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Abstract

The gYM perturbed, non-supersymmetric extension of the dual single matrix description of 1/2 BPS states, within the Hilbert space reduction
to the oscillator subsector associated with chiral primaries is considered. This matrix model is described in terms of a single Hermitean matrix. It
is found that, apart from a trivial shift in the energy, the large N background, spectrum and interaction of invariant states are independent of gYM.
This property applies to more general D terms.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Background and motivation

Recent studies of giant gravitons in AdS backgrounds [1–8]
have led to a dual matrix model description of 1/2 BPS states
in terms of the large N limit of a single complex matrix [8] in a
harmonic potential [9].

This can be motivated as follows: starting with the leading
Kaluza–Klein compactification of the bosonic sector of N = 4
SYM on S3 × R, one chooses the plane defined by two adjoint
scalars (N × N Hermitean matrices) X1 and X2. The corre-
sponding bosonic sector of the Hamiltonian is

Ĥ ≡ 1

2
Tr

(
P 2

1

) + 1

2
Tr

(
P 2

2

) + w2

2
Tr

(
X2

1

) + w2

2
Tr

(
X2

2

)

(1)− g2
YM Tr[X1,X2][X1,X2]

with P1 (P2) canonical conjugate to X1 (X2, respectively). The
harmonic potential arises as a result of the coupling to the cur-
vature of the manifold.

In terms of the complex matrix Z = X1 + iX2 and canonical
momentum Π = 1/2(P1 − iP2),

(2)Ĥ = 2 TrΠ†Π + w2

2
Tr

(
Z†Z

) + g2
YM

4
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Introducing matrix valued creation and annihilation operators

Z = 1√
w

(
A + B†), Π = −i

√
w

2

(
A† − B

)
,

motion in this plane is then characterized by the energy E and
the two-dimensional angular momentum:

(3)Ĵ = Tr
(
A†A

) − Tr
(
B†B

)
.

A (and B) quanta carry well-defined charge 1 (−1, respec-
tively).

When imbedded in N = 4 SYM, the gYM dependent in-
teraction in (2) is one of the so-called D terms, and is sub-
ject to non-renormalization theorems. One may then consider
the free theory. In this case, the (invariant) eigenstates are
Tr((A†)n)Tr((B†)m)|0〉.

1/2 BPS states then correspond to a restriction of the theory
to the (chiral) sector with no B excitations, for which E = E0 =
wJ (E0 is the free theory energy).2

When restricted to correlators of these chiral primary op-
erators, the dynamics of the system is fully described by free
fermions in the harmonic oscillator potential. It actually turns
out, as shown in [11], that the gravity description of 1/2 BPS
states is completely determined by a phase space density func-
tion associated with a general fermionic droplet configuration.

2 The B sector can also be projected out by taking a pp wave limit [10]. This
requires J to become large.
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As suggested in [12], the dynamics of the A, A† system can
be described in terms of a Hermitean matrix M

(4)M ≡ 1√
2w

(
A + A†), PM = −i

√
w

2

(
A − A†),

while retaining B , B† creation and annihilation operators. The
change of variables is:

X1 = 1√
2
M + 1

2
√

w

(
B + B†),

X2 = 1√
2w

PM + i

2
√

w

(
B − B†),

P1 = 1√
2
PM − i

√
w

2

(
B − B†),

(5)P2 = − w√
2
M +

√
w

2

(
B + B†).

As shown in [12], in the 1/2 BPS sector, the gravitational de-
grees of freedom emerge in a natural way from the density of
eigenvalues description of the large N dynamics of the Her-
mitean matrix M . The energy and flux of the 1/2 BPS states
obtained in [11] are exactly those of the leading large N config-
uration of the Hermitean matrix M in a harmonic potential, in
a bosonic phase space density description.3 This will be briefly
reviewed in the next section. Fluctuations about the large N ma-
trix configuration were shown to agree with fluctuations [12,14]
about the gravity background of [11].

The purpose of this Letter is to investigate, in the absence of
supersymmetry, the non-perturbative consequences of the quar-
tic gYM interaction in (1) while still restricting the theory to the
sector with no B excitations. In other words, the system of in-
terest is

(6)Ĥ = w Tr
(
A†A

) + g2
YM

4w2
Tr

[
A†,A

][
A†,A

]
.

In order to study its large N limit, I will use the variables (5),
in terms of which the Hamiltonian (6) becomes:

(7)ĤA = 1

2
TrP 2

M + w2

2
TrM2 − g2

YM

4w2
Tr[M,PM ][M,PM ].

In the absence of supersymmetry, the argument for the decou-
pling of B excitations is potentially weakened. It should always
be a good approximation for external states with large J charges
[13] and for large w. However, the Hamiltonian (6) (or (7)) is of
great interest per se as it contains an interaction with the struc-
ture typical of a Yang–Mills interaction.

