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Abstract

We define a collection of tensor product norms for C∗-algebras and show that a symmetric tensor product
functor on the category of separable C∗-algebras need not be associative.
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1. Introduction

There are several known pathologies for tensor products of C∗-algebras, e.g. [12,1,5]. In this
paper we reveal one more pathology: C∗-tensor products need not be associative.

Following E. Kirchberg [4], we call a bifunctor (A,B) → A ⊗α B a C∗-algebraic tensor
product functor if it is obtained by completing of the algebraic tensor product A � B of C∗-
algebras in a functional way with respect to a suitable C∗-norm ‖ · ‖α . We call such a functor
symmetric if the standard isomorphism A � B ∼= B � A extends to an isomorphism A ⊗α B ∼=
B ⊗α A. Similarly, we call it associative if the standard isomorphism A�(B �C) ∼= (A�B)�C

extends to an isomorphism A ⊗α (B ⊗α C) ∼= (A ⊗α B) ⊗α C for any C∗-algebras A, B , C. It is
well known that both the minimal tensor product functor ⊗min and the maximal tensor product
functor ⊗max are symmetric and associative.
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In this paper we construct a collection of symmetric C∗-algebraic tensor product functors
related to asymptotic homomorphisms of C∗-algebras. For technical reasons we restrict ourselves
to the category of separable C∗-algebras. Using C∗-algebras related to property T groups [11,13]
we show that some of these tensor product functors are not associative.

Recall that asymptotic homomorphisms of C∗-algebras were first defined and studied in [3] in
relation to topological properties of C∗-algebras. The most important and the best known case is
the case of asymptotic homomorphisms from a suspended C∗-algebra SA to the C∗-algebra K of
compact operators, since the homotopy classes of those are the K-homology of A, the E-theory.
Asymptotic homomorphisms to other C∗-algebras are less known. For example, it is known that
any asymptotic homomorphism to the Calkin algebra is homotopic to a genuine homomorphism
[6,8]. Even less is known about asymptotic homomorphisms to B(H), where there is no topolog-
ical obstruction (recall that the K-groups of B(H) are trivial). Such asymptotic homomorphisms
are called asymptotic representations and were first studied in relation to the asymptotic tensor
product of C∗-algebras [9] and to semi-invertibility of C∗-algebra extensions [10].

2. Definition of asymptotic C∗-tensor products

Recall [3] that an asymptotic homomorphism ϕ from a C∗-algebra A to a C∗-algebra D is a
family of maps ϕ = (ϕt )t∈[0,∞) : A → D satisfying the following properties:

1. the map t 
→ ϕt (a) is continuous for any a ∈ A;
2. limt→∞ ϕt (a + λb) − ϕt (a) − λϕt (b) = limt→∞ ϕt (a

∗) − ϕt (a)∗ = limt→∞ ϕt (ab) −
ϕt (a)ϕt (b) = 0 for any a, b ∈ A and any λ ∈ C.

Let L(H) be the algebra of bounded operators on a separable Hilbert space H . Our point
is that we would like to consider D as a C∗-subalgebra of L(H): D ⊂ L(H). We also view
asymptotic homomorphisms to D as asymptotic representations on H taking values in D. We
are mostly interested in the special case

D = K
∞ =

∞∏
n=1

K =
∞∏

n=1

K(Hn),

where Hn = H for all n ∈ N and K = K(H) is the C∗-algebra of compact operators on H .
Let A, B be separable C∗-algebras and let ϕ = (ϕt )t∈[0,∞),ψ = (ψt )t∈[0,∞) be asymptotic

representations of A and B respectively, taking values in D.
Let A � B be the algebraic tensor product of A and B . For each a ∈ A and b ∈ B , we can

define elements aϕ⊗ψ,bϕ⊗ψ ∈ Cb([0,∞),L(H ⊗ H)) by

aϕ⊗ψ(t) = ϕt (a) ⊗ 1H and bϕ⊗ψ(t) = 1H ⊗ ψt(b).

