

Available online at www.sciencedirect.com



JOURNAL OF Functional Analysis

Journal of Functional Analysis 257 (2009) 3647-3654

www.elsevier.com/locate/jfa

# One more pathology of $C^*$ -algebraic tensor products

V. Manuilov<sup>a,b,\*,1</sup>

<sup>a</sup> Department of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, 119991, Russia <sup>b</sup> Harbin Institute of Technology, Harbin, PR China

Received 23 February 2009; accepted 21 May 2009

Available online 4 June 2009

Communicated by D. Voiculescu

#### Abstract

We define a collection of tensor product norms for  $C^*$ -algebras and show that a symmetric tensor product functor on the category of separable  $C^*$ -algebras need not be associative. © 2009 Elsevier Inc. All rights reserved.

Keywords: C\*-algebra; Tensor product; Property T group

## 1. Introduction

There are several known pathologies for tensor products of  $C^*$ -algebras, e.g. [12,1,5]. In this paper we reveal one more pathology:  $C^*$ -tensor products need not be associative.

Following E. Kirchberg [4], we call a bifunctor  $(A, B) \to A \otimes_{\alpha} B$  a  $C^*$ -algebraic tensor product functor if it is obtained by completing of the algebraic tensor product  $A \odot B$  of  $C^*$ algebras in a functional way with respect to a suitable  $C^*$ -norm  $\|\cdot\|_{\alpha}$ . We call such a functor symmetric if the standard isomorphism  $A \odot B \cong B \odot A$  extends to an isomorphism  $A \otimes_{\alpha} B \cong$  $B \otimes_{\alpha} A$ . Similarly, we call it associative if the standard isomorphism  $A \odot (B \odot C) \cong (A \odot B) \odot C$ extends to an isomorphism  $A \otimes_{\alpha} (B \otimes_{\alpha} C) \cong (A \otimes_{\alpha} B) \otimes_{\alpha} C$  for any  $C^*$ -algebras A, B, C. It is well known that both the minimal tensor product functor  $\otimes_{\min}$  and the maximal tensor product functor  $\otimes_{\max}$  are symmetric and associative.

0022-1236/\$ - see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2009.05.019

<sup>\*</sup> Address for correspondence: Department of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, 119991, Russia.

*E-mail address:* manuilov@mech.math.msu.su.

<sup>&</sup>lt;sup>1</sup> The author acknowledges partial support from RFFI, grant No. 07-01-00046.

In this paper we construct a collection of symmetric  $C^*$ -algebraic tensor product functors related to asymptotic homomorphisms of  $C^*$ -algebras. For technical reasons we restrict ourselves to the category of *separable*  $C^*$ -algebras. Using  $C^*$ -algebras related to property T groups [11,13] we show that some of these tensor product functors are not associative.

Recall that asymptotic homomorphisms of  $C^*$ -algebras were first defined and studied in [3] in relation to topological properties of  $C^*$ -algebras. The most important and the best known case is the case of asymptotic homomorphisms from a suspended  $C^*$ -algebra SA to the  $C^*$ -algebra  $\mathbb{K}$  of compact operators, since the homotopy classes of those are the *K*-homology of *A*, the *E*-theory. Asymptotic homomorphisms to other  $C^*$ -algebras are less known. For example, it is known that any asymptotic homomorphism to the Calkin algebra is homotopic to a genuine homomorphism [6,8]. Even less is known about asymptotic homomorphisms to  $\mathbb{B}(H)$ , where there is no topological obstruction (recall that the *K*-groups of  $\mathbb{B}(H)$  are trivial). Such asymptotic homomorphisms are called *asymptotic representations* and were first studied in relation to the asymptotic tensor product of  $C^*$ -algebras [9] and to semi-invertibility of  $C^*$ -algebra extensions [10].

## 2. Definition of asymptotic C\*-tensor products

Recall [3] that an asymptotic homomorphism  $\varphi$  from a  $C^*$ -algebra A to a  $C^*$ -algebra D is a family of maps  $\varphi = (\varphi_t)_{t \in [0,\infty)} : A \to D$  satisfying the following properties:

- 1. the map  $t \mapsto \varphi_t(a)$  is continuous for any  $a \in A$ ;
- 2.  $\lim_{t\to\infty} \varphi_t(a + \lambda b) \varphi_t(a) \lambda \varphi_t(b) = \lim_{t\to\infty} \varphi_t(a^*) \varphi_t(a)^* = \lim_{t\to\infty} \varphi_t(ab) \varphi_t(a)\varphi_t(b) = 0$  for any  $a, b \in A$  and any  $\lambda \in \mathbb{C}$ .

