The radius of \(k \)-connected planar graphs with bounded faces
Patrick Ali\(^1\), Peter Dankelmann\(^*\), Simon Mukwembi
School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa

Abstract

We prove that if \(G \) is a 3-connected plane graph of order \(p \), maximum face length \(l \) and radius \(\text{rad}(G) \), then the bound
\[
\text{rad}(G) \leq \frac{p}{6} + \frac{5l}{6} + \frac{2}{3}
\]
holds. For constant \(l \), our bound is shown to be asymptotically sharp and improves on a bound by Harant \((1990)\) \([6]\). Furthermore we extend these results to 4- and 5-connected planar graphs.

© 2012 Published by Elsevier B.V.

1. Introduction

Let \(G \) be a connected graph of order \(p \). The distance between two vertices \(u, v \) of \(G \), \(d_G(u, v) \) is the length of the shortest \(u-v \) path in \(G \). The diameter of \(G \), \(\text{diam}(G) \) is the greatest distance among all pairs of vertices. The eccentricity, \(\text{ex}(v) \), of a vertex \(v \in V(G) \) is the maximum distance between \(v \) and any other vertex in \(G \). The minimum eccentricity of \(G \) is the radius of \(G \), denoted by \(\text{rad}(G) \). The radius of a graph is an important measure of centrality. For example, in facility location problems the graph may model a community where the edges represent roads between locations (vertices). If one wishes to locate an emergency facility such as a police station, a hospital, or a fire station then the primary concern may be to choose a location such that the response/travel time from the emergency facility to a location farthest away is as small as possible. The radius is thus a good measure that indicates the response/travel time from an emergency facility to a location farthest away, if the best location for the emergency facility is chosen.

The degree, \(\text{deg}(v) \), of a vertex \(v \) of \(G \) is the number of edges incident with it. The minimum degree, \(\delta(G) \), of \(G \) is the smallest of the degrees of vertices in \(G \). The vertex-connectivity, \(\kappa(G) \), of \(G \) is defined as the minimum number of vertices whose deletion from \(G \) results in a disconnected or trivial graph. A graph \(G \) is \(k \)-connected if \(\kappa(G) \geq k \). A graph \(G \) is planar if it can be embedded into the plane with no crossing edges. A plane graph is a planar graph together with an embedding into the plane. A plane graph divides the plane into faces. The union of the vertices and edges of \(G \) incident with a face \(f \) of \(G \) is called the boundary of \(f \). Two vertices \(u \) and \(v \) share a face if they are on the boundary of a common face. The length of a face in a plane graph \(G \) is the length of the shortest walk in \(G \) that bounds it.

Several upper bounds on the radius in terms of other graph parameters are known. Erdős et al. \([5]\) proved that if \(G \) is a connected graph of order \(p \) and minimum degree \(\delta(G) \geq 2 \), then
\[
\text{rad}(G) \leq \frac{3(p - 3)}{2(\delta(G) + 1)} + 5.
\]
and also constructed graphs that show that the bound is best possible, apart from the value of the additive constant. In addition, they gave improved bounds for triangle-free and C_4-free graphs. However, using different methods, Dankelmann et al. [1] and Dlamini [3], obtained the slightly stronger bound

$$\text{rad}(G) \leq \frac{3p}{2(\delta(G) + 1)} + 1.$$

In [8], Harant and Walther gave bounds on the radius in terms of order and vertex-connectivity. For even $\kappa(G)$, the well-known bound $\text{diam}(G) \leq (p + \kappa(G) - 2)/\kappa(G)$ on the diameter is also sharp for the radius. For odd $\kappa(G)$, Harant and Walther [8] proved that

$$\text{rad}(G) \leq \frac{p}{\kappa(G) + 1} + O(\log p),$$

and conjectured that $\text{rad}(G) \leq \frac{p}{\kappa(G) + 1} + C$ for some constant C. Harant [7] showed that for $\kappa(G) = 3$, the $O(\log p)$ term can be replaced by 8. Using different methods, Mukwembi [10] proved that for odd $\kappa(G) \geq 3$, the $O(\log p)$ term can be replaced by $1 + \frac{16}{\kappa(G) + 1}$. It has, however, been shown by Egawa and Inoue [4] that for odd $\kappa(G) \geq 3$, the $O(\log p)$ term can be replaced by $1 + \frac{9}{2\kappa(G)}$. On the other hand, Iida and Kobayashi [9] obtained a slightly better bound by showing that if $\kappa(G) \geq 3$, $\kappa(G)$ odd, then the $O(\log p)$ term can be replaced by $1 + \frac{1}{\kappa(G)}$. Vizing [11] determined the maximum size of a graph of given order and radius, which yields a bound on the radius in terms of order and size. A similar result for bipartite graphs is due to Dankelmann et al. [2].

