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Abstract

This paper is concerned with online algorithms for scheduling jobs with deadlines on a single
processor. It has been known for long that unless the system is underloaded, no online scheduling
algorithm can be 1-competitive, i.e., matching the performance of the optimal offline algorithm.
Nevertheless, recent work has revealed that some online algorithms using a moderately faster
processor (or extra processors) can significantly improve the competitiveness [10] or even be 1-
competitive [16,12]. This paper takes a further step to investigate online scheduling algorithms
with an even higher performance guarantee (i.e., better than 1-competitive algorithms) and in
particular, presents an extra-resource analysis of the earliest-deadline-first strategy (EDF) with
respect to such a higher performance guarantee.
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1 Introduction

This paper is concerned with online algorithms for scheduling jobs with dead-
lines on a processor that allows preemption (see, e.g., [2,14,18,15,6]). A typical
example is the earliest deadline first (EDF) algorithm, which has been widely
used in many real-time systems (see [19] for a survey of EDF). We measure
such online algorithms by the total work (or value) of jobs that can be com-
pleted by their deadlines. An online algorithm is said to be 1

c
-competitive

for some fraction 1

c
≤ 1 if, for any job sequence, it guarantees to achieve at

least 1

c
of the total work (or value) obtained by any offline algorithm. Notice

that a 1-competitive algorithm matches the performance of the optimal offline
algorithm. It has been known for long that when the system is underloaded,
EDF is actually 1-competitive [7]; however, in general, EDF as well as any
online algorithm is not 1-competitive [8]; indeed, the best possible algorithm
can match at most 1

4
of the total work obtained by any offline algorithm [14].

(In general, if our aim is to maximize the total value, the best possible online
algorithm is 1/(

√
λ + 1)2-competitive [14], where λ is the importance ratio,

which is the ratio of the largest possible value per unit of work to the smallest
possible value per unit of work.)

In recent years, there have been many studies on how to obtain better
performance guarantee of online schedulers using a faster processor or other
extra resources; such studies are often referred to as the resource augmentation
or extra-resource analysis (e.g., [3,5,6,9,10,11,12,15,16,17]). Intuitively, allow-
ing the online scheduler to use a processor faster than the offline scheduler
provides a way to compensate the online scheduler for the lack of future infor-
mation. To simplify our discussion, we first discuss the results on scheduling
that aims at maximizing the total work. Kalyanasundaram and Pruhs [10]
were the first to show that a moderately faster processor can guarantee a
1

c
-competitive algorithm, where c is a constant that can be made arbitrarily

close to one. Later Lam et al. [16] further showed that EDF supplemented
with admission control (denoted by EDF-AC) is indeed 1-competitive when
using a speed-2 processor 4 , and more recently Koo et al. [12] showed that
1-competitiveness can also be achieved if the online scheduler exploits only
two unit-speed processors.

Knowing that a faster processor can allow an online scheduler to match the
optimal offline algorithm, one would naturally demand a performance better
than the optimal offline algorithm. Roughly speaking, it is desirable to have
a k-competitive algorithm for some k > 1. Yet, from a technical viewpoint,
such a guarantee is not possible because there always exist job sequences

4 A speed-x processor can process x units of work in one unit of time.
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for which no online algorithm can outperform the optimal offline algorithm;
for example, a job sequence may be underloaded (i.e., it can be completed
entirely by an offline algorithm) or has only a short overloaded period. The
above observation motivates us to investigate a less demanding notion called
k-aggressive algorithms, which can be perceived as follows. Ideally, we want
an online algorithm to complete all jobs whenever possible; when it cannot
complete all, there must be some conflicting jobs and we require the algorithm
to guarantee its performance on such jobs is at least k times as good as that
of the optimal algorithm.

Definition 1.1 An online algorithm A is said to be k-aggressive if A can
satisfy the following requirements. Given any job sequence I, A partitions the
jobs into two categories, called overloaded jobs and underloaded jobs, such
that

• with respect to overloaded jobs, the work (or value) attained by A is at least
k times that of any offline algorithm (using a unit-speed processor); and

• for underloaded jobs, A completes all of them by their deadlines.

By definition, for any c ≤ 1, an algorithm is c-competitive if and only if it
is c-aggressive. In other words, aggressiveness can be regarded as an extension
of competitiveness. As mentioned before, EDF-AC using a two times faster
processor is 1-competitive [16], and thus 1-aggressive. It is however non-trivial
whether a higher degree of aggressiveness can be achieved. In this paper we
answer in the affirmative that EDF-AC can be k-aggressive for any k ≥ 1
when using a speed-(k + 1) processor.

