was also observed at 5 and 6 weeks after the transfer (week

5 p = 0.0134; week 6 p = 0.0389), and mice that received IL-22-

deficient cells had greater mortality (Figure S2). At 3 weeks after

the transfer, these mice had greater morphological changes in

their ascending colons, the main site of disease, as assessed

by histology (Figure 2B). No histopathology was noted in control

Il22�/�Rag1�/� double-deficient mice that did not receive trans-

ferred cells (Figure 2B). Although in the absence of IL-22 there

was greater loss of body mass and destruction of the colonic

tissue, we observed little difference in cytokine expression

(Figure 2C); with the exception of IL-22, or the total number of in-

filtrated CD4+ T cells in the inflamed colon (Figure 2D), and these

observations agree with our previous data showing that IL-22-

deficient T cells do not have a defect in migration or cytokine

expression (Zenewicz et al., 2007). Thus, IL-22 is protective to

the colonic tissues during IBD.

Rag1�/� Mice Express Protective IL-22
in the Colon during IBD
In addition to CD45RBhi CD4+ T cell transfers into Il22�/�Rag1�/�

mice, we also performed experiments with Rag1�/� mice as

recipients. Upon transfer of CD45RBhi Il22+/+ or Il22�/� CD4+

T cells, these mice also developed colitis, as indicated by their

elevated amounts of both IFN-g and IL-17A mRNA in the colon
948 Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc.
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(Figure 3A). Surprisingly, Rag1�/� mice that received Il22�/�

CD4+ T cells also had detectable amounts of IL-22 mRNA and

protein in their colons (Figures 3A and 3B). The amount of IL-22

expressed in the colon was similar to that expressed by Il22+/+

CD4+ T cells when they were transferred into Il22�/� Rag1�/�

mice, where the only source of IL-22 is the transferred T cells.

This suggests that there is a host-derived source of IL-22 during

IBD in Rag1�/�mice.

IL-22 expression, whether from transferred T cells or the host,

correlated with protection during IBD. Mice that completely

lacked IL-22 expression (Il22�/� CD4+ T cells transferred into

Il22�/� Rag1�/� mice) had the most severe colitis. There was

no difference in disease, inferred from body-mass reduction, of

Rag1�/� mice that received CD45RBhi Il22+/+ or Il22�/� CD4+

T cells, in stark contrast to the difference observed when Il22�/�

Rag1�/� mice were used as the hosts (Figure 3C). Thus, in

Rag1�/� mice there is a cell subset(s) that expresses IL-22 in

the inflamed colon and is able to provide protection during IBD.

Differential Expression of IL-22 by NK Subsets
IL-22 expression is not limited to Th17 CD4+ T cells. Activated

NK cells, NK T cells, CD8+ T cells, and gd T cells can also express

IL-22 (Wolk et al., 2002; Zheng et al., 2007). Because Rag1�/�

mice lack CD4+ and CD8+ T cells, as well as NK T cells and gd

T cells, and because IL-22 is expressed in Rag1�/�mice, we hy-

pothesized that NK cells are responsible for the IL-22 expression

in the colons of the mice. We first wanted to better characterize

IL-22 expression by NK cells. There are different subsets of NK

cells, which in mice can be defined by CD27 expression (Haya-

kawa et al., 2006). Upon activation, CD27hi NK cells secrete

IFN-g and granzymes, and because of high expression of che-

mokine receptors, they quickly traffic to sites of inflammation.

On the other hand, CD27lo NK cells express high amounts of in-

hibitory receptors and upon stimulation express low levels of

IFN-g and granzymes; therefore, they are less cytotoxic than

CD27hi NK cells. To investigate which subset expresses IL-22

or whether both do, we purified NK cells based on their degree

of CD27 expression and then activated the cells with different

stimuli. Previous work has shown that activation by IL-12 and

IL-18 induces IL-22 in a heterogenous NK cell population (Wolk

et al., 2002). However, because IL-23 is a potent stimulator of

Th17 cells, has been previously shown to play a role in IL-22 ex-

pression of T cells, and is important in IBD pathogenesis, we also

examined whether this cytokine is able to induce IL-22.