For 3-connected planar graphs, Harant [6] proved an upper bound on the radius in terms of order and maximum face length. It was shown that

$$\text{rad}(G) \leq \frac{p}{6} + l + \frac{3}{2},$$

where l is the maximum face length. No graphs which attain the bound were constructed. In this paper we strengthen this bound to

$$\text{rad}(G) \leq \frac{p}{6} + \frac{5l}{6} + \frac{5}{6}.$$

We also prove that for 4-connected planar graphs of order p, maximum face length l and radius $\text{rad}(G)$ the bound

$$\text{rad}(G) \leq \frac{p}{8} + \frac{5l}{4} + 1$$

holds and for 5-connected planar graphs of order p, maximum face length l and radius $\text{rad}(G)$ the bound

$$\text{rad}(G) \leq \frac{p}{10} + \frac{8l}{5} + 1$$

holds. We furthermore show that for large p and constant l our bounds are sharp, apart from an additive constant.

2. Results

Let G be a connected plane graph of order p. From now on let z be a fixed, not necessarily central, vertex of G and let $\text{ex}(z) = r$. For each $i = 0, 1, \ldots, r$ let

$$N_i := \{x \in V(G) | d_G(x, z) = i\}.$$

A vertex $x \in N_i$ is active if $i \leq r - 1$ and x has a neighbour in N_{i+1}. We denote by A_i the set of active vertices in N_i. For $i \in \mathbb{N}$ and $1 \leq i \leq r - 1$ we define \hat{H}_i to be the graph with vertex set A_i, where two vertices are adjacent in \hat{H}_i if and only if they share a face in G.

Lemma 2.1. Let G, z, A_i and \hat{H}_i be as above and let $1 \leq i \leq r - 1$.

(a) If G is 3-connected and u a vertex of \hat{H}_i, then u has two distinct neighbours $v, w \in A_i - \{u\}$ in \hat{H}_i.

(b) If G is 4-connected and u, v, w are three distinct vertices of \hat{H}_i, then at least one of u, v, w has a neighbour in $A_i - \{u, v, w\}$ in \hat{H}_i.

Proof. (a) Since u is a vertex of A_i, it has neighbours in N_{i+1} and in N_{i+1}. Number the neighbours of u as x_0, x_1, \ldots, x_t such that the edges ux_i appear in clockwise order, x_0 is in N_{i+1} and, say, x_t is in N_{i+1}. Denote the face containing u, x_i and x_{i+1} by f_j for $j = 0, 1, \ldots, t$ where subscripts are taken modulo $t + 1$. Let P_j be the $x_i - x_{i+1}$ path of the vertices on the boundary of f_j except u in clockwise order.

We show that there exists an j such that f_j contains a vertex $v \in A_i - \{u\}$. Consider the walk, $W := x_0 P_0 x_1 P_1 x_2 \cdots x_{k-1} P_{k-1} x_t$ i.e., the $x_0 - x_t$ walk that traverses the vertices of P_0 then $P_1, P_2, \ldots, P_{k-1}$.
Let b be the first vertex of W in N_{i+1} and let v be the predecessor of b in W. Then v is in N_i. Since v has a neighbour in N_{i+1}, we have $v \in A_i$. Furthermore, v is on the boundary of f_{j_1} for some $j_1 \in \{0, 1, \ldots, k - 1\}$. Similarly we can show that there exists a $j_2 \in \{k, k+1, \ldots, t\}$ such that the boundary of f_{j_2} contains a vertex $w \in A_i \setminus \{u\}$. It remains to show that $v \neq w$. Suppose $v = w$. Join u and v by an edge that goes through face f_{j_1}, and another edge through face f_{j_2}, thus creating a plane multigraph. The new edges form a 2-cycle, C_2. Since the last x_i that precedes v on W and the first x_i that succeeds v on W are on different sides of C_2, the inside and the outside of C_2 both contain vertices. Any path between vertices inside C_2 and those vertices outside has to pass through u or v, and hence u and v form a cutset, a contradiction to the 3-connectedness of G.