Our aggressive analysis of EDF-AC is indeed tight as we can show that
using a speed-(k+1) processor, EDF-AC is not (k+ε)-aggressive for any ε > 0.
Furthermore, if the speed factor is reduced to be slightly less than k +1, then
EDF-AC is not k-aggressive. Such lower bound results can be generalized
to any online algorithms that decides at release time, i.e., the decision of
committing to a job to meet its deadline is made immediately when the job is
released.

Our aggressive analysis of EDF-AC can be extended to the case when
the objective is to maximize the total value instead of the total work of jobs
completed. In particular, we show that a simple extension of EDF-AC can
be k-aggressive for any k ≥ 1 when using a speed-((2k + 1)�log λ�) processor,
where λ is the importance ratio.

The remainder of this paper is organized as follows: Section 2 presents
the aggressive analysis of EDF-AC when the concern is the total work, or
equivalently, λ = 1. Section 3 extends the analysis to the case of general λ
(i.e., jobs with non-uniform value densities). Section 4 shows that our analysis
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is tight. Before leaving this section, we give a precise definitions of the deadline
scheduling problem (which is often referred to as the firm deadline scheduling
problem in the literature) and EDF-AC.

Problem definition: Consider a single processor system. Jobs are released
in an unpredictable fashion, each requesting a certain amount of work (pro-
cessing time). The work, deadline, and value of a job are known only when the
job is released. Deadlines are firm in the sense that completing a job after its
deadline gives zero value. Notice that a system may be overloaded, in which
case there is no way to schedule every job released to meet the deadline. The
aim of a scheduler is to maximize the total value (or work) of jobs meeting
the deadlines. Preemption is allowed at no cost (i.e., a preempted job can be
restarted from the point of preemption at any time). The design of a good
scheduler is further complicated by the fact that jobs may have different value
densities, i.e., different ratios of value to processing time. The importance
ratio λ of a system is defined as the ratio of the largest possible value density
to the smallest possible value density. When λ = 1, all jobs have the same
value density. The problem of maximizing the total work is actually a special
case of the problem of maximizing the total value where λ = 1.

To simplify our argument, we assume that jobs have distinct release times
and deadlines since ties can be broken consistently, say, by job identification
numbers. Furthermore, we assume that the first job is released at time 0.

EDF and EDF-AC: In this paper, EDF refers to the strategy of scheduling
the job with the earliest deadline. Note that the current job will be preempted
when a new job with an earlier deadline is released. EDF is often supplemented
with some kind of admission control to avoid excessive preemption when the
system is overloaded. In the following EDF-AC denotes EDF enhanced with
the following simple form of admission control. Upon release, a job must pass
a test to get admitted for EDF scheduling. The test simply checks whether
the new job together with the previously admitted jobs can all be completed
by their deadlines using EDF. Once a job is admitted, EDF-AC guarantees to
complete it.

2 The Aggressiveness of EDF-AC

In this section we show that when jobs have uniform value density (or equiv-
alently, when we want to maximize the total work), EDF-AC, when using a
speed-(k + 1) processor, is k-aggressive, where k is any number at least one.

Theorem 2.1 EDF-AC, when using a speed-(k+1) processor, is k-aggressive

for any k ≥ 1.
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We prove Theorem 2.1 by contradiction. Assume that EDF-AC, using
a speed-(k + 1) processor, is not k-aggressive for some job sequence. That
is, there exists some job sequence that does not admit a categorization into
overloaded and underloaded jobs such that EDF-AC completes all underloaded
jobs, and for overloaded jobs, EDF-AC achieves a total work at least k times
that of the optimal offline algorithm. Let I be such a job sequence containing
the fewest jobs. We will first show that I must satisfy certain properties (see
Lemmas 2.2 and 2.4). Then we prove that EDF-AC is k-aggressive for any
job sequence which possesses those properties. In other words, EDF-AC is
k-aggressive for I, and we obtain a contradiction to complete the proof of
Theorem 2.1.

Lemma 2.2 When scheduling the job set I, EDF-AC is busy over exactly one

continuous period.

Proof. Assume that EDF-AC is busy over two or more disjoint periods. Let
t� be the start time of the last busy period. Divide I into two parts I1 and
I2, one for the jobs released before t� and one for the rest. If we schedule I1

and I2 by EDF-AC separately, the schedules produced are disjoint and their
union is identical to the schedule of I. Since I is the smallest counter-example
showing that EDF-AC is not k-aggressive, jobs in I1 (I2, respectively) can be
categorized into overloaded jobs called O1 and underloaded jobs U1 (O2 and
U2, respectively) such that the k-aggressive property holds (see the definition
in the introduction). Consider the following categorization of I. Jobs in
O = O1∪O2 are considered overloaded, and jobs in U = U1 ∪U2 underloaded.
EDF-AC, when scheduling I, completes all jobs in U in time, while the amount
of work scheduled by EDF-AC for overloaded jobs would still exceed that of
any offline algorithm by a factor of k. In other words, I should be k-aggressive,
contradicting our assumption on I. �

The second property of I is related to a concept called repudiation, defined
as follows.