IL-12 and IL-18 induced IL-22 mRNA and protein in NK cells,

but only in the CD27hi population (Figure 4). In contrast, IL-23

was able to induce IL-22 in both subsets, as well as in the ab-

sence of IL-18. Unlike IL-12 and IL-18, IL-23, with or without

A

B

C

Figure 1. IL-22 Is Expressed in the Inflamed

Colon

(A) C57BL/6 CD4+ CD45RBhi CD25- NK1.1- T cells

(5 3 105) were transferred intraperitoneally to

Rag1�/� mice, and 5 weeks after the transfer,

when clinical signs of IBD were evident, cytokine

mRNA in the colon was assessed by real-time

RT-PCR. As a control, cytokine in the colons of

Rag1�/� mice that did not receive T cells was

also assessed. Bars represent the mean ± stan-

dard deviation (SD) ratio of cytokine gene to

HPRT expression as determined by the relative

quantification method (DDCT method). The exper-

iment was performed two times with similar re-

sults. There were five to seven mice/group. ND =

not detected.

(B) C57BL/6 CD4+ CD45RBhi CD25� NK1.1�

T cells (5 3 105) were transferred intraperitoneally

to Rag1�/� mice, and at different weeks after the

transfer (0, 1, 2, 3, and 4 weeks), cytokine mRNA

expressed in the colon was semi-quantitated by

real-time RT-PCR. Mean ± SD; dashed line indi-

cates limit of detection. There were four mice/

group.

(C) From the colon samples in (A), a 1 cm section of

the ascending colons of the above mice was

cultured ex vivo for 3 days. Secreted IFN-g (left)

or IL-22 (right) from the supernatants was quanti-

tated by ELISA; mean ± SD of 5–7 mice/group.

ND = not detected; dashed line indicates limit of

detection.
Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc. 949
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Figure 2. IL-22 Protects the Colon during CD4 T Cell-Mediated Colitis

Il22+/+ or Il22�/� CD4+ CD45RBhi CD25� NK1.1- T cells (5 3 105) were transferred intraperitoneally into Il22�/� Rag1�/� double-deficient mice.

(A) Mice were massed weekly, and the percent change from week 0 was calculated. Each dot represents one mouse bar indicates the mean, and crosses rep-

resent dead mice or mice that reached 30% mass loss and were euthanized according to protocol. For statistics, dead mice were assigned a mass loss of�30%.

An asterisk indicates a p value of < 0.05 determined by an unpaired two-tailed Student’s t test.

(B) Histology of H&E-stained sections from the ascending colons of the indicated mice, 3 weeks after the transfer. Shown are representative sections from one

mouse out of three to four mice/group. The bottom image is a higher magnification of the top image.

(C) At 4 weeks after the transfer, cytokine mRNA expression was assessed in the colons of the mice by real-time RT-PCR. Bars represent the mean ± SD

expression of the cytokine gene to HPRT using the DDCT method. ND = not detected. The experiment was performed two times with similar results.

(D) Total numbers of CD4+ TCRb+ cells in the inflamed colons as determined by FACS. Mean ± SD is shown.
IL-18, was not able to induce IFN-g from either subset. Thus,

IL-22 can be differentially expressed; IL-22 can be expressed

by highly activated NK cells or from what are termed more inhib-

itory NK cells, under the proper stimulation conditions.

NK Cells Can Provide Protection during IBD
Unlike the role of T cells, the role of NK cells during IBD has

not been extensively studied. Therefore, we examined the co-

lons of mice with CD45RBhi-mediated colitis to see whether
950 Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc.



Immunity

IL-22 Protects from IBD
IL-22

0.00001

0.0001

0.001

IL
-2

2/
H

PR
T

IFN

0.0001

0.001

0.01

0.1

IF
N

/H
PR

T

IL-17A

Il22+/+ Il22
-/-

0.00001

0.0001

0.001

IL
-1

7A
/H

PR
T

A

CD4+CD45RBhi

Rag1
-/-

CD4+CD45RBhi

Rag1
-/-

B

0

1x103

2x103

3x103

4x103

5x103

6x103

IF
N

(p
g/

m
l)

Il22
-/-

CD4+CD45RBhi

Rag1
-/-

 Rag1
-/-

0

1x102

2x102

3x102

4x102

5x102

6x102

IL
-2

2 
(p

g/
m

l)

ND ND

Il22
-/-

CD4+CD45RBhi

Rag1
-/-

Rag1-/-

5 10 15 20 25 30 35 40 45

-10

-5

0

5

10 Il22+/+
Il22

-/-

Days post-transfer

Pe
rc

en
t  

m
as

s 
ch

an
ge

 (%
)C

5 10 15 20 25 30 35 40 45

-40

-30

-20

-10

0

10

Days post-transfer

Pe
rc

en
t m

as
s 

ch
an

ge
 (%

)

Rag1
-/-

Rag1
-/-

Il22+/+
Il22

-/-

Il22
-/-

 Rag1
-/-

Il22
-/-

 Rag1
-/-

Figure 3. Rag1�/� Mice Express Protective IL-22 during IBD
Il22+/+ or Il22�/� CD4+ CD45RBhi CD25� NK1.1� T cells (5 3 105) were transferred i.p. into Rag1�/� mice.