(b) Suppose that none of u, v, w shares a face with a vertex in $A_i \setminus \{u, v, w\}$. By the proof and notation of Lemma 2.1(a), we have v on the boundary of f_{j_1} for some $j_1 \in \{0, 1, \ldots, k - 1\}$ and w on the boundary of f_{j_2} for some $j_2 \in \{k, k+1, \ldots, t\}$. Also $v \neq w$. By Lemma 2.1(a) and the assumption that none of u, v, w shares a face with a vertex in $A_i \setminus \{u, v, w\}$, we conclude that u and v share a face, u and w share a face, and v and w share a face. So we can add new edges between u and v through face f_{j_1}, between u and w through face f_{j_2}, and between v and w through f_{j_1}, thus creating a plane multigraph. The three new edges form a 3-cycle, C_3. Since the last x_i that precedes v on W and the first x_i that succeeds v on W are on different sides of C_3, the inside and the outside of C_3 both contain vertices. Thus any path between vertices inside C_3 and those vertices outside has to pass through u or v or w, and hence u, v, w form a cutset, a contradiction to the 4-connectedness of G.

Lemma 2.2. Let G, z, A_i and \hat{H}_i be as above and let $1 \leq i \leq r - 1$. Let u be a vertex of \hat{H}_i. If G is 5-connected, then u has two neighbours v and w in \hat{H}_i that have no common neighbour in \hat{H}_i other than u.

Proof. By the proof and notation of Lemma 2.1, we have v on the boundary of f_{j_1} for some $j_1 \in \{0, 1, \ldots, k - 1\}$ and w on the boundary of f_{j_2} for some $j_2 \in \{k, k+1, \ldots, t\}$. Also $v \neq w$. Suppose that v and w share a neighbour $a \neq u$ in \hat{H}_i, so v and w share a face f' and a share a face f''. As above we can add edges to G: between u and v through face f_{j_1}, between u and w through face f_{j_2}, between v and w through face f', and between u and a through face f'', thus creating a plane multigraph. Now the four edges uv, uw, va and wa form a 4-cycle, C_4. Since the last x_i that precedes v on W and the first x_i that succeeds v on W are on different sides of C_4, the inside and the outside of C_4 both contain vertices. Thus any path between vertices inside C_4 and those vertices outside has to pass through u, v, w or a, and hence u, v, w and a form a cutset, a contradiction to the 5-connectedness of G.

Corollary 2.3. Let \hat{H}_i be as above. If G is 3-connected, then $\delta(\hat{H}_i) \geq 2$. Moreover,

(a) each component of \hat{H}_i has at least three vertices
(b) if G is 4-connected, then each component of \hat{H}_i has at least four vertices
(c) if G is 5-connected, then each component of \hat{H}_i has at least five vertices.

Lemma 2.4. Let G be 3-connected and z as above. Let $i \in \{1, 2, \ldots, r - 1\}$.

(a) If $|A_i| = 3$ then there exists a vertex $z_i \in A_i$ with $d_G(z_i, v) \leq \lfloor \frac{k}{2} \rfloor$ for all $v \in A_i$.
(b) If $4 \leq |A_i| \leq 5$ then there exists a vertex $z_i \in A_i$ with $d_G(z_i, v) \leq l$ for all $v \in A_i$.

Proof. (a) Since \hat{H}_i has minimum degree two and exactly three vertices, \hat{H}_i is connected. Fix a vertex z_i of \hat{H}_i and let $v \in A_i$ be arbitrary. Since any two vertices that are adjacent in \hat{H}_i are joined by a path of length at most $\lfloor \frac{k}{2} \rfloor$ in G, the z_i-v path in \hat{H}_i yields a z_i-v path in G of length at most $\lfloor \frac{k}{2} \rfloor$. Hence $d_G(z_i, v) \leq \lfloor \frac{k}{2} \rfloor$, as desired.
(b) Since \hat{H}_i has minimum degree at least two and at most five vertices, \hat{H}_i is connected and has a vertex z_i of eccentricity at most two. As in (a), this implies that $d_G(z_i, v) \leq l$ for all $v \in A_i$.