Remarkably, we will find that, apart from a trivial shift in
the energy, the large N background, spectrum and interaction
of gauge invariant states are independent of gYM, even in the
absence of supersymmetry.

This Letter is organized as follows: within the collective field
theory approach [15], a general argument is presented in Sec-
tion 2 for the “non-renormalization” properties of the theory,

3 This is already suggested in (5), as X1 = 1/
√

2M + · · · and X2 =
1/

√
2wPM + · · · .
and an explicit non-perturbative argument is developed in Sec-
tion 3. A simple diagrammatic check is carried out Section 4,
and a generalization presented in Section 5. Section 6 is re-
served for a brief conclusion.

2. A general argument

In order to obtain the large N limit of (7), we will make
use of collective field theory approach [15]. The starting point
of this approach is to consider the action of the Hamiltonian
on wave functionals of gauge invariant operators, i.e., operators
invariant under the transformation:

(8)M → U†MU, U unitary.

For a single matrix model such as (7), these can be chosen
as the density of eigenvalues λi , i = 1, . . . ,N , of the matrix M :

(9)φ(x) =
∫

dk

2π
e−ikx Tr

(
eikM

) =
N∑

i=1

δ(x − λi),

or its Fourier transform

(10)φk = Tr
(
eikM

)
.

Let us analyze the structure of the gYM dependent operator
in (7) in more detail. It can be written as

(11)−g2
YM

4w2
Tr[M,PM ][M,PM ] = −g2

YM

4w2
Ĝij Ĝji + g2

YMN3

4w2
,

where

(12)Ĝij ≡ MikP̂kj − Mkj P̂ik.

We recognize the generators of the transformation (8). There-
fore, when restricted to the gauge invariant subspace, the gYM
term in (7) does not contribute, except for the trivial constant
shift in energy in (11).4

3. Explicit non-perturbative argument

Because, as a result of the use of the chain rule in the kinetic
energy operator, the interactions in the theory organize them-
selves with different powers of N , it is important to provide
an explicit verification of the general argument presented in the
previous section.

What is different from previous applications of the collective
field theory to the large N limit of the single matrix Hamil-
tonian (7), is the sigma model nature of the kinetic energy
operator and the presence of terms linear in momentum:

T = 1

2
gi1,i2,i3,i4(M)Pi1,i2Pi3,i4 − i

2
si1,i2(M)Pi1,i2

≡ 1

2
gAB(X)PAPB − i

2
sA(X)PA,

Pi1,i2 ≡ −i
∂

∂Mi2,i1

,

4 One may also think of the system as gauged, in which case the invariance
under (8) results from Gauss’ law, and restriction to wave functionals of gauge
invariant operators explicitly satisfies Gauss’ law.
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gi1,i2,i3,i4(M) = δi1,i4δi2,i3

+ g2
YM

w2

((
M2)

i4,i1
δi2,i3 − Mi4,i1Mi2,i3

)
,

(13)si1,i2(M) = −g2
YM

w2

(
NMi2,i1 − Tr(M)δi1,i2

)
.

Denoting by φα a generic gauge invariant variable, the kinetic
energy operator (13) takes the form, when acting on functionals
of φα ,

T = −1

2
gAB(X)

∂

∂XA

∂

∂XB

− 1

2
sA(X)

∂

∂XA

= −1

2

(
ω̄α

∂

∂φα

+ Ωα,β

∂

∂φα

∂

∂φβ

)
,

ω̄α = gAB(X)
∂2φα

∂XA∂XB

+ sA(X)
∂φα

∂XA

,

(14)Ωα,β = gAB(X)
∂φα

∂XA

∂φβ

∂XB

.

For Ωα,β , I obtain

(15)Ωk,k′ = −kk′φk+k′ .

Due to the antisymmetric nature of the Yang–Mills interaction
reflected in the sigma model nature of the kinetic energy (13),
the result above for Ωk,k′ is independent of gYM and is the same
as that for the standard kinetic energy.

For ω̄α , I obtain

ω̄(x) = −2∂x

{
φ(x)

[∫
dy

φ(y)

x − y
+ g2

YM

2w2

∫
dy (x − y)φ(y)

+ g2
YM

2w2

(∫
dy yφ(y) − Nx

)]}

= −2∂x

{
φ(x)

[∫
dy

φ(y)

x − y

(16)+ g2
YM

2w2
x
(∫

dy φ(y) − N
)]}

.

Interpreting N = Tr(1) = ∫
dx φ(x), one would immediately

conclude that both (15) and (16) are independent of gYM,
proving our result. However, we follow the more rigorous ap-
proach of imposing this constraint via a Lagrange multiplier,
and choose to enforce the constraint after variation.