(A) Six-week-post-transfer expression of cytokine mRNA in the ascending colons of the mice was assessed by real-time RT-PCR. The cytokine gene message

was compared to that of HPRT via the DDCT method. Each dot represents one mouse, and the bar indicates the mean. The experiment was performed three times

with similar results.

(B) Excised colon sections from either Rag1�/� mice that did not receive transferred cells or Rag1�/� mice that had received Il22�/� T cells 6 weeks previously

were cultured for 3 days ex vivo, and then cytokine amounts in the supernatant were quantitated by ELISA. The bar indicates mean ± SD; the dashed line indicates

the limit of detection.

(C) Mice from (A) were massed twice weekly, and the percent mass change from day 0 was calculated (top graph). At the same time, Il22+/+ or Il22�/� CD4+

CD45RBhi CD25� NK1.1- T cells (5 3 105) were transferred intraperitoneally into Il22�/� Rag1�/�mice, and their body mass was also monitored (bottom graph).

Points represent the mean percent change in body mass.
NK cell-attracting chemokines were expressed, and if so,

whether NK cells were infiltrating the colon. We used reverse

transcriptase-polymerase chain reaction (RT-PCR) to examine

Rag1�/� mice that had received IL-22 wild-type CD45RBhi

CD4+ T cells 2 weeks earlier and found that the chemokines

CXCL9, CXCL10, and CXCL11 were induced approximately 5-

to 10-fold more than they were in control mice (Figure 5A). By

FACS analysis, we found a population of NK1.1+ CD4- cells in

the inflamed colons of these mice (Figure 5B). In contrast, the

populations of colonic NK cells in nondiseased C57BL/6 mice

or Rag1�/� mice were substantially smaller (Figure 5C). Thus,

NK cells appear to infiltrate the inflamed colon and in the diseased

state constitute approximately 8% of the lymphocyte population.

To examine the relationship between NK cells and IL-22-medi-

ated protection during IBD, we performed CD45RBhi CD4+ T cell
I

transfers of IL-22 wild-type or IL-22-deficient cells into Rag2�/�

gc�/� mice. Importantly, in addition to lacking all T cell subsets

because they lack both RAG and the signaling of several cyto-

kines (IL-2, IL-4, IL-7, IL-9, and IL-15) through the common

gamma chain (gc) receptor, these mice also lack NK cells (Cao

et al., 1995; DiSanto et al., 1995). As expected, transfer of

Il22+/+ T cells into Rag2�/� gc�/�mice over the course of several

weeks led to IBD with increased amounts of both IFN-g and

IL-22 in the colons of these mice compared to those that did

not receive transferred cells (Figure 5C). The disease course

and its severity in the host Rag2�/� gc�/� mice was similar to

that observed in Rag1�/�mice. When Il22�/� T cells were trans-

ferred into Rag2�/� gc�/�mice, no IL-22 mRNA was detected in

their inflamed colons, although there was an approximately 100

fold-increase in IFN-g amounts in these mice compared to
mmunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc. 951
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Rag2�/� gc�/� mice that did not receive cells (Figure 5D). IFN-g

amounts were similar to that observed to transfers into Rag1�/�

mice (Figure 2C). In addition, IL-22-secreted protein from ex

vivo-cultured colon tissue sections from these mice was not de-

tected by ELISA. We obtained similar results by performing

a similar experiment with the BALB/c strain of mice (data not

shown). These data strongly suggest that NK cells are a source

of IL-22 in the inflamed colon.