Lemma 2.5. Let G be 4-connected and z as above. Let $i \in \{1, 2, \ldots, r - 1\}$. If $6 \leq |A_i| \leq 7$ then there exists a vertex $z_i \in A_i$ with $d_G(z_i, v) \leq \lfloor \frac{3l}{2} \rfloor$ for all $v \in A_i$.

Proof. Since \hat{H}_i has at most seven vertices, it follows by Corollary 2.3 that \hat{H}_i is connected. By Lemma 2.1(a), \hat{H}_i has minimum degree at least two. Hence \hat{H}_i has a vertex z_i of eccentricity at most three. As in Lemma 2.4, this implies that $d_G(z_i, v) \leq \lfloor \frac{3l}{2} \rfloor$ for all $v \in A_i$.

Lemma 2.6. Let G be 5-connected and z as above. Let $i \in \{1, 2, \ldots, r - 1\}$. If $8 \leq |A_i| \leq 9$ then there exists a vertex $z_i \in A_i$ with $d_G(z_i, v) \leq 2l$ for all $v \in A_i$.

Proof. Since \hat{H}_i has at most nine vertices, it follows by Corollary 2.3(c) that \hat{H}_i is connected. Also \hat{H}_i has minimum degree at least two by Lemma 2.1(a). So \hat{H}_i has a vertex z_i of eccentricity at most four. As in Lemma 2.4, this implies that $d_G(z_i, v) \leq 2l$ for all $v \in A_i$.
From now on let \(z \) be a central vertex of \(G \), i.e., a vertex of eccentricity \(r = \text{rad}(G) \). We employ the notation

\[
N_{2i} = \bigcup_{0 \leq j \leq i} N_j \quad \text{and} \quad N_{2i+1} = \bigcup_{i \leq j} N_j.
\]

Form a spanning tree \(T \) of \(G \) that is distance preserving from \(z \). For a vertex \(y \in V(G) \), denote by \(T(z, y) \), the set of vertices on the path connecting \(z \) and \(y \) in \(T \).

Theorem 2.7. Let \(G \) be a 3-connected plane graph of order \(p \), maximum face length \(l \) and radius \(r \). Then

\[
r \leq \frac{p}{6} + \frac{5}{6}l + \frac{2}{3}.
\]

(1)

Proof. We first bound the cardinalities of the \(N_i \) from below. The following claim immediately follows from the 3-connectedness of \(G \):

Claim 1. Let \(i \in \{1, 2, \ldots, r - 1\} \). Then \(|N_i| \geq 3 \).

This bound can be improved if \(i \) is not too close to 0 or \(r \).

Claim 2. Let \(i \in \{\left\lfloor \frac{r}{2} \right\rfloor + 1, \left\lfloor \frac{r}{2} \right\rfloor + 2, \ldots, r - \left\lfloor \frac{r}{2} \right\rfloor - 1\} \). Then \(|N_i| \geq 4 \).

Proof of Claim 2. By way of contradiction suppose \(|N_i| = 3 \) for some \(i \in \{\left\lfloor \frac{r}{2} \right\rfloor + 1, \left\lfloor \frac{r}{2} \right\rfloor + 2, \ldots, r - \left\lfloor \frac{r}{2} \right\rfloor - 1\} \). Let \(z_i \in A_i \) be as in Lemma 2.4. Let \(x \) denote the unique vertex of \(T(z, z_i) \) which belongs to \(N_{\left\lfloor \frac{r}{2} \right\rfloor + 1} \). We show that \(\text{ex}(x) \leq r - 1 \). First let \(y \in N_{2i-1} \).

Then

\[
d(x, y) \leq d(x, z) + d(z, y)
\]

\[
\leq \left\lfloor \frac{l}{2} \right\rfloor + 1 + i - 1
\]

\[
\leq \left\lfloor \frac{l}{2} \right\rfloor + 1 + r - \left\lfloor \frac{l}{2} \right\rfloor - 1 - 1
\]

\[
= r - 1.
\]

Now let \(y \in N_{2i} \). Let \(y_i \in T(z, y) \cap N_i \) so that \(d(x, z_i) = i - \left\lfloor \frac{r}{2} \right\rfloor - 1 \). By Lemma 2.4 we have \(d(z_i, y_i) \leq \left\lfloor \frac{l}{2} \right\rfloor \). Also \(d(y_i, y) \leq r - i \).