Definition 2.3 Consider the moment when EDF-AC fails to admit a newly
released job J . That is, when J is released, it is found that using EDF to
schedule J together with all jobs admitted previously would cause some job
to miss the deadline. Any such job is said to repudiate J . Note that it is
possible that a job repudiates itself.

Lemma 2.4 Let J� be the job in I with the latest deadline. In the course of

scheduling I there is at least one time when J� repudiates a job.

Proof. Suppose to the contrary that J� never repudiates any job. Note that
a job can only repudiate another job if the latter has an earlier deadline. Since
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J� does not repudiate itself, no job can repudiate it. Hence J� is admitted by
EDF-AC at its release time. Consider any moment after J� is admitted. Any
newly released job, if rejected by EDF-AC, must be repudiated by a job other
than J�. Thus if we remove J� from I, EDF-AC will not admit more jobs.
Since J� is the latest deadline job, removing it does not affect the EDF-AC
schedule of any other job in I. Notice that I −{J�} contains one less job than
I, so EDF-AC is k-aggressive for I−{J�}. In other words, jobs in I−{J�} can
be categorized into overloaded jobs O and underloaded jobs U in such a way
that the k-aggressive property holds. Consider the following categorization
of I: jobs in O are overloaded, and jobs in U ∪ {J�} are underloaded. When
EDF-AC schedules I, the underloaded jobs are all scheduled, while the amount
of work scheduled by EDF-AC for overloaded jobs would still exceed that of
any offline algorithm by a factor of k. In other words, I should be k-aggressive,
contradicting the definition of I. �

With the above two properties of I, we are ready to prove that EDF-AC
is k-aggressive for I.

Proof of Theorem 2.1. By Lemmas 2.2 and 2.4, we can assume that I
contains only one busy period, and J�, the job with the latest deadline in
I, repudiates another job J at some time t. Let p(J) and d(J) denote the
processing time and deadline of job J , respectively. Below we show that I
can satisfy the requirement for k-aggressiveness, in particular, by assigning all
jobs of I to be overloaded. Since all jobs have deadline no later than d(J�),
the offline algorithm can only complete work amounting to d(J�). We want to
show that EDF-AC can complete at least k d(J�) units of work.

Recall that J is repudiated by J� at time t. By definition, at time t, if we
attempt to use EDF to schedule J together with all the previous jobs admitted
by EDF-AC, J� can complete only after its deadline (i.e., d(J�)). Note that a
speed-(k + 1) processor takes p(J)/(k + 1) units of time to process J . That
means, at time t, all the previous jobs admitted before must be able to keep
the processor busy up to d(J�)− p(J)/(k + 1). Thus, EDF-AC is busy during
the whole period from 0 to d(J�)− p(J)/(k + 1). The length of this interval is
at least d(J�)−d(J)/(k+1) > d(J�)−d(J�)/(k+1) = k d(J�)/(k+1). Using a
speed-(k + 1) processor, EDF-AC can complete at least k d(J�) units of work,
thus satisfying the k-aggressive requirement. This contradicts the fact that
EDF-AC is not k-aggressive for I. �

Notice the proof above implicitly shows how to categorize jobs into over-
loaded and underloaded jobs so that EDF-AC satisfies the requirement of
k-aggressiveness. Details are as follows. Consider the schedule produced by
EDF-AC. It may contain multiple busy periods, in which case we will con-
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sider each busy period independently, each time categorizing those jobs re-
leased during one busy period as follows. We will find the latest deadline
job J among the jobs released during one busy period. If the job J repudi-
ates another job during its scheduling, all jobs in the period are categorized
as overloaded, and the categorization completes. Otherwise, J is categorized
as underloaded, and is removed from consideration. Once we remove J , the
scheduling of the remaining jobs may again contain multiple busy periods.
They are categorized recursively using the same strategy. The proof above
shows that the k-aggressive property holds for this categorization.

3 General value density

It is more difficult to guarantee aggressiveness when jobs have vastly different
value densities. Indeed, the aggressiveness guarantee of EDF-AC deteriorates
quickly as the importance ratio (i.e., the ratio between the largest value density
and smallest value density of jobs within the job set) increases. Using the proof
techniques of Section 2, we can show that EDF-AC is k-aggressive when using
a speed-(kλ + 1) processor, where λ > 1 is the importance ratio. Luckily, we
can use EDF-AC as a building block to devise an improved algorithm, called
λ-EDF-AC, that requires only a speed-((2k + 1)�log λ�) processor.

