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Abstract

The development of head and neck squamous cell

carcinoma (HNSCC) involves the accumulation of ge-

netic and epigenetic alterations in tumor-suppressor

proteins, together with the persistent activation of

growth-promoting signaling pathways. The activation

of epidermal growth factor receptor (EGFR) is a fre-

quent event in HNSCC. However, EGFR-independent

mechanisms also contribute to the activation of key

intracellular signaling routes, including signal trans-

ducer and activator of transcription-3 (STAT3), nuclear

factor KB (NFKB), and Akt. Indeed, the autocrine ac-

tivation of the gp130 cytokine receptor in HNSCC cells

by tumor-released cytokines, such as IL-6, can result in

the EGFR-independent activation of STAT3. In this

study, we explored the nature of the molecular mech-

anism underlying enhanced IL-6 secretion in HNSCC

cells. We found that HNSCC cells display an increased

activity of the IL-6 promoter, which is dependent on the

presence of an intact NFKB site. Furthermore, NFKB

inhibition downregulated IL-6 gene and protein expres-

sion, and decreased the release of multiple cytokines.

Interestingly, interfering with NFKB function also pre-

vented the autocrine/paracrine activation of STAT3 in

HNSCC cells. These findings demonstrate a cross-talk

between the NFKB and the STAT3 signaling systems,

and support the emerging notion that HNSCC results

from the aberrant activity of a signaling network.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

sixth most common cancer in the world and accounts for

90%ofmalignant neoplasias of the upper respiratory system

[1]. Despite recent advances in the management of lo-

cally advanced HNSCC, the overall survival of patients has

improved only marginally over the past three decades [2]. In

this regard, HNSCC progression often involves the accu-

mulation of a number of genetic and epigenetic alterations

in tumor-suppressor proteins, such as p53, p16, and RB,

concomitant with the aberrant activity of signaling molecules

that drive the unrestricted growth of HNSCC cells [3]. Thus, the

recent development of novel molecular-targeted therapies may

now afford the rational selection of treatment modalities for

HNSCC patients based on specific molecular mechanisms

whose deregulated activity contributes to the initiation, devel-

opment, and metastatic spread of this cancer type.

Roughly 90% of all HNSCC cases exhibit an enhanced

expression of epidermal growth factor receptor (EGFR) [4–6],

and approximately 50% of all advanced HNSCC cases present

an elevated activity of this polypeptide growth factor tyrosine

kinase receptor [7]. This provided the molecular basis for

current efforts aimed at evaluating the clinical activity of EGFR

inhibitors in HNSCC [3,8]. As expected, many of the down-

stream intracellular targets of EGFR, such as signal transducer

and activator of transcription-3 (STAT3), Ras–ERK, and PI3K–

Akt pathways are also often activated in HNSCC [9–11].

However, emerging evidence suggests that both EGFR-

dependent and EGFR-independent mechanisms contribute

to the persistent activation of these key signaling routes in

HNSCC [12,13]. The mechanisms responsible for the EGFR-

independent unregulated function of these signaling routes are

still poorly understood.

Of interest, whereas the activation of EGFR leads to the

rapid tyrosine phosphorylation of STAT3 in tyrosine705 and the

consequent activation of STAT3-dependent gene expression,

we have recently observed that STAT3 tyrosine phosphoryla-

tion and the formation of active STAT3 DNA-binding complexes

are insensitive to the inhibition of EGFR in a large fraction of

HNSCC cell lines [13]. Indeed, 9 of 10 cell lines form a rep-

resentative panel of HNSCC-derived cells showing increased

tyrosine phosphorylation and activity of STAT3, but constitutive

activity of EGFR was present in only 3 of them [13]. In search

for the mechanism responsible for the EGFR-independent ac-

tivation of STAT3 in HNSCC cells, we observed that the

activation of the gp130 cytokine receptor subunit promoted

the phosphorylation of STAT3 in tyrosine705 through the
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activation of intracellular tyrosine kinases of the JAK family

[13]. Surprisingly, the activation of gp130 was found to be

primarily initiated by IL-6, which, on its secretion and release

by HNSCC cells, acts on the IL-6 receptor–gp130 complex

on the cell surface of HNSCC cells in an autocrine fashion

[13]. These findings, together with recently published reports

[14,15], suggest that the persistent activation of STAT3 in

HNSCC can result from the deregulated activity of EGFR or

from the autocrine activation of STAT3 by tumor-released

cytokines in an EGFR-independent fashion.