It follows that

\[
d(x, y) \leq d(x, z_i) + d(z_i, y_i) + d(y_i, y)
\]

\[
\leq i - \left\lfloor \frac{l}{2} \right\rfloor - 1 + \left\lfloor \frac{l}{2} \right\rfloor + r - i
\]

\[
= r - 1.
\]

Therefore, \(\text{ex}(x) \leq r - 1 \), contradicting the fact that \(r \) is the radius of \(G \). \(\Box \)

Claim 3. Let \(i \in \{l + 1, l + 2, \ldots, r - l - 1\} \). Then \(|N_i| \geq 6 \).

Proof of Claim 3. Suppose to the contrary that \(|N_i| \leq 5 \) for some \(i \in \{l + 1, l + 2, \ldots, r - l - 1\} \). Let \(z_i \in A_i \) be as in Lemma 2.4. Let \(x \) denote the unique vertex of \(T(z, z_i) \) which belongs to \(N_{l+1} \). We show that \(\text{ex}(x) \leq r - 1 \). First let \(y \in N_{2i-1} \).

Then

\[
d(x, y) \leq d(x, z) + d(z, y)
\]

\[
\leq l + 1 + i - 1
\]

\[
\leq l + 1 + r - l - 1 - 1
\]

\[
= r - 1.
\]

Now let \(y \in N_{2i} \). Let \(y_i \in T(z, y) \cap N_i \) so that \(d(x, z_i) = i - l - 1 \). By Lemma 2.4 we have \(d(z_i, y_i) \leq l \). Also \(d(y_i, y) \leq r - i \).

It follows that

\[
d(x, y) \leq d(x, z_i) + d(z_i, y_i) + d(y_i, y)
\]

\[
\leq i - l - 1 + l + r - i
\]

\[
= r - 1.
\]

Therefore, \(\text{ex}(x) \leq r - 1 \), contradicting the fact that \(r \) is the radius of \(G \). \(\Box \)
We now complete the proof of the theorem. If \(r \geq 2l + 2 \), then we have by Claims 1, 2 and 3,
\[
P = |N_0| + \left(|N_1| + \cdots + |N_{\lfloor \frac{l}{2} \rfloor}| \right) + \left(|N_{\lfloor \frac{l}{2} \rfloor + 1}| + \cdots + |N_l| \right) + \left(|N_{l+1}| + \cdots + |N_{r-1}| \right) + |N_r|
\]
\[
\geq 1 + 3 \left(\frac{l}{2} \right) + 4 \left(l - \frac{l}{2} \right) + 6(r - 2l - 1) + 4 \left(- \frac{l}{2} + l \right) + 3 \left(\frac{l}{2} \right) + 1
\]
\[
= -4 - 4l - 2 \left(\frac{l}{2} \right) + 6r,
\]
and (1) follows. If \(2 \lfloor \frac{l}{2} \rfloor + 2 \leq r \leq 2l + 1 \), then Claims 1 and 2 yield a lower bound on \(p \), and if \(r \leq 2 \lfloor \frac{l}{2} \rfloor + 1 \) then Claim 1 yields again a slightly stronger bound on \(p \). It is easy to verify that both bounds are slightly stronger than the above bound on \(p \), and that each of these bounds implies (1).

\[\square\]

Corollary 2.8. Let \(G \) be a 3-connected maximal planar graph. Then
\[
r \leq \frac{p}{6} + \frac{19}{6}.
\]

The following graphs show that for fixed \(l \) the bound in Theorem 2.7 is best possible, apart from the value of the additive constant. For an even integer \(k \geq 4 \), let \(G_1, G_2, \ldots, G_k \) be disjoint copies of the cycle \(C_k \), and let \(a_i, b_i, c_i \in V(G_i) \). Let \(G_k' \) be the graph obtained from the union of \(G_1, G_2, \ldots, G_k \) by adding the edges \(a_i+a_i, b_i+b_i, c_i+c_i, a_{i+1}b_i, c_{i+1}b_i, a_{i+1}c_i \) for \(i = 1, 2, \ldots, k-1 \). Furthermore let \(C_l \) be a cycle with vertices \(j_1, j_2, \ldots, j_l \). Now join the graphs \(C_l \) and \(G_k' \) by adding the edges \(j_1a_1, j_2a_2, j_3b_1, j_4a_1 \) and \(j_1c_1 \) for \(i = 2, 3, \ldots, l \) thus obtaining a planar graph \(H_k \). Clearly, \(p(H_k) = 3k + l \) so that \(k = \frac{p(H_k)-l}{3} \).