IL-22 Protects in a Model of Colitis Mediated
by the Innate Immune System
Colitis in humans is a complex interplay involving both the innate

and adaptive immune systems. Because IL-22 expression is not

limited to differentiated effector CD4+ T cells and can also be ex-

pressed by NK cells, we wished to determine whether IL-22

could also provide protection during colitis driven by the innate

immune system, as well as in the adaptive T cell model we pre-

sented above. One commonly employed model of innate colitis

is dextran sodium sulfate (DSS)-induced colitis (Cooper et al.,

1993; Mahler et al., 1998). In this model, DSS is given in the drink-

ing water and is thought to cause disruption of the epithelial in-

tegrity of the colon, and this disruption leads to inflammation

and colitis within one week. Like CD45RBhi-mediated transfer

IBD, this is primarily a disease of the colon. IL-22 mRNA is upre-

gulated in the colons of mice after DSS treatment (Brand et al.,

2006; te Velde et al., 2007). We confirmed that IL-22 protein se-

cretion is induced by DSS treatment when we detected IL-22 in

excised colon cultures of mice that received 3% DSS in their

drinking water for 3 days (Figure 6A). Because IL-22 is expressed

in the colon during DSS-induced colitis, we compared the dis-

ease courses of IL-22-deficient mice and wild-type control

mice. IL-22-deficient mice had lost significantly more mass by

day 8 after treatment than IL-22 wild-type mice (p = 0.0030)
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Figure 4. Differential Expression of IL-22

in Activated NK Cells by IL-23 or IL-12

NK1.1+ TCRb� CD27lo (CD27lo) or NK1.1+ TCRb�

CD27hi (CD27hi) NK cells were sorted from the

spleen and lymph nodes of C57BL/6 mice. Cells

were stimulated in vitro with IL-15 and the indi-

cated cytokines. Eighteen hours after stimulation,

IL-22 and IFN-g mRNA and protein expression

were analyzed by (A) real-time RT-PCR or (B)

ELISA of the supernatants, respectively. The ex-

periment was performed three times with similar

results.

(Figure 6B). In addition, IL-22-deficient

mice had a higher rate of mortality than

the wild-type mice (Figure 6C). Although

T cells have previously been shown have

little role in DSS-mediated colitis (Axels-

son et al., 1996; Dieleman et al., 1994),

we nevertheless also compared colitis in

Rag1�/� mice and Il22�/� Rag1�/� mice

to rule out IL-22 expressed by T cells. As

observed for mice with T cells, RAG1-de-

ficient mice also deficient in IL-22 had

more severe disease than RAG1-deficient

mice (Figure S3). Thus, in addition to being protective during

adaptive-immune-mediated colitis, innate-immune-cell-driven

IL-22 is also protective during innate-immunity-mediated IBD.

To further provide evidence that NK cells are the primary in-

nate source of IL-22 in the colon during colitis, we used our in-

nate model of DSS-mediated colitis in the absence of T cells.

Three days after the initiation of DSS treatment, Rag1�/� mice

were given either a depleting NK1.1 antibody or a control anti-

body. Twenty-four hours later, mice were euthanized, and IL-6

and IL-22 secretion from the colon was examined by ex vivo co-

lon culture. Colons from both sets of mice expressed compara-

ble levels of IL-6, indicating similar amounts of inflammation

(Figure 7A). However, the colons from the control antibody group

secreted significantly more IL-22 than those from mice that re-

ceived the NK1.1 depleting antibody (p = 0.0170) (Figure 7A).

Similar results were observed when NK cells were depleted in

Rag1�/� mice via a different depleting reagent, anti-asialo GM1

antibody (Figure 7B). These data implicate NK cells as an innate

source of protective IL-22 in the inflamed colon.

DISCUSSION

IL-22 is a dual-natured cytokine; depending on the context of in-

flammation, it can have either inflammatory or protective proper-

ties. IL-22 has been shown to be an important mediator in dermal

inflammation (Ma et al., 2008; Zheng et al., 2007), and alterna-

tively, it can provide protection to hepatocytes during liver in-

flammation (Radaeva et al., 2004; Zenewicz et al., 2007) and,

as we now show here, IBD. Th17 cells have also been termed in-

flammatory T cells because these cells are hypothesized to par-

ticipate in, if not instigate, inflammatory responses. IL-17A, the

original defining cytokine of this cell subset, is important for neu-

trophil recruitment and induction of antimicrobial peptides and,
952 Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc.
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Figure 5. NK Cells Play a Role in IL-22-Me-

diated Protection during IBD

(A) NK-attracting chemokines are upregulated in

the colon during IBD. Two weeks after the transfer

of Il22+/+ CD4+ CD45RBhi CD25� NK1.1� T cells

(5 3 105) into Rag1�/� mice or control Rag1�/�

mice that did not receive cells, mRNA amounts

of the chemokines Cxcl9, Cxcl10, and Cxcl11

were examined in the ascending colon by real-

time RT-PCR. Mean ± SD is shown.