These observations prompted us to explore the nature of

the molecular mechanism underlying the enhanced pro-

duction and secretion of IL-6 in HNSCC cells. In this study,

we found that overexpression of IL-6 in HNSCC cells involves

increased transcription from the IL-6 promoter, which is

dependent on the presence of an intact nuclear factor nB
(NFnB) response element located 63 to 75 bp upstream of

the IL-6 transcriptional initiation site. Furthermore, inhibition

of NFnB led to a remarkable downregulation of IL-6 gene

and protein expression, concomitant with a decreased re-

lease of other inflammatory cytokines, such as IL-8, IL-10,

granulocyte–macrophage colony-stimulating factor (GM-

CSF), and granulocyte colony-stimulating factor (G-CSF).

Surprisingly, the blockade of NFnB led also to a drastic in-

hibition of the constitutive STAT3 activity in HNSCC cells, as

reflected by the reduced tyrosine phosphorylation of STAT3.

Interestingly, interfering with NFnB function also prevented

the ability of HNSCC cell supernatants to promote the acti-

vation of STAT3 in nontumorigenic epithelial cells in a para-

crine fashion. These findings support the emerging notion

that the aberrant activity of a network of interrelated signal-

ing pathways, rather than a single deregulated biochemical

route, contributes to squamous carcinogenesis. They also

provide an interesting example of a cross-talk between the

NFnB and the STAT3 signaling systems. This cross-talk is

initiated by the release of IL-6 as a consequence of the NFnB-
dependent activation of the IL-6 promoter, and the subse-

quent tyrosine phosphorylation of STAT3 by the autocrine/

paracrine activation of IL-6 receptors in tumor cells.

Materials and Methods

DNA Constructs and Reagents

The dominant-negative IjB A32/36S super-repressor

mutant (kindly provided by Dr. Siebenlist) [16] was cloned

in-frame with a green fluorescent protein (GFP) coding

sequence into the pCEFL expression vector, generating a

pCEFL-GFP-IjB A32/36S plasmid. The lentivirus-encoding

dominant-negative GFP-IjB andGFP genes were generated

using the gateway system from Invitrogen Life Technologies

(Carlsbad, CA) and CSCG-based retroviral vectors, as pre-

viously reported [17,18]. The full-length IL-6 promoter and the

point mutations in the AP-1 and NFnB regulatory elements of

the IL-6 promoter (kindly provided by Dr. Libermann) [19]

were inserted into the KpnI–XhoI sites of the pGL3 luciferase

reporter vector by polymerase chain reaction (PCR), gen-

erating pGL3-IL-6-Luc and its mutants. For report assays,

pGL3-NFjB-Luc, in which luciferase expression is con-

trolled by five NFnB response elements, was also used.

The plasmid pcDNA3-b-galactosidase (BD Biosciences,

San Jose, CA) and pCEFL-GFP were used as controls. Re-

combinant human IL-6 was purchased from PeproTech, Inc.

(Rocky Hill, NJ), and tumor necrosis factor a (TNF-a) was

fromRoche (Indianapolis, IN). Cells were treatedwith a single

dose of IL-6 or TNF-a (10 ng/ml) for 10 minutes.

Cell Lines and Culture Conditions

The HNSCC cell lines HN6, HN12, HN13, and HN30 [20];

HaCaT cells [21]; an immortalized nontumorigenic human

skin keratinocyte cell line; and HEK293TandHEK293FTcells

were cultured in DMEM supplemented with 10% fetal calf

serum, penicillin, and streptomycin. The