By a simple calculation, \(\text{rad}(H_k) = \text{ex}(G_k/2) = \frac{k}{2} + 1 \) and so \(\text{rad}(H_k) = \frac{p(H_k)}{6} - \frac{1}{6} + 1 \).

Theorem 2.9. Let \(G \) be a 4-connected plane graph of order \(p \), maximum face length \(l \) and radius \(r \). Then
\[
r \leq \frac{p}{8} + \frac{5}{4}l + \frac{3}{4}.
\]

Proof. Recall that \(z \) is a central vertex of \(G \). We first bound the cardinalities of the \(N_i \) from below. The following claim immediately follows from the 4-connectedness of \(G \):

Claim 1. Let \(i \in \{1, 2, \ldots, r-1\} \). Then \(|N_i| \geq 4 \).

In Claim 2 we improve this bound if \(i \) is not too close to 0 or \(r \). We omit the proof since it is identical to the proof of Claim 3 of Theorem 2.7.

Claim 2. Let \(i \in \{l + 1, l + 2, \ldots, r - l - 1\} \). Then \(|N_i| \geq 6 \).

Claim 3. Let \(i \in \{\frac{l}{2} + 1, \frac{l}{2} + 2, \ldots, r - \lfloor \frac{l}{2} \rfloor - 1\} \). Then \(|N_i| \geq 8 \).

Proof of Claim 3. Suppose to the contrary that \(|N_i| \leq 7 \) for some \(i \in \{\lfloor \frac{l}{2} \rfloor + 1, \lfloor \frac{l}{2} \rfloor + 2, \ldots, r - \lfloor \frac{l}{2} \rfloor - 1\} \). Let \(z_i \in A_i \) be as in Lemma 2.5. Let \(x \) denote the unique vertex of \(T(z, z_i) \) which belongs to \(N_{\lfloor \frac{l}{2} \rfloor + 1} \). We show that \(\text{ex}(x) \leq r - 1 \). First let \(y \in N_{\lfloor \frac{l}{2} \rfloor - 1} \). Then
\[
d(x, y) \leq d(x, z) + d(z, y)
\]
\[
\leq \left\lfloor \frac{3l}{2} \right\rfloor + 1 + i - 1
\]
\[
\leq \left\lfloor \frac{3l}{2} \right\rfloor + 1 + r - \left\lfloor \frac{3l}{2} \right\rfloor - 1 - 1
\]
\[
= r - 1.
\]
Now let \(y \in N_{\geq i} \). Let \(y_i \in T(z, y) \cap N_i \) so that \(d(x, z_i) = i - \left\lfloor \frac{3l}{2} \right\rfloor - 1 \). By Lemma 2.5 we have \(d(z_i, y_i) \leq \left\lfloor \frac{3l}{2} \right\rfloor \). Also \(d(y_i, y) \leq r - i \). It follows that
\[
d(x, y) \leq d(x, z_i) + d(z_i, y_i) + d(y_i, y)
\]
\[
\leq i - \left\lfloor \frac{3l}{2} \right\rfloor - 1 + \left\lfloor \frac{3l}{2} \right\rfloor + r - i
\]
\[
= r - 1.
\]
Therefore, \(\text{ex}(x) \leq r - 1 \), contradicting the fact that \(r \) is the radius of \(G \). \[\square\]
We now complete the proof of the theorem. If \(r \geq 2\left\lfloor \frac{3l}{2} \right\rfloor + 2 \), then by Claims 1, 2 and 3 we have