Due to the change of variables XA → φα , one performs the
similarity transformation [15] induced by the Jacobian J :

(17)
∂

∂φα

→ J
1
2

∂

∂φα

J− 1
2 , Ωα,β

∂ lnJ

∂φβ

= ωα,

where only the leading (in N ) expression for lnJ is described.
One obtains the form of the collective field Hamiltonian suffi-
cient for the description of the leading large N background and
fluctuations:
Ĥeff = 1

2

∂

∂φα

Ωα,β

∂

∂φβ

+ 1

8
ω̄αΩ−1

α,βω̄β +
∫

dx
1

2
w2x2φ(x)

− μ
(∫

dx φ(x) − N
)

= − 1

2

∫
dx ∂x

∂

∂φ(x)
φ(x)∂x

∂

∂φ(x)

+ 1

2

∫
dx φ(x)

[∫
dy φ(y)

x − y

+ g2
YM

2w2
x
(∫

dy φ(y) − N
)]2

(18)+
∫

dx
1

2
w2x2φ(x) − μ

(∫
dx φ(x) − N

)
.

The Lagrange multiplier μ enforces the constraint

(19)
∫

dx φ(x) = N.

To exhibit explicitly the N dependence, we rescale

x → √
Nx, φ(x) → √

Nφ(x),

(20)μ → Nμ, −i
∂

∂φ(x)
≡ Π(x) → 1

N
Π(x).

Using the identity

(21)
∫

dx φ(x)

[∫
dy φ(y)

x − y

]2

= π2

3

∫
dx φ3(x),

we obtain

Heff = 1

2N2

∫
dx ∂xΠ(x)φ(x)∂xΠ(x) + N2

[∫
dx

π2

6
φ3(x)

+ λ2

8w4

(∫
dx x2φ(x)

)(∫
dy φ(y) − 1

)2

+ λ

4w2

(∫
dx φ(x)

)2(∫
dy φ(y) − 1

)

(22)+
∫

dx φ(x)
w2x2

2
− μ

(∫
dx φ(x) − 1

)]
,

where λ = g2
YMN is ’t Hooft’s coupling.

The large N configuration is the semiclassical background
corresponding to the minimum of the effective potential in (22),
and satisfies

(23)
π2

2
φ2

0 + λ

4w2
+ 1

2
w2x2 − μ = 0,

where the constraint
∫

dx φ0(x) = 1 has been applied after vari-
ation. This constraint fixes μ = w + λ

4w2 , and we arrive at the
Wigner distribution background

(24)πφ0(x) =
√

2w − w2x2.

All dependence on μ (and λ) has disappeared, and the large N

background is identical to the free case.
It is useful to review here the emergence of the droplet pic-

ture when λ = 0. In this case, if we let [16] p± ≡ ∂xΠ(x)/N2 ±
πφ(x), then (22) has a very natural phase space representation
as
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H 0
eff = N2

2π

p+∫
p−

∫
dp dx

(
p2

2
+ x2

2
− μ

)
.

As N → ∞, the boundary of the droplet is given by p2± + x2 =
2μ = 2w, since p± → ±πφ0(x) = ±√

2w − w2x2. This is in
agreement with the energy of the gravity solutions considered
in [11], with x1 → x, x2 → p.5

When λ �= 0, all possible λ dependence is absorbed in the
definition of μ, and since then the large N background is inde-
pendent of μ (and λ), it has a similar fermionic description to
that of the free case.

For the small fluctuation spectrum, one shifts

φ(x) = φ0 + 1√
πN

∂xη, ∂xΠ(x) = −√
πNP(x)

to find the quadratic operator

H 0
2 = 1

2

∫
dx (πφ0)P

2(x) + 1

2

∫
dx (πφ0)(∂xη)2

+ λ2

8w4π

(∫
dx x2φ0

)(∫
dx ∂xη

)2

(25)+ λ

2w2π

(∫
dx ∂xη

)2
.

The variable with a gravity interpretation as the angular variable
in the plane of the droplet [11] is the classical “time” of flight φ

dx

dφ
= πφ0, x(φ) = −

√
2

w
cos(wφ),

(26)πφ0 = √
2w sin(wφ), 0 � φ � π

w
,

in terms of which the quadratic Hamiltonian takes the form:

H 0
2 = 1

2

∫
dφ P 2(φ) + 1

2

∫
dφ (∂φη)2

+ λ2

8w4

(∫
dφ x2(φ)φ2

0(φ)
)(∫

dφ ∂φη
)2

(27)+ λ

2w2π

(∫
dφ ∂φη

)2
.