Let  $\mathbb{L}(H)$  be the algebra of bounded operators on a separable Hilbert space H. Our point is that we would like to consider D as a  $C^*$ -subalgebra of  $\mathbb{L}(H)$ :  $D \subset \mathbb{L}(H)$ . We also view asymptotic homomorphisms to D as asymptotic representations on H taking values in D. We are mostly interested in the special case

$$D = \mathbb{K}^{\infty} = \prod_{n=1}^{\infty} \mathbb{K} = \prod_{n=1}^{\infty} \mathbb{K}(H_n),$$

where  $H_n = H$  for all  $n \in \mathbb{N}$  and  $\mathbb{K} = \mathbb{K}(H)$  is the *C*<sup>\*</sup>-algebra of compact operators on *H*.

Let A, B be separable C\*-algebras and let  $\varphi = (\varphi_t)_{t \in [0,\infty)}, \psi = (\psi_t)_{t \in [0,\infty)}$  be asymptotic representations of A and B respectively, taking values in D.

Let  $A \odot B$  be the algebraic tensor product of A and B. For each  $a \in A$  and  $b \in B$ , we can define elements  $a^{\varphi \otimes \psi}, b^{\varphi \otimes \psi} \in C_b([0, \infty), \mathbb{L}(H \otimes H))$  by

$$a^{\varphi \otimes \psi}(t) = \varphi_t(a) \otimes 1_H$$
 and  $b^{\varphi \otimes \psi}(t) = 1_H \otimes \psi_t(b)$ .

Note that  $a^{\varphi \otimes \psi}(t) \cdot b^{\varphi \otimes \psi}(t) \in C_b([0, \infty), D \otimes_{\min} D))$ , where  $\otimes_{\min}$  denotes the minimal tensor product of  $C^*$ -algebras.

We can then define a \*-homomorphism

$$\varphi \otimes \psi : A \odot B \to C_b([0,\infty), D \otimes_{\min} D) / C_0([0,\infty), D \otimes_{\min} D)$$

such that

$$\varphi \otimes \psi \left( \sum_{i} a_{i} \otimes b_{i} \right) = q \left( \sum_{i} a_{i}^{\varphi \otimes \psi} \cdot b_{i}^{\varphi \otimes \psi} \right),$$

where

 $q: C_b([0,\infty), D \otimes_{\min} D) \to C_b([0,\infty), D \otimes_{\min} D) / C_0([0,\infty), D \otimes_{\min} D)$ 

is the quotient map. Note that

$$\|\varphi \otimes \psi(c)\| = \lim \sup_{t \to \infty} \left\| \sum_{i} \varphi(a_i) \otimes \psi(b_i) \right\|$$

for any  $c = \sum_{i} a_i \otimes b_i \in A \odot B$ . We can now define a seminorm  $\|\cdot\|_{D,0}$  on  $A \odot B$  by

$$\|c\|_{D,0} = \sup_{\varphi,\psi} \|\varphi \otimes \psi(c)\|,$$

where we take the supremum over all pairs ( $\varphi, \psi$ ), where  $\varphi$  and  $\psi$  are asymptotic representations of A and B, respectively, taking values in D.

Note that a genuine \*-homomorphism from *A* to *D* can be considered as an asymptotic representation in the obvious way. So, if  $D = \mathbb{L}(H)$  then  $\|\cdot\|_{D,0} \ge \|\cdot\|_{\min}$ , and  $\|\cdot\|_{D,0}$  is a norm. This norm coincides with the symmetric asymptotic tensor norm defined in [10]. More generally, the seminorm  $\|\cdot\|_{D,0}$  is a norm if there exist *faithful* asymptotic representations of *A* and *B* taking values in *D*. Remark that there are other  $C^*$ -algebras *D*, besides  $\mathbb{L}(H)$ , that admit faithful asymptotic representations of any separable  $C^*$ -algebra. For example, it follows from [8] that one can take the *coarse Roe algebra* of  $\mathbb{Z}$  as *D*.