\[
p = |N_0| + (|N_1| + \cdots + |N_i|) + \left(|N_{i+1}| + \cdots + |N_{\left\lfloor \frac{3l}{2} \right\rfloor}| \right) + \left(\left| N_{\left\lfloor \frac{3l}{2} \right\rfloor+1} \right| + \cdots + \left| N_{r-\left\lfloor \frac{3l}{2} \right\rfloor-1} \right| \right)
\]
\[
\geq 1 + 4l + 6\left(\left\lfloor \frac{3l}{2} \right\rfloor - 1 \right) + 8\left(r - 2 \left\lfloor \frac{3l}{2} \right\rfloor - 1 \right) + 6\left(-l + \left\lfloor \frac{3l}{2} \right\rfloor \right) + 4l + 1
\]
\[
\geq -6 - 10l + 8r.
\]

and (2) follows. If \(2l + 2 \leq r \leq 2\left\lfloor \frac{3l}{2} \right\rfloor + 1 \), then Claims 1 and 2 yield a lower bound on \(p \), and if \(r \leq 2l + 1 \), then again Claim 1 yields a lower bound on \(p \). It is easy to verify that both bounds are slightly stronger than the above bound on \(p \), and that each of them implies (2). \(\square \)

The following graphs show that for fixed \(l \) the bound in Theorem 2.9 is the best possible, apart from the value of the additive constant. For an even integer \(i \in 1, 2, \ldots, r \) let \(N_i \) be the graph obtained from the union of \(G_1, G_2, \ldots, G_k \) by adding the edges \(a_{i-1}a_i, b_{i-1}b_i, c_{i-1}c_i, d_{i-1}d_i, a_{i+1}a_i, b_{i+1}b_i, c_{i+1}c_i, d_{i+1}d_i \) for \(i = 1, 2, \ldots, k-1 \) and \(a_0c_0 \). Furthermore let \(C_i \) be a cycle with vertices \(j_1, j_2, \ldots, j_l \). Now join the graphs \(C_i \) and \(G_k \) by adding the edges \(j_1a_1, j_1b_1, j_2b_1, j_3b_1, j_4c_1 \) and \(j_l \) for \(i = 3, 4, \ldots, l \) thus obtaining a planar graph \(H'_k \). Clearly, \(p(H'_k) = 4k + l \) so that \(k = \frac{p(H'_k) - l}{4} \). By a simple calculation, \(\text{rad}(H'_k) = \text{ex}(d_{k/2}) = \frac{k}{2} \) and so \(\text{rad}(H'_k) = \frac{p(H'_k) - l}{8} - \frac{l}{8} \).

Theorem 2.10. Let \(G \) be a 5-connected plane graph of order \(p \), maximum face length \(l \) and radius \(r \). Then

\[
r \leq \frac{p}{10} + \frac{8l + 4}{5}.
\]

Proof. Recall that \(z \) is a central vertex of \(G \). We first bound the cardinalities of the \(N_i \) from below. The following claim immediately follows from the 5-connectedness of \(G \):

Claim 1. Let \(i \in \{1, 2, \ldots, r-1\} \). Then \(|N_i| \geq 5 \).

In Claims 2 and 3 we improve this bound if \(i \) is not too close to 0 or \(r \). We omit the proofs since they are identical to the proofs of Claim 3 of Theorem 2.7 and Claim 3 of Theorem 2.9, respectively.

Claim 2. Let \(i \in \{1 + l, 2l + 2, \ldots, r-l - 1\} \). Then \(|N_i| \geq 6 \).

Claim 3. Let \(i \in \{\left\lfloor \frac{l}{2} \right\rfloor + 1, \left\lfloor \frac{3l}{2} \right\rfloor + 2, \ldots, r - \left\lfloor \frac{3l}{2} \right\rfloor - 1\} \). Then \(|N_i| \geq 8 \).

Claim 4. Let \(i \in \{2l + 1, 2l + 2, \ldots, r - 2l - 1\} \). Then \(|N_i| \geq 10 \).

Proof of Claim 4. Suppose to the contrary that \(|N_i| \leq 9 \) for some \(i \in \{2l + 1, 2l + 2, \ldots, r - 2l - 1\} \). Let \(z_i \in A_i \) be as in Lemma 2.6. Let \(x \) denote the unique vertex of \(T(z, z_i) \) which belongs to \(N_{2l+1} \). We show that \(\text{ex}(x) \leq r - 1 \). First let \(y \in N_{2l+1} \).