(B) Il22�/� CD4+ CD45RBhi CD25� NK1.1� T cells

(5 3 105) cells were transferred into Rag1�/�mice,

and 45 days after the transfer, when mice ex-

hibited clinical disease, colons were harvested

and stained by FACS for CD4 and NK1.1. Num-

bers indicate the mean ± SD percentage of CD4+

NK1.1� (top gate) or CD4�NK1.1+ (right gate) cells

out of total lymphocytes isolated from the colon.

There were five mice/group.

(C) Total numbers of CD4+ T cells (CD4+ TCRb+)

and NK cells (NK1.1+ TCRb�) in the colons of

mice presented in (B) as determined by FACS.

Mean ± SD is shown. B6 = C57BL/6 mouse,

ND = not detected.

(D) Il22+/+ or Il22�/� CD4+ CD45RBhi CD25�

NK1.1� T cells were transferred into Rag2�/�

gc�/� mice (5 3 105 cells; intraperitoneally).

Forty-two days after the transfer, cytokine induc-

tion in the ascending colon was semi-quantitated

by real-time RT-PCR, as well as in untransferred

Rag2�/� gc�/� mice or C57BL/6 (B6) mice. Each

dot represents one mouse; the bar indicates the

mean; ND = not detected.
like IL-22, is upregulated during chronic inflammatory diseases

such as IBD, rheumatoid arthritis, and psoriasis (Laan et al.,

1999; Liang et al., 2006) (Fujino et al., 2003; Kotake et al.,

1999). However, it is increasingly apparent that these cells do

not only promote inflammation but also have protective effects.

A recent study has put forward the idea, based on data from

many groups, that the Th17 subset is not a homogenous popu-

lation (McGeachy et al., 2007). In that study, based on the cyto-

kine milieu during differentiation, IL-17-expressing cells can be

inflammatory or protective depending of the coexpression of

IL-10. Additionally, multiple subpopulations defined by the ex-

pression of many of the Th17-related cytokines (IL-22, IL-21,

IL-17F, IL-6, TNFa) have been observed, and these distinct

expression patterns may represent functionally different cell

subsets.

CD4+ T cells, as well as NK T cells and gd T cells, all contribute

to IBD pathogenesis (Saubermann et al., 2000; Simpson et al.,

1997). The role of another lymphocyte subset, NK cells, has

not been as extensively studied in this context. NK cells provide

an innate immune defense mechanism that can be rapidly acti-

vated to secrete IFN-g and granzymes to quickly kill pathogen-

infected cells or cancerous cells. Because IFN-g is essential

for IBD development, NK cells could be hypothesized to contrib-

ute to this pathogenesis. However, although we have not ex-

cluded the possibility that they contribute to disease under other

circumstances, in the present study we have shown that NK cells

serve a protective role during IBD. We observed no difference in
colitis in Rag1�/� mice that received either IL-22 wild-type or

IL-22-deficient T cells. Moreover, Rag1�/� mice that received

IL-22-deficient T cells surprisingly had high amounts of IL-22 in

their inflamed colons, indicating an innate immune source of

IL-22. Importantly, this innate IL-22 was protective. When

Il22�/� Rag1�/� double-deficient mice were used as hosts for

IBD experiments, mice that received IL-22-deficient T cells had

substantially greater disease than mice that received IL-22

wild-type T cells. Thus, the innate IL-22 in Rag1�/� mice is

able to confer protection. Because NK cell expression of IL-22

had been previously reported, we examined IBD by using

Rag2�/� gc�/� mice as hosts; such mice differ from Rag1�/�

mice only in their absence of NK cells. Upon transfer of IL-22

deficient T cells, these mice did not express IL-22 in the inflamed

colon, whereas Rag1�/� mice did; this provided compelling

evidence that NK cells are a source of IL-22. Further experiments

in which NK cells were depleted during innate-immune-medi-

ated colitis, in the complete absence of T cells, showed that

this depletion reduced amounts of IL-22 in the colon. Thus, NK

cells are an important source of IL-22, which protects the colon

during IBD.