In general, the seminorm  $\|\cdot\|_{D,0}$  may be degenerate (e.g. it may happen that any asymptotic representation of a  $C^*$ -algebra A taking values in some D may be asymptotically equivalent to zero, see Lemma 2 below), so let us define the norm  $\|\cdot\|_D$  on  $A \odot B$  by

$$||c||_D = \max\{||c||_{\min}, ||c||_{D,0}\},\$$

where  $c \in A \odot B$ . Clearly,  $\|\cdot\|_D$  is a  $C^*$ -norm, hence a cross-norm, and

$$\|\cdot\|_{\min} \leq \|\cdot\|_D \leq \|\cdot\|_{\max}.$$

We denote by  $A \otimes_D B$  the  $C^*$ -algebra obtained by completing  $A \odot B$  with respect to the norm  $\|\cdot\|_D$ . Obviously the correspondence  $(A, B) \mapsto A \otimes_D B$  is a  $C^*$ -algebraic tensor product functor on the category of separable  $C^*$ -algebras.

**Lemma 1.** *The functor*  $\otimes_D$  *is symmetric.* 

**Proof.** Obvious.

#### 3. Asymptotic representations taking values in $\mathbb{K}^{\infty}$

Let *G* be a residually finite infinite property T group, let  $\pi_n$  be the sequence of all nonequivalent irreducible unitary representations on finite-dimensional Hilbert spaces  $H_n$  and let  $\overline{A}$  be the  $C^*$ -algebra generated by operators  $\bigoplus_{n=1}^{\infty} \pi_n(g)$ ,  $g \in G$ . We denote by *E* the  $C^*$ subalgebra in  $\mathbb{L}(\bigoplus_{n=1}^{\infty} H_n)$  generated by  $\overline{A}$  and by compact operators:  $E = \overline{A} + \mathbb{K}$ . Put  $A = E/\mathbb{K}$ . This  $C^*$ -algebra was first considered by S. Wassermann and we refer to his paper [13] for more details.

**Lemma 2.** Let  $\varphi = (\varphi_t)_{t \in [0,\infty)} : A \to \mathbb{K}^{\infty}$  be an asymptotic homomorphism. Then  $\varphi$  is asymptotically equivalent to zero, i.e.  $\lim_{t\to\infty} \varphi_t(a) = 0$  for any  $a \in A$ .

**Proof.** Without loss of generality we may assume that  $\varphi$  is self-adjoint (e.g. by changing  $\varphi_t(a)$  by  $\frac{1}{2}(\varphi_t(a) + \varphi_t(a^*)^*))$ .

Let  $q_n : \prod_{n=1}^{\infty} \mathbb{K} \to \mathbb{K}$  be the projection onto the *n*th copy. Then  $\varphi_t^{(n)} = q_n \circ \varphi_t$  is an asymptotic homomorphism to  $\mathbb{K}$ .

There exists  $t_0$  such that

$$\left\| \left( \varphi_t^{(n)}(1)^2 \right) - \varphi_t^{(n)}(1) \right\| < \frac{2}{9}$$
<sup>(1)</sup>

for all  $t > t_0$ , hence the spectrum of  $\varphi_t^{(n)}(1)$  lies in  $[-\frac{1}{3}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{4}{3}]$ . Let f be the continuous function, which equals 0 on  $(-\infty, \frac{1}{3}]$ , 1 on  $[\frac{2}{3}, \infty)$  and which is linear on  $[\frac{1}{3}, \frac{2}{3}]$ . Then  $p_n(t) = f(\varphi_t^{(n)}(1))$  is a continuous family of finite rank projections, and  $\lim_{t\to\infty} \|\varphi_t^{(n)}(1) - p_n(t)\| = 0$ .

Continuity of the family  $p_n(t)$ ,  $t \in (t_0, \infty)$ , implies that there is a continuous family  $(u_t)_{t \in (t_0,\infty)}$  of unitaries such that  $\operatorname{Ad}_{u_t} p_n(t) = p_n(t_0) = p_n$  is a constant finite rank projection. Then  $\operatorname{Ad}_{u_t^*} \varphi_t^{(n)}$  is an asymptotic homomorphism such that  $\lim_{t\to\infty} ||\operatorname{Ad}_{u_t^*} \varphi_t^{(n)}(1) - p_n|| = 0$ .