Note that aϕ⊗ψ(t) · bϕ⊗ψ(t) ∈ Cb([0,∞),D ⊗min D)), where ⊗min denotes the minimal ten-
sor product of C∗-algebras.

We can then define a ∗-homomorphism

ϕ ⊗ ψ : A � B → Cb

([0,∞),D ⊗min D
)
/C0

([0,∞),D ⊗min D
)
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such that

ϕ ⊗ ψ

(∑
i

ai ⊗ bi

)
= q

(∑
i

a
ϕ⊗ψ
i · bϕ⊗ψ

i

)
,

where

q : Cb

([0,∞),D ⊗min D
) → Cb

([0,∞),D ⊗min D
)
/C0

([0,∞),D ⊗min D
)

is the quotient map. Note that

∥∥ϕ ⊗ ψ(c)
∥∥ = lim sup

t→∞

∥∥∥∥
∑

i

ϕ(ai) ⊗ ψ(bi)

∥∥∥∥

for any c = ∑
i ai ⊗ bi ∈ A � B . We can now define a seminorm ‖ · ‖D,0 on A � B by

‖c‖D,0 = sup
ϕ,ψ

∥∥ϕ ⊗ ψ(c)
∥∥,

where we take the supremum over all pairs (ϕ,ψ), where ϕ and ψ are asymptotic representations
of A and B , respectively, taking values in D.

Note that a genuine ∗-homomorphism from A to D can be considered as an asymptotic rep-
resentation in the obvious way. So, if D = L(H) then ‖ · ‖D,0 � ‖ · ‖min, and ‖ · ‖D,0 is a norm.
This norm coincides with the symmetric asymptotic tensor norm defined in [10]. More generally,
the seminorm ‖ · ‖D,0 is a norm if there exist faithful asymptotic representations of A and B tak-
ing values in D. Remark that there are other C∗-algebras D, besides L(H), that admit faithful
asymptotic representations of any separable C∗-algebra. For example, it follows from [8] that
one can take the coarse Roe algebra of Z as D.

In general, the seminorm ‖ · ‖D,0 may be degenerate (e.g. it may happen that any asymptotic
representation of a C∗-algebra A taking values in some D may be asymptotically equivalent to
zero, see Lemma 2 below), so let us define the norm ‖ · ‖D on A � B by

‖c‖D = max
{‖c‖min,‖c‖D,0

}
,

where c ∈ A � B . Clearly, ‖ · ‖D is a C∗-norm, hence a cross-norm, and

‖ · ‖min � ‖ · ‖D � ‖ · ‖max.

We denote by A ⊗D B the C∗-algebra obtained by completing A � B with respect to the
norm ‖ · ‖D . Obviously the correspondence (A,B) 
→ A ⊗D B is a C∗-algebraic tensor prod-
uct functor on the category of separable C∗-algebras.

Lemma 1. The functor ⊗D is symmetric.

Proof. Obvious. �
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3. Asymptotic representations taking values in KKK
∞

Let G be a residually finite infinite property T group, let πn be the sequence of all non-
equivalent irreducible unitary representations on finite-dimensional Hilbert spaces Hn and let
A be the C∗-algebra generated by operators

⊕∞
n=1 πn(g), g ∈ G. We denote by E the C∗-

subalgebra in L(
⊕∞

n=1 Hn) generated by A and by compact operators: E = A + K. Put A =
E/K. This C∗-algebra was first considered by S. Wassermann and we refer to his paper [13] for
more details.

Lemma 2. Let ϕ = (ϕt )t∈[0,∞) : A → K
∞ be an asymptotic homomorphism. Then ϕ is asymp-

totically equivalent to zero, i.e. limt→∞ ϕt (a) = 0 for any a ∈ A.