Except for the last two terms, one recognizes the Hamil-
tonian of a 1 + 1 massless boson. For consistency of the time
evolution of the constraint (19), we impose Dirichlet boundary
conditions [17] at the classical turning points:

(28)ψj (φ) =
√

2w

π
sin(jwφ), j = 1,2, . . . .

Since then

(29)
∫

dφ ∂φη = 0

the last two terms in (27) vanish, and we obtain a 1+1 massless
boson Hamiltonian with spectrum

(30)εj = wj, j = 1,2,3, . . . ,

5 In the notation of [11], our solution is restricted to y → 0.
again independent of λ.
It is not difficult to see that as a result of both (19) and (29)

the collective field cubic interaction is independent of λ.
In addition to (18), there is in the collective field theory

an extra subleading contribution proportional to
∫

dx ∂w(x)/

∂φ(x), responsible for the one loop contribution to the energy
and a tadpole interaction term [18]. The additional λ dependent
contribution is proportional to a total derivative of xφ(x).

4. A simple diagrammatic test

Let us consider, for instance, the g2
YM contribution to the two

point function

(31)
1

N2

〈
Tr

(
A2(t2)

)
Tr

(
A†2

(t1)
)〉

, t2 > t1,

resulting from the quartic interaction in (6). This can be done
using the propagator

〈0|T (
Tr

(
Ai1j1(t2)A

†
i2j2

(t1)
))|0〉

(32)= θ(t2 − t1)e
−iw(t2−t1)δi1j2δi2j1.

Consider first the Tr(A†A†AA) interaction. There are two types
of connected planar diagrams, one the usual connected diagram
without self contractions and the other involving the “dressing”
of an internal leg. For the first, one obtains

g2
YM

4w2
. 4N .

t2∫
t1

dt e−i2w(t2−t)e−i2w(t−t1)

(33)= λ

4w2
. 4 . (t2 − t1)e

−i2w(t2−t1).

For the other type of diagram, one obtains

g2
YM

4w2
. 8N . e−iw(t2−t1)

t2∫
t1

dt e−iw(t2−t)e−iw(t−t1)

(34)= λ

4w2
. 8 . (t2 − t1)e

−i2w(t2−t1).

Turning now to the Tr(A†AA†A) interaction, one establishes
that the only type of planar diagram that is generated is the
diagram (34) with a self-contraction associated with the “dress-
ing” of an internal leg. This diagram now has a symmetry factor
of 12, and since the interaction has the opposite sign, it exactly
cancels the sum of (33) and (34).

The arguments of the previous sections show that this gener-
alizes to general invariant external states and to arbitrary orders
of perturbation theory.

Other families of states, that are not protected by BPS ar-
guments but with energies independent of gYM for different
diagrammatic reasons, have also been reported in the litera-
ture [19].

5. General D terms

Consider now the general g2
YM potential

(35)−g2
YM

∑
Tr

([Xi,Xj ][Xi,Xj ]
)
,

i<j
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written in terms of complex fields Z = X1 + iX2, φ = X3 + iX4
and ψ = X5 + iX6. The D terms take the form

g2
YM Tr

(
1

4

[
Z†,Z

][
Z†,Z

] + 1

4

[
φ†, φ

][
φ†, φ

]

+ 1

4

[
ψ†,ψ

][
ψ†,ψ

] + 1

2

[
φ†, φ

][
ψ†,ψ

]

(36)+ 1

2

[
φ†, φ

][
Z†,Z

] + 1

2

[
ψ†,ψ

][
Z†,Z

])
.

They can be equivalently written as

g2
YM

4
Tr

(([
Z†,Z

] + [
φ†, φ

] + [
ψ†,ψ

])
(37)× ([

Z†,Z
] + [

φ†, φ
] + [

ψ†,ψ
]))

.

One introduces, as before, matrix valued creation and annihila-
tion operators

Z = 1√
w

(
A + B†), φ = 1√

w

(
C + D†),

(38)ψ = 1√
w

(
E + F †).

If one is interested only in correlators of chiral primaries such
as Tr(Z†m1φ†q1ψ† s1 · · ·), these can be excited from the vacuum
as Tr(A†m1C†q1E† s1 · · ·) and described in terms of Hermitean
matrices M , Q and S. Using an argument similar to the general
argument of Section 2, and taking into account the special form
of (37), we conclude that the terms in (36) involving only A,
C and E oscillators (and their conjugates) do not contribute to
these amplitudes.

6. Conclusion

In this Letter, the large N limit of the system

(39)Ĥ = w Tr
(
A†A

) + g2
YM

4w2
Tr

[
A†,A

][
A†,A

]
,

when restricted to the subsector of chiral primary states Tr(A†n)

has been shown to be independent of gYM. In order to explicitly
confirm this result, the collective field theory method has been
generalized to include sigma model type kinetic energy opera-
tors. This “non-renormalization” result applies to more general
D terms.
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