Then the formula  $\psi_t(a) = p_n(\operatorname{Ad}_{u_t^*} \varphi_t^{(n)}(a)) p_n$  defines an asymptotic homomorphism from A to the matrix algebra of the fixed dimension  $N_n = \dim p_n$ .

The group G with the stated properties is known to be finitely generated, so without loss of generality we may assume that  $\psi_t(g_i)$  are unitaries, where  $g_i \in G$ , i = 1, ..., k, are generators for G.

Since the direct product of k copies of the unitary group  $U_{N_n}$  is compact, so the set  $\{(\psi_t(g_1), \ldots, \psi_t(g_k)): t \in [0, \infty)\}$  has an accumulation point  $(u_1, \ldots, u_k) \in U_{N_n}^k$ . If we put  $\sigma(g_i) = u_i$  then this map extends to a genuine representation of G of dimension  $N_n$ . Indeed, G is a quotient of the free group  $\mathbb{F}_k$  generated by  $g_1, \ldots, g_k$  modulo some relations and each  $\psi_t$  and  $\sigma$  obviously define representations of  $\mathbb{F}_k$ , which we denote by the same characters. If  $r \in \mathbb{F}_k$  is a relation then  $\lim_{t\to\infty} ||\psi_t(r) - p_n|| = 0$ . Therefore,  $\sigma(r) = p_n$ , hence  $\sigma$  factorizes through a representation of G.

Suppose that  $p_n \neq 0$  for some *n*. This implies that the representation  $\sigma$  is non-zero, hence it contains at least one of  $\pi_j$ . Then  $\|\sigma(a)\| \ge \|\pi_j(a)\|$  for any  $a \in \mathbb{C}[G]$ . Let  $\|a\|_A$  denote the norm (in *A*) of  $a \in \mathbb{C}[G]$  as an element of *A*. Since

$$\|a\|_A \ge \lim \sup_{t \to \infty} \|\psi_t(a)\| \ge \|\sigma(a)\| = \|\pi_j(a)\|,$$

we have  $||a||_A = \limsup_{n\to\infty} ||\pi_n(a)|| \ge ||\pi_j(a)||$  for any  $a \in A$ . Then the identity map of G extends to a \*-homomorphism  $i : A \to C^*_{\pi_j}(G)$ , where  $C^*_{\pi}(G)$  denotes the  $C^*$ -algebra generated by the representation  $\pi$ . Tensoring it by  $\operatorname{id}_{C^*_{\pi_j}(G)}$ , where  $\overline{\pi}$  denotes the contragredient representation for a representation  $\pi$ , we get a \*-homomorphism

$$i \otimes \operatorname{id}_{C^*_{\overline{\pi}_j}(G)} : A \otimes C^*_{\overline{\pi}_j}(G) \to C^*_{\pi_j}(G) \otimes C^*_{\overline{\pi}_j}(G).$$

$$\tag{2}$$

We do not specify the tensor product norm here because  $C^*_{\overline{\pi}_j}(G)$  is finite-dimensional, hence nuclear. It was shown in [13] that the norm on the left-hand side of (2) is strictly smaller than the norm on the right-hand side, so this \*-homomorphism cannot exist. This contradiction shows that  $p_n = 0$  for all *n*, hence (1) implies that  $\lim_{t\to\infty} ||q_n \circ \varphi_t(1)|| = 0$  uniformly in *n*, therefore,  $\lim_{t\to\infty} ||q_n \circ \varphi_t(a)|| = 0$  uniformly in *n* for any  $a \in A$ .  $\Box$ 

**Corollary 3.** For A defined above, one has  $A \otimes_{\mathbb{K}^{\infty}} B = A \otimes_{\min} B$  for any  $C^*$ -algebra B.