A previous group showed that NK cells protect during a T cell-

mediated mouse model of IBD by performing NK-depletion ex-

periments during colitis; however, their data suggested that

this was due to direct effects of the NK cells on perforin produc-

tion by the activated T cells that mediated disease (Fort et al.,

1998). We now provide data showing that NK cells are an innate
Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc. 953
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source of IL-22 in the inflamed colon and that these cells contrib-

ute to the IL-22-mediated protection of the host tissues during

IBD. This effect is independent of effects on T cells, as shown

in the innate DSS colitis model. Furthermore, our study is a report

of a functional role attributed to IL-22 expression by NK cells, in-

stead of Th17 cells.

NK cell expression of IL-22 is differentially regulated between

subsets. Mature NK cells can be defined by surface expression

of CD27, a member of the TNFR super family. CD27hi cells have

a lower threshold for activation and express high amounts of cy-

tokines and granzymes, making them highly cytotoxic (Haya-

kawa et al., 2006). On the other hand, CD27lo cells have higher

expression of inhibitory receptors, and therefore their activation

is more strongly regulated. We show that IL-12 and IL-18 stimu-

lation can only induce IL-22 expression in CD27hi NK cells, but

not CD27lo cells. On the other hand, IL-23 is able to induce

IL-22 expression in both subsets, independently of IL-18, and

is unable to induce IFN-g. These distinct cytokine expression

patterns may allow for optimal immune responses while limiting

tissue damage during inflammation.

The cytokines of the IL-10-related cytokine family, with the ex-

ception of IL-10 itself, affect tissue responses and not the im-

mune system. IL-22 appears to be the most relevant cytokine

for the tissues comprising the gastrointestinal tract. IL-22R ex-

pression is greatest in the colon and small intestine when com-

pared to other tissues, such as the skin, where the predominant

IL-10 family member receptors are the IL-20Ra and IL-20Rb

chains. We also found that during IBD, IL-19 mRNA was not in-

duced in the colon, and we were unable to detect IL-20 tran-

scripts. In addition, we only observed Stat3 activation in colon

epithelial cells upon IL-22 stimulation, but not with IL-10, IL-19,

or IL-20. This is in agreement with previous studies showing

that IL-10 effects are limited to immune cells and that IL-19

and IL-20 function primarily in the skin (Blumberg et al., 2001;

Wolk et al., 2004; Wolk et al., 2005).

Stat3 is the main signaling pathway activated in responsive

cells upon stimulation with IL-10-related cytokines. IL-22 acti-

vates Stat3 in a wide variety of tissues, including keratinocytes,

hepatocytes, and as shown by us and other laboratories, colon

epithelial cells (Dumoutier et al., 2000; Wolk et al., 2004; Zene-

wicz et al., 2007). IL-22 has several different effects on the gas-

trointestinal epithelium. IL-22 can induce IL-6 and IL-8 secretion

from human colonocytes, as well as activate NF-kB and induc-

ible nitric oxide synthase (Andoh et al., 2005; Ziesche et al.,

2007). However, these proinflammatory effects on the gastroin-

testinal tract appear to be of limited effect in vivo. Overexpres-

sion of IL-22 in the colon leads to induction of mucus-associated

molecules, such as MUC1, MUC3, and MUC13, leading to en-

hanced mucus production due to the restitution of goblet cells

(Sugimoto et al., 2008). This might provide protection to the

colonic epithelium during inflammation by reducing the translo-

cation of commensal bacteria across the barrier. In addition,

IL-22 induces defensin expression in colonocytes, and these

antimicrobial peptides might also provide protection (Brand

et al., 2006).

One of the pitfalls with current therapies for chronic inflamma-

tion, such as TNFa inhibitors, is that they disrupt and weaken the

normal immune response and thus lead to increased disease

susceptibility. The benefit of an IL-22-mediated therapy may

be that the cytokine only signals to tissues and has no direct

effects on the immune response. This specific targeting should

allow modulation of tissue responses to alleviate tissue destruc-

tion during inflammation while having limited effects on the im-

mune response itself. IL-22 colon-targeted gene expression per-

formed by Sugimoto et al. has already shown that IL-22 holds

promise for IBD therapy (Sugimoto et al., 2008). Because IL-22

appears to be both proinflammatory and protective, caution

must be used in developing treatments based on this cytokine

or blocking its function with antibodies. In addition, IL-22 has

proliferative effects on cells (Radaeva et al., 2004), warranting
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Figure 6. IL-22 Also Provides Protection during Colitis Mediated

by the Innate Immune System

(A) IL-22 is secreted from the colon during DSS-mediated colitis. C57BL/6

mice either were given 3% DSS ad libitum in their drinking water or remained

untreated, and 3 days later the mice were euthanized and their colons were ex-

cised. Colons were cultured for 3 days as described in the Experimental Pro-

cedures, and IL-22 was detected in the supernatant by ELISA. Bars represent

mean ± SD of seven mice/group.