We assume the value densities to be between 1 and λ. The λ-EDF-AC
algorithm splits the processor into �log λ� speed-(2k + 1) virtual processors.
Each of them runs EDF-AC for some of the jobs. In particular, the i-th
processor will schedule jobs with value density between [2i−1, 2i), and jobs of
value density λ is also scheduled by the �log λ�-th processor even if λ is a
power of 2.

Theorem 3.1 λ-EDF-AC is k-aggressive when each virtual processor is speed-

(2k +1), i.e., when the speed of the single processor is speed-((2k +1)�log λ�).

Proof. Notice that the scheduling of jobs for each virtual processor is k-
aggressive. In other words, the jobs Si given to the i-th processor can be
categorized as overloaded jobs Oi and underloaded jobs Ui, such that EDF-AC
in the i-th virtual processor completes all jobs in Ui, and attains at least k
times the work attained by any offline algorithm for Oi. Hence U =

⋃
Ui and

O =
⋃

Oi defines a categorization for the set of jobs to show that λ-EDF-AC
is k-aggressive: All jobs in U are completed by λ-EDF-AC. For jobs in O,
λ-EDF-AC attains a value at least k times the sum of values that an offline
algorithms can attain for each Oi, where the sum is at least the maximum
value obtained by an offline algorithm for the job set O. �
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4 Lower Bound for Aggressiveness

An algorithm is said to decide at release time if the decision of committing to
a job to meet its deadline is made immediately when the job is released. Note
that EDF-AC is an algorithm that decides at release time. For algorithms of
this type, we can show that the above speed and aggressiveness are tight.

Theorem 4.1 Let A be an online algorithm using a speed-(k + 1) processor

for some positive integer k. If A decides at release time, then A is not (k+ε)-
aggressive for any ε > 0.

Proof. Consider the following sequence S of k + 2 jobs. The first job J0

has release time 0, processing time ε/2, and deadline ε/2. All the remaining
k + 1 jobs have release time, processing time, and deadline be δ, 1, and 1 + δ,
respectively, where δ < ε/(2k + 2).

A must commit to the first job positively, as it is the only available job
at that time. Then it can commit to at most k late jobs positively, and has
to reject at least one late job J . (This is because (k + 1 + ε/2)/(k + 1) =
1 + ε/(2k + 2) > 1 + δ.) Since an aggressive algorithm must complete all
underloaded jobs, J must be categorized as overloaded. An optimal offline
algorithm can choose to work only on J . Being a (k+ε)-aggressive algorithm,
A must thus complete a set of overloaded jobs with total work being at least
k + ε. But as we have seen, A must reject at least one job with processing
time 1, and thus completes only work amounting to k + ε/2 < k + ε. �

Theorem 4.2 Let A be an online algorithm using a speed-(k+1−ε) processor

for some positive integer k and some ε > 0. If A decides at release time, then

A is not k-aggressive.

Proof. Consider the following sequence S of k + 2 jobs. The first k + 1 jobs
have release time 0, processing time 1 − ε/3k, and deadline 1. The last job
has release time ε/4k, processing time 1 − ε/4k and deadline 1. A cannot
commit to all the first k + 1 jobs, since it can only complete k + 1 − ε work
in 1 unit of time, while the total work of the k + 1 jobs is k + 1− (k + 1)ε/3k
which is larger. Thus A rejects at least one of these k + 1 jobs, which must
thus be considered as overloaded job. Since an offline algorithm may work on
that job, to be k-aggressive A must commit to all the remaining k jobs. As a
result, the last job (of slightly larger work) must be rejected, since to complete
it means the algorithm completes work amounting to k−ε/2+1−ε/4k, which
is more than the maximum we have mentioned earlier. So the last job must
be categorized as overloaded. The offline algorithm may opt to complete the
job, so to be k-aggressive the algorithm must complete work amounting to
k − ε/4, which is not the case (A only completes k − ε/3 work). �
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5 Concluding remarks and future work

While we show that EDF-AC using a speed-(k + 1) processor is k-aggressive,
such a virtue is definitely not limited to EDF-AC. It can be shown that the
EDF-Plus algorithm, introduced in [12], also has this property.

There are several open problems related to aggressiveness. It is non-trivial
to us whether there exists any online algorithm that is k-aggressive when given
extra unit-speed processors. The special case when k = 1 has been resolved
in [12]. Furthermore, we would like to study aggressiveness in the context of
multiprocessor scheduling.
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