Proof. Without loss of generality we may assume that ϕ is self-adjoint (e.g. by changing ϕt (a)

by 1
2 (ϕt (a) + ϕt (a

∗)∗)).
Let qn : ∏∞

n=1 K → K be the projection onto the nth copy. Then ϕ
(n)
t = qn ◦ ϕt is an asymp-

totic homomorphism to K.
There exists t0 such that

∥∥(
ϕ

(n)
t (1)2) − ϕ

(n)
t (1)

∥∥ <
2

9
(1)

for all t > t0, hence the spectrum of ϕ
(n)
t (1) lies in [− 1

3 , 1
3 ] ∪ [ 2

3 , 4
3 ]. Let f be the continuous

function, which equals 0 on (−∞, 1
3 ], 1 on [ 2

3 ,∞) and which is linear on [ 1
3 , 2

3 ]. Then pn(t) =
f (ϕ

(n)
t (1)) is a continuous family of finite rank projections, and limt→∞ ‖ϕ(n)

t (1) − pn(t)‖ = 0.
Continuity of the family pn(t), t ∈ (t0,∞), implies that there is a continuous family

(ut )t∈(t0,∞) of unitaries such that Adut pn(t) = pn(t0) = pn is a constant finite rank projection.

Then Adu∗
t
ϕ

(n)
t is an asymptotic homomorphism such that limt→∞ ‖Adu∗

t
ϕ

(n)
t (1) − pn‖ = 0.

Then the formula ψt(a) = pn(Adu∗
t
ϕ

(n)
t (a))pn defines an asymptotic homomorphism from A

to the matrix algebra of the fixed dimension Nn = dimpn.
The group G with the stated properties is known to be finitely generated, so without loss of

generality we may assume that ψt(gi) are unitaries, where gi ∈ G, i = 1, . . . , k, are generators
for G.

Since the direct product of k copies of the unitary group UNn is compact, so the set
{(ψt (g1), . . . ,ψt (gk)): t ∈ [0,∞)} has an accumulation point (u1, . . . , uk) ∈ Uk

Nn
. If we put

σ(gi) = ui then this map extends to a genuine representation of G of dimension Nn. Indeed,
G is a quotient of the free group Fk generated by g1, . . . , gk modulo some relations and each ψt

and σ obviously define representations of Fk , which we denote by the same characters. If r ∈ Fk

is a relation then limt→∞ ‖ψt(r) − pn‖ = 0. Therefore, σ(r) = pn, hence σ factorizes through a
representation of G.

Suppose that pn �= 0 for some n. This implies that the representation σ is non-zero, hence
it contains at least one of πj . Then ‖σ(a)‖ � ‖πj (a)‖ for any a ∈ C[G]. Let ‖a‖A denote the
norm (in A) of a ∈ C[G] as an element of A. Since

‖a‖A � lim sup
∥∥ψt(a)

∥∥ �
∥∥σ(a)

∥∥ = ∥∥πj (a)
∥∥,
t→∞
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we have ‖a‖A = lim supn→∞ ‖πn(a)‖ � ‖πj (a)‖ for any a ∈ A. Then the identity map of G ex-
tends to a ∗-homomorphism i : A → C∗

πj
(G), where C∗

π (G) denotes the C∗-algebra generated by
the representation π . Tensoring it by idC∗

πj
(G), where π denotes the contragredient representation

for a representation π , we get a ∗-homomorphism

i ⊗ idC∗
πj

(G) : A ⊗ C∗
πj

(G) → C∗
πj

(G) ⊗ C∗
πj

(G). (2)

We do not specify the tensor product norm here because C∗
πj

(G) is finite-dimensional, hence
nuclear. It was shown in [13] that the norm on the left-hand side of (2) is strictly smaller than
the norm on the right-hand side, so this ∗-homomorphism cannot exist. This contradiction shows
that pn = 0 for all n, hence (1) implies that limt→∞ ‖qn ◦ ϕt (1)‖ = 0 uniformly in n, therefore,
limt→∞ ‖qn ◦ ϕt (a)‖ = 0 uniformly in n for any a ∈ A. �
Corollary 3. For A defined above, one has A ⊗K∞ B = A ⊗min B for any C∗-algebra B .