(B) Il22+/+ or Il22�/�mice were given 3% DSS ad libitum in their drinking water

for 7 days. Mice were massed daily, and the percent mass change from day

0 was calculated. Mean ± SD is shown. An asterisk indicates a p value <

0.05. There were eight to ten mice/group.

(C) Survival of Il22+/+ or Il22�/� mice in (B) after they received 3% DSS in their

drinking water.
954 Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc.



Immunity

IL-22 Protects from IBD
further studies to see whether continuous IL-22 stimulation al-

lows for tumor progression. Gaining a better understanding of

both the short-term and long-term effects of IL-22 on different

tissues is needed to enable the development of IL-22-related

therapeutics for chronic inflammatory diseases such as IBD.

EXPERIMENTAL PROCEDURES

Mice

IL-22-deficient mice were as previously described (Zenewicz et al., 2007).

Mice used were at generation 10 of a backcross to the C57BL/6 strain. Mice

within experiments were sex and age matched. Rag1�/� mice (The Jackson

aboratory; Bar Harbor, ME) and Rag2�/� gc-/ mice (Taconic Farms; Hudson,

NY) were bred in-house. The progeny of a cross of Il22�/� mice to Rag1�/�

mice were intercrossed to generate Il22�/� Rag1�/� double-knockout mice

that, upon genetic screening, were then breed as Il22�/� Rag1�/� 3 Il22�/�

Rag1�/�. All mice were cared for in accordance with protocols established

by the institutional animal care and use committee at the Yale University animal

facility.

CD45RBhi Transfers

Splenocytes and inguinal and axillary lymph nodes from Il22+/+ or Il22�/�mice

were CD4 MACS (Miltenyi Biotech; Auburn, CA) purified, and naive CD4+

T cells were further purified by FACS sorting so that a population of cells

that were CD4+ CD45RBhi CD25� NK1.1� was collected. A total of 5 3 105

cells were transferred intraperitoneally into the indicated recipient mice

(Rag1�/�, Il22�/�Rag1�/�, or Rag2�/�gc�/�). Mice were massed twice

a week and euthanized when they had lost 30% of their initial mass.

DSS-Induced Colitis

Mice were given 3% dextran sodium sulfate (DSS) (molecular weight: 36,000-

50,000) (MP Biomedicals, Inc.; Solon, OH) ad libitum in their drinking water for

7 days. Body mass was measured every 24 hr, and mice were euthanized

when they had lost 30% of their initial mass. Where indicated, mice were given

250 mg of anti-NK1.1 (PK136), 250 mg of control IgG2a, or 500 mg of anti-asialo

GM1 (SH-34) (all from BioXCell, West Lebanon, NH) intraperitoneally.

Lymphocyte Preparation and Flow Cytometry

Colons were removed from euthanized mice, placed into Bruff’s media, and

passed through a wire-mesh screen. In brief, colon homogenate was incu-

bated with 100 U/ml collagenase (Sigma; St. Louis, MO) and 20 mg/ml DNase
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Figure 7. NK Cell Depletion Decreases IL-

22 Expression in the Inflamed Colon

Rag1�/� mice were given 3% DSS ad libitum in

their drinking water for 4 days. On the third day,

mice were either untreated or intraperitoneally

injected with (A) 250 mg of NK1.1-depleting anti-

body or control IgG2a or (B) 500 mg asialo GM1

antibody. Twenty-four hours later, mice were eu-

thanized, and colons were excised. Colons

were cultured for three days as described in the

Experimental Procedures, and IL-22 or IL-6 was

detected in the supernatant by ELISA. Each dot

represents one colon segment, bars represent

the mean of four to five mice/group; there are

four segments per mouse. An asterisk indicates

p < 0.05. The experiment was performed twice

with similar results.