## Proof. Since

$$\left\|\varphi\otimes\psi(a\otimes b)\right\| = \limsup_{t\to\infty}\left\|\varphi_t(a)\otimes\psi_t(b)\right\| = \limsup_{t\to\infty}\left\|\varphi_t(a)\right\|\cdot\left\|\psi_t(b)\right\| = 0$$

for any  $a \in A$ ,  $b \in B$  and for any asymptotic representations  $\varphi$  and  $\psi$ , one has

$$\|a \otimes b\|_{\mathbb{K}^{\infty},0} = \sup_{\varphi,\psi} \|\varphi \otimes \psi(a \otimes b)\| = 0,$$

hence  $||c||_{\mathbb{K}^{\infty},0} = 0$  for any  $c \in A \odot B$ , therefore,

$$\|c\|_{\mathbb{K}^{\infty}} = \max\{\|c\|_{\min}, 0\} = \|c\|_{\min}.$$

#### 4. An example of an asymptotic representation taking values in $\mathbb{K}^{\infty}$

Let  $C = C_0(0, 1]$ . We are going to construct an asymptotic representation  $\phi$  of  $C \otimes A$  taking values in  $\mathbb{K}^{\infty}$ . (We do not specify here the tensor norm since *C* is nuclear.) This construction is based on results from [7].

Let  $\chi : A \to E$  be a continuous homogeneous self-adjoint selection map, cf. [2]. We denote by  $P_n$  the projection in  $\bigoplus_{n=1}^{\infty} H_n$  onto  $H_n$ . For  $a \in A$  put  $\alpha(a) = \iota \circ \chi(a)$ , where  $\iota : E \to \mathbb{L}(\bigoplus_{n=1}^{\infty} H_n)$  is the standard inclusion.

Let  $\{\tau_n\}_{n\in\mathbb{N}}$  be a *dense* sequence of points in (0, 1). For  $t = k \in \mathbb{N}$  and for  $f \in C$ , put

$$\beta_k(f) = \sum_{n=k+1}^{\infty} f(\tau_n) P_n,$$

where the sum is \*-strongly convergent. If k < t < k + 1 then put

$$\beta_t(f) = f((1-t+k)\tau_{k+1})P_{k+1} + \beta_{k+1}(f).$$

Let  $F \in C \otimes A$ . One can consider F as a continuous function on [0, 1] taking values in A such that F(0) = 0. Put

$$\phi_k(F) = \sum_{n=k+1}^{\infty} P_n \alpha \big( F(\tau_n) \big) P_n$$

(this sum also is convergent with respect to the \*-strong topology), and

$$\phi_t(F) = P_{k+1}\alpha \left( F\left((1-t+k)\tau_{k+1}\right) \right) P_{k+1} + \phi_{k+1}(F)$$

for k < t < k + 1.

**Lemma 4.** The family of maps  $(\phi_t)_{t \in [0,\infty)}$  is an asymptotic representation of  $C \otimes A$  taking values in  $\prod_{n=1}^{\infty} \mathbb{L}(H_n) \subset \mathbb{K}^{\infty}$ .

**Proof.** By the definition, the maps  $\phi_t$ ,  $t \in [0, \infty)$ , take values in  $\prod_{n=1}^{\infty} \mathbb{L}(H_n)$ , so we only need to check that algebraic properties hold asymptotically. Let us check that for multiplication, as other properties can be checked in the same way. Let  $F_1$ ,  $F_2 \in C \otimes A$ . Set

$$\kappa_{F_1,F_2}:\tau\mapsto \alpha\big(F_1(\tau)F_2(\tau)\big)-\alpha\big(F_1(\tau)\big)\alpha\big(F_2(\tau)\big).$$

Then  $\kappa_{F_1,F_2}$  is a continuous map from [0, 1] to  $\mathbb{L}(\bigoplus_{n=1}^{\infty} H_n)$ . Since  $\chi$  is a lifting for the quotient map  $E \to E/\mathbb{K}$ ,  $\kappa_{F_1,F_2}(\tau) \in \mathbb{K} \cap \iota(E)$  for any  $\tau \in [0, 1]$ .

Set  $\mathcal{K} = \kappa_{F_1, F_2}([0, 1]) \subset \mathbb{K} \cap \iota(E)$ . Then  $\mathcal{K}$  is compact, hence, for any increasing sequence  $\{Q_n\}_{n \in \mathbb{N}}$  of projections,  $\lim_{n \to \infty} \sup_{K \in \mathcal{K}} \|(1 - Q_n)K(1 - Q_n)\| = 0$ .