Proof. Since

∥∥ϕ ⊗ ψ(a ⊗ b)
∥∥ = lim sup

t→∞
∥∥ϕt (a) ⊗ ψt(b)

∥∥ = lim sup
t→∞

∥∥ϕt (a)
∥∥ · ∥∥ψt(b)

∥∥ = 0

for any a ∈ A, b ∈ B and for any asymptotic representations ϕ and ψ , one has

‖a ⊗ b‖K∞,0 = sup
ϕ,ψ

∥∥ϕ ⊗ ψ(a ⊗ b)
∥∥ = 0,

hence ‖c‖K∞,0 = 0 for any c ∈ A � B , therefore,

‖c‖K∞ = max
{‖c‖min,0

} = ‖c‖min. �
4. An example of an asymptotic representation taking values in KKK

∞

Let C = C0(0,1]. We are going to construct an asymptotic representation φ of C ⊗ A taking
values in K

∞. (We do not specify here the tensor norm since C is nuclear.) This construction is
based on results from [7].

Let χ : A → E be a continuous homogeneous self-adjoint selection map, cf. [2]. We denote
by Pn the projection in

⊕∞
n=1 Hn onto Hn. For a ∈ A put α(a) = ι ◦ χ(a), where ι : E →

L(
⊕∞

n=1 Hn) is the standard inclusion.
Let {τn}n∈N be a dense sequence of points in (0,1). For t = k ∈ N and for f ∈ C, put

βk(f ) =
∞∑

n=k+1

f (τn)Pn,

where the sum is ∗-strongly convergent. If k < t < k + 1 then put

βt (f ) = f
(
(1 − t + k)τk+1

)
Pk+1 + βk+1(f ).
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Let F ∈ C ⊗ A. One can consider F as a continuous function on [0,1] taking values in A

such that F(0) = 0. Put

φk(F ) =
∞∑

n=k+1

Pnα
(
F(τn)

)
Pn

(this sum also is convergent with respect to the ∗-strong topology), and

φt (F ) = Pk+1α
(
F

(
(1 − t + k)τk+1

))
Pk+1 + φk+1(F )

for k < t < k + 1.

Lemma 4. The family of maps (φt )t∈[0,∞) is an asymptotic representation of C ⊗A taking values
in

∏∞
n=1 L(Hn) ⊂ K

∞.

Proof. By the definition, the maps φt , t ∈ [0,∞), take values in
∏∞

n=1 L(Hn), so we only need
to check that algebraic properties hold asymptotically. Let us check that for multiplication, as
other properties can be checked in the same way. Let F1,F2 ∈ C ⊗ A. Set

κF1,F2 : τ 
→ α
(
F1(τ )F2(τ )

) − α
(
F1(τ )

)
α
(
F2(τ )

)
.

Then κF1,F2 is a continuous map from [0,1] to L(
⊕∞

n=1 Hn). Since χ is a lifting for the quotient
map E → E/K, κF1,F2(τ ) ∈ K ∩ ι(E) for any τ ∈ [0,1].

Set K = κF1,F2([0,1]) ⊂ K ∩ ι(E). Then K is compact, hence, for any increasing sequence
{Qn}n∈N of projections, limn→∞ supK∈K ‖(1 − Qn)K(1 − Qn)‖ = 0.

Then

lim
k→∞φk(F1F2) − φk(F1)φk(F2) = lim

k→∞

∞∑
n=k+1

PnκF1,F2(τn)Pn = 0.

Finally, we easily pass to the continuous parameter: as

lim
k→∞Pk+1κF1,F2

(
(1 − t + k)τk

)
Pk+1 = 0

for k < t < k + 1, so we conclude that

lim
t→∞φt (F1F2) − φt (F1)φt (F2) = 0. �

Note that if F = f ⊗ a ∈ C ⊗ A then

φt (f ⊗ a) =
∞∑

n=k

Pnα(a)Pn · βt (f ).
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5. Comparing tensor norms

Let B be the C∗-algebra generated by operators
⊕∞

n=1 πn(g), g ∈ G, where π denotes the
contragredient representation for π .