Then

\[
d(x, y) \leq d(x, z) + d(z, y)
\]
\[
\leq 2l + 1 + i - 1
\]
\[
\leq 2l + 1 + r - 2l - 1 - 1
\]
\[
= r - 1.
\]

Now let \(y \in N_{2l+1} \). Let \(y \in T(z, y) \cap N_i \) so that \(d(x, z_i) = i - 2l - 1 \). By Lemma 2.6 we have \(d(z_i, y_i) \leq 2l \). Also \(d(y_i, y) \leq r - i \). It follows that

\[
d(x, y) \leq d(x, z_i) + d(z_i, y_i) + d(y_i, y)
\]
\[
\leq i - 2l - 1 + 2l + r - i
\]
\[
= r - 1.
\]

Therefore, \(\text{ex}(x) \leq r - 1 \), contradicting the fact that \(r \) is the radius of \(G \). \(\square \)
We now complete the proof of the theorem. If \(r \geq 4l + 2 \), then we have by Claims 1, 2, 3 and 4, we have

\[
p = |N_0| + (|N_1| + \cdots + |N_l|) + \left(|N_{l+1}| + \cdots + \left|N_{\frac{3l}{2}}\right|\right)
+ \left(|N_{\frac{3l}{2}}| + \cdots + |N_{2l}|\right) + (|N_{2l+1}| + \cdots + |N_{r-2l-1}|)
+ \left(|N_{r-2l}| + \cdots + \left|N_{r-\frac{3l}{2}}\right|\right)
+ \left(|N_{r-\frac{3l}{2}}| + \cdots + \left|N_{r-l-1}\right|\right)
+ (|N_{r-l}| + \cdots + |N_{r-1}|) + |N_r|
\geq 1 + 5l + 6(\frac{3l}{2} - 1) + 8(2l - \frac{3l}{2}) + 10(r - 4l - 1) + 8(2l - \frac{3l}{2}) + 6(\frac{3l}{2} - l) + 5l + 1
\geq -8 - 16l + 10r,
\]

and (3) follows. If \(2\frac{3l}{2} + 2 \leq r \leq 4l + 1 \), then Claims 1, 2, and 3 yield a lower bound on \(p \), if \(2l + 2 \leq r \leq 2\frac{3l}{2} + 1 \) then Claims 1 and 2 yield a lower bound on \(p \), and if \(r \leq 2l + 1 \) then Claim 1 yields a lower bound on \(p \). It is easy to verify that these bounds are stronger than the lower bound on \(p \) above, and that each of them implies (3). \(\square \)

The following graphs show that for fixed \(l \) the bound in Theorem 2.10 is best possible, apart from the value of the additive constant. For an even integer \(k \geq 8 \) let \(G_1, G_2, \ldots, G_k \) be disjoint copies of the 5-cycle, \(C_5 \), and let \(a_i, b_i, c_i, d_i, u_i \in V(G_i) \). Let \(G''_k \) be the graph obtained from the union of \(G_1, G_2, \ldots, G_k \) by adding the edges \(a_i + a_i, b_i + b_i, c_i + c_i, d_i + d_i, u_i + u_i, a_i + b_i, a_i + c_i, a_i + d_i, b_i + c_i, b_i + d_i, c_i + d_i, u_i + d_i \) for \(i = 1, 2, \ldots, k - 1 \) and a new vertex \(v_k \) adjacent to \(a_k, b_k, c_k, d_k \) and \(v_k \). Furthermore let \(G_l \) be a cycle with vertices \(j_1, j_2, \ldots, j_l \). Now join the graphs \(G_l \) and \(G''_k \) by adding the edges \(j_1w_1, j_1a_1, j_1b_1, j_1c_1, j_1d_1, j_2b_1, j_2b_1, j_2c_1, j_2d_1 \), and \(j_id_i \) for \(i = 3, 4, \ldots, l \) thus obtaining a planar graph \(H''_k \). Clearly, \(p(H''_k) = 5k + l \) so that \(k = \frac{p(H''_k) - l}{5} \). By a simple calculation, \(\text{rad}(H''_k) = \text{ex}(d_{k/2}) \frac{k}{2} \) and so \(\text{rad}(H''_k) = \frac{p(H''_k)}{10} - \frac{l}{10} \).

Acknowledgments

The first and third authors were financial supported by the National Research Foundation and the University of KwaZulu-Natal is acknowledged.

References