Then

$$\lim_{k \to \infty} \phi_k(F_1 F_2) - \phi_k(F_1)\phi_k(F_2) = \lim_{k \to \infty} \sum_{n=k+1}^{\infty} P_n \kappa_{F_1, F_2}(\tau_n) P_n = 0.$$

Finally, we easily pass to the continuous parameter: as

$$\lim_{k \to \infty} P_{k+1} \kappa_{F_1, F_2} \big( (1 - t + k) \tau_k \big) P_{k+1} = 0$$

for k < t < k + 1, so we conclude that

$$\lim_{t\to\infty}\phi_t(F_1F_2)-\phi_t(F_1)\phi_t(F_2)=0.$$

Note that if  $F = f \otimes a \in C \otimes A$  then

$$\phi_t(f \otimes a) = \sum_{n=k}^{\infty} P_n \alpha(a) P_n \cdot \beta_t(f).$$

### 5. Comparing tensor norms

Let *B* be the *C*<sup>\*</sup>-algebra generated by operators  $\bigoplus_{n=1}^{\infty} \overline{\pi}_n(g)$ ,  $g \in G$ , where  $\overline{\pi}$  denotes the contragredient representation for  $\pi$ .

**Theorem 5.** *The tensor products*  $C \otimes_{\mathbb{K}^{\infty}} (A \otimes_{\mathbb{K}^{\infty}} B)$  *and*  $(C \otimes_{\mathbb{K}^{\infty}} A) \otimes_{\mathbb{K}^{\infty}} B$  *are not canonically isomorphic.* 

**Proof.** Let  $f \in C$  be the identity function,  $f(\tau) = \tau$ , and let  $\{g_1, \ldots, g_m\}$  be a symmetric set of generators of the group *G* as above. We identify the group elements with the corresponding unitaries in *C*<sup>\*</sup>-algebras generated by representations of *G* (like *B*) and in their quotients (like *A*). Let

$$d = \sum_{i=1}^{m} f \otimes g_i \otimes g_i \in C \odot A \odot B.$$

Denote by  $\|\cdot\|_1$  and by  $\|\cdot\|_2$  the norms on  $C \odot A \odot B$  inherited from  $C \otimes_{\mathbb{K}^{\infty}} (A \otimes_{\mathbb{K}^{\infty}} B)$  and  $(C \otimes_{\mathbb{K}^{\infty}} A) \otimes_{\mathbb{K}^{\infty}} B$  respectively. Our aim is to show that  $\|d\|_1 \neq \|d\|_2$ .

It follows from Lemma 3 and from amenability of C that

$$C \otimes_{\mathbb{K}^{\infty}} (A \otimes_{\mathbb{K}^{\infty}} B) = C \otimes_{\min} (A \otimes_{\min} B),$$

so

$$\|d\|_1 = \|f\| \cdot \left\| \sum_{i=1}^m g_i \otimes g_i \right\|_{\min} = \left\| \sum_{i=1}^m g_i \otimes g_i \right\|_{\min}.$$

It was shown in [13] that the latter norm is strictly smaller than *m*, so

$$\|d\|_1 < m. \tag{3}$$

When estimating the norm  $\|\cdot\|_2$  from below, we may use two special asymptotic representations instead of taking the supremum over all of them. Let us take  $\phi_t$  for  $C \otimes A$  and the identity representation for *B*. Then

$$\|d\|_{2} \ge \lim \sup_{t \to \infty} \left\| \sum_{i=1}^{m} \phi_{t}(f \otimes g_{i}) \otimes \sum_{n=1}^{\infty} \overline{\pi}_{n}(g_{i}) P_{n} \right\|$$
$$= \lim \sup_{t \to \infty} \left\| \sum_{i=1}^{m} \sum_{n=1}^{\infty} P_{n} \beta_{t}(f) \alpha(g_{i}) P_{n} \otimes \sum_{n=1}^{\infty} \overline{\pi}_{n}(g_{i}) P_{n} \right\|$$
$$\ge \lim \sup_{t \to \infty} \sup_{n} \left\| P_{n} \beta_{t}(f) \sum_{i=1}^{m} \alpha(g_{i}) P_{n} \otimes \overline{\pi}_{n}(g_{i}) P_{n} \right\|$$
$$\ge \lim \sup_{n \to \infty} \left\| P_{n} \beta_{n}(f) \sum_{i=1}^{m} \alpha(g_{i}) P_{n} \otimes \overline{\pi}_{n}(g_{i}) P_{n} \right\|$$