Theorem 5. The tensor products C ⊗K∞ (A⊗K∞ B) and (C ⊗K∞ A)⊗K∞ B are not canonically
isomorphic.

Proof. Let f ∈ C be the identity function, f (τ) = τ , and let {g1, . . . , gm} be a symmetric set
of generators of the group G as above. We identify the group elements with the corresponding
unitaries in C∗-algebras generated by representations of G (like B) and in their quotients (like A).
Let

d =
m∑

i=1

f ⊗ gi ⊗ gi ∈ C � A � B.

Denote by ‖ · ‖1 and by ‖ · ‖2 the norms on C � A � B inherited from C ⊗K∞ (A ⊗K∞ B) and
(C ⊗K∞ A) ⊗K∞ B respectively. Our aim is to show that ‖d‖1 �= ‖d‖2.

It follows from Lemma 3 and from amenability of C that

C ⊗K∞ (A ⊗K∞ B) = C ⊗min (A ⊗min B),

so

‖d‖1 = ‖f ‖ ·
∥∥∥∥∥

m∑
i=1

gi ⊗ gi

∥∥∥∥∥
min

=
∥∥∥∥∥

m∑
i=1

gi ⊗ gi

∥∥∥∥∥
min

.

It was shown in [13] that the latter norm is strictly smaller than m, so

‖d‖1 < m. (3)

When estimating the norm ‖ · ‖2 from below, we may use two special asymptotic representa-
tions instead of taking the supremum over all of them. Let us take φt for C ⊗ A and the identity
representation for B . Then

‖d‖2 � lim sup
t→∞

∥∥∥∥∥
m∑

i=1

φt (f ⊗ gi) ⊗
∞∑

n=1

πn(gi)Pn

∥∥∥∥∥

= lim sup
t→∞

∥∥∥∥∥
m∑

i=1

∞∑
n=1

Pnβt (f )α(gi)Pn ⊗
∞∑

n=1

πn(gi)Pn

∥∥∥∥∥

� lim sup
t→∞

sup
n

∥∥∥∥∥Pnβt (f )

m∑
i=1

α(gi)Pn ⊗ πn(gi)Pn

∥∥∥∥∥

� lim sup
n→∞

∥∥∥∥∥Pnβn(f )

m∑
α(gi)Pn ⊗ πn(gi)Pn

∥∥∥∥∥

i=1
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= lim sup
n→∞

f (τn) ·
∥∥∥∥∥

m∑
i=1

Pnα(gi)Pn ⊗ πn(gi)Pn

∥∥∥∥∥

� lim sup
j→∞

f (τnj
) ·

∥∥∥∥∥
m∑

i=1

Pnj
α(gi)Pnj

⊗ πnj
(gi)

∥∥∥∥∥,

where {nj } is any increasing subsequence of integers. Since the sequence {τn}∞n=1 is dense in
[0,1], we can find a subsequence {nj }∞j=1 such that limj→∞ τnj

= 1. Recall that, as α is a lifting
for the quotient map E → E/K, so limn→∞ ‖Pnα(g)Pn − πn(g)‖ for any g ∈ G. Then

‖d‖2 � lim sup
j→∞

f (τnj
) ·

∥∥∥∥∥
m∑

i=1

Pnj
α(gi)Pnj

⊗ πnj
(gi)

∥∥∥∥∥

= lim sup
j→∞

∥∥∥∥∥
m∑

i=1

Pnj
α(gi)Pnj

⊗ πnj
(gi)

∥∥∥∥∥

= lim sup
j→∞

∥∥∥∥∥
m∑

i=1

πnj
(gi) ⊗ πnj

(gi)

∥∥∥∥∥

=
∥∥∥∥∥

m∑
i=1

πnj
(gi) ⊗ πnj

(gi)

∥∥∥∥∥ =
m∑

i=1

1 = m.

On the other hand, ‖d‖2 �
∑m

i=1 ‖f ⊗ gi ⊗ gi‖2 = m, so we have

‖d‖2 = m. (4)

Comparing (3) and (4), we conclude that these two norms are different. �
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