I (Sigma) for 40 min at 37�C. For removal of colonic

debris, homogenates were centrifuged at 300 rpm

for 3 min, and then supernatants were centrifuged

at 1500 rpm for 10 min. The cells were resus-

pended in 1 ml complete media and 4 ml of 30%

OptiPrep (Axis-Shield; Oslo, Norway) in a sodium phosphate buffer, and

1 ml of media was carefully layered on top. Cells were centrifuged at

2700 rpm for 20 min. The top layer and interface were harvested as the lym-

phocyte population. Cells were stained with fluorescently conjugated anti-

bodies in 1% BSA in PBS and fixed in 2% PFA. Cells were analyzed with

a FACSCalibur (BD Biosciences; San Jose, CA), and data were analyzed by

FlowJo v. 6.1 (TreeStar, Inc., Ashland, OR).

Real-Time RT-PCR

RNA from cells or organs was isolated with Trizol reagent (Invitrogen; Carls-

bad, CA). RNA was subjected to reverse transcriptase with Superscript II (In-

vitrogen) and oligo dT primer. cDNA was semi-quantitated with commercially

available primer and probe sets (Applied Biosystems; Foster City, CA) and the

DDCT method. Hypoxanthineguanine phosphoribosyltransferase (HPRT) was

included as an internal control.

Ex Vivo Colon Culture and ELISAs

Sections of 1 cm of the ascending colon were excised, removed of feces,

washed three times with sterile PBS, and then longitudinally halved. The colon

sections were then placed into culture in complete Bruff’s media (10% FBS,

L-glutamine, penicillin, streptomycin, and tetracycline) and cultured at 37�C

with 5% CO2. Supernatants were harvested after 3 days, and the concentra-

tion of cytokine was determined by ELISA. IFN-g and IL-6 ELISA (BD PharMin-

gen; San Diego, CA) or IL-22 ELISA (Antigenix America; Huntington Station,

NY) were performed according to the manufacturer’s protocols.

NK Cell Stimulation

Spleens and lymph nodes were isolated from C57BL/6 mice and prepared as

described previously (Zenewicz et al., 2007), and NK1.1+ TCRb- CD27 lo or

NK1.1+ TCRb- CD27 hi cells were sorted on a FACS Aria. The cells were

stimulated in vitro with the indicated combination of the following cytokines:

50 ng/ml IL-15 (Peprotech; Rocky Hill, NJ), 50 ng/ml IL-12 (BD PharMingen),

50 ng/ml IL-23 (eBioscience; San Diego, CA), and 20 ng/ml IL-18 (MPL;

Naka-ku Nagoya, Japan) for 18 hr or remained untreated. mRNA was har-

vested, and cytokine expression was semiquantitated by real-time RT-PCR

as described above.

Detection of Activated Stat3

Caco-2 cells (ATCC HTB-37) were grown in DMEM media supplemented with

20% FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin.

Cells were stimulated for 20 min with the indicated concentration of recombi-

nant human IL-10, IL-19, IL-20, or IL-22 (all from Peprotech). Cell lysates were
Immunity 29, 947–957, December 19, 2008 ª2008 Elsevier Inc. 955
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separated under reducing conditions on 4% to 12% gradient gel with the

NuPAGE electrophoresis system (Invitrogen). Gels were transferred to Immo-

bolin P membrane (Millipore; Billerica, MA), blocked with 5% dry milk in PBS

with 0.01% Tween. Blots were then incubated overnight at 4�C with one of

the following primary antibodies: anti-phospho-Stat3 Tyr705 (polyclonal) or

anti-Stat3 antibody (polyclonal) (both from Cell Signaling Technology; Dan-

vers, MA). Blots were washed, incubated with appropriate secondary anti-

bodies conjugated to horse radish peroxidase, and then developed with

chemiluminescent substrate (Pierce, Rockford, IL) and film.

Histology

Organs were removed and fixed in 4% paraformaldehyde overnight at 4�C,

then embedded in paraffin, sectioned, and stained with H&E. Slides were pre-

pared at the Yale University Program for Critical Technologies in Molecular

Medicine, Department of Pathology.

Statistics

Prism 4.03 software (Graphpad Software; San Diego, CA) was used for statis-

tical analyses. p values of less than 0.05 were considered statistically signifi-

cant.

SUPPLEMENTAL DATA

Supplemental Data include three figures and are available with this article

online at http://www.immunity.com/supplemental/S1074-7613(08)00507-4.
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