$$= \lim \sup_{n \to \infty} f(\tau_n) \cdot \left\| \sum_{i=1}^m P_n \alpha(g_i) P_n \otimes \overline{\pi}_n(g_i) P_n \right\|$$
$$\geqslant \lim \sup_{j \to \infty} f(\tau_{n_j}) \cdot \left\| \sum_{i=1}^m P_{n_j} \alpha(g_i) P_{n_j} \otimes \overline{\pi}_{n_j}(g_i) \right\|,$$

where  $\{n_j\}$  is any increasing subsequence of integers. Since the sequence  $\{\tau_n\}_{n=1}^{\infty}$  is dense in [0, 1], we can find a subsequence  $\{n_j\}_{j=1}^{\infty}$  such that  $\lim_{j\to\infty} \tau_{n_j} = 1$ . Recall that, as  $\alpha$  is a lifting for the quotient map  $E \to E/\mathbb{K}$ , so  $\lim_{n\to\infty} \|P_n \alpha(g)P_n - \pi_n(g)\|$  for any  $g \in G$ . Then

$$\|d\|_{2} \ge \lim \sup_{j \to \infty} f(\tau_{n_{j}}) \cdot \left\| \sum_{i=1}^{m} P_{n_{j}}\alpha(g_{i})P_{n_{j}} \otimes \overline{\pi}_{n_{j}}(g_{i}) \right\|$$
$$= \lim \sup_{j \to \infty} \left\| \sum_{i=1}^{m} P_{n_{j}}\alpha(g_{i})P_{n_{j}} \otimes \overline{\pi}_{n_{j}}(g_{i}) \right\|$$
$$= \lim \sup_{j \to \infty} \left\| \sum_{i=1}^{m} \pi_{n_{j}}(g_{i}) \otimes \overline{\pi}_{n_{j}}(g_{i}) \right\|$$
$$= \left\| \sum_{i=1}^{m} \pi_{n_{j}}(g_{i}) \otimes \overline{\pi}_{n_{j}}(g_{i}) \right\| = \sum_{i=1}^{m} 1 = m.$$

On the other hand,  $||d||_2 \leq \sum_{i=1}^m ||f \otimes g_i \otimes g_i||_2 = m$ , so we have

$$\|d\|_2 = m. (4)$$

Comparing (3) and (4), we conclude that these two norms are different.  $\Box$ 

#### References

- R.J. Archbold, A counterexample for commutation in tensor products of C\*-algebras, Proc. Amer. Math. Soc. 81 (1981) 562–564.
- [2] R.G. Bartle, L.M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952) 400-413.
- [3] A. Connes, N. Higson, Déformations, morphismes asymptotiques et K-théorie bivariante, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 101–106.
- [4] E. Kirchberg, Exact C\*-Algebras, Tensor Products, and the Classification of Purely Infinite Algebras, Proc. Internat. Congress Math., Birkhäuser, 1995, pp. 943–954.
- [5] S.-H. Kye, Counterexamples in intersections for C\*-tensor products, Proc. Edinb. Math. Soc. 27 (1984) 301–302.
- [6] V. Manuilov, Asymptotic homomorphisms into the Calkin algebra, J. Reine Angew. Math. 557 (2003) 159–172.
- [7] V. Manuilov, K. Thomsen, The Connes-Higson construction is an isomorphism, J. Funct. Anal. 213 (2004) 154– 175.
- [8] V. Manuilov, K. Thomsen, E-theory is a special case of KK-theory, Proc. London Math. Soc. 88 (2004) 455-478.
- [9] V. Manuilov, K. Thomsen, On the asymptotic tensor C\*-norm, Arch. Math. 86 (2006) 138-144.
- [10] V. Manuilov, K. Thomsen, On the lack of inverses to C\*-extensions related to property T groups, Canad. Math. Bull. 50 (2007) 268–283.
- [11] D. Voiculescu, Property T and approximation of operators, Bull. London Math. Soc. 22 (1990) 25-30.
- [12] S. Wassermann, A pathology in the ideal space of  $L(H) \otimes L(H)$ , Indiana Univ. Math. J. 27 (1978) 1011–1020.
- [13] S. Wassermann, C\*-algebras associated with groups with Kazhdan's property T, Ann. Math. 134 (1991) 423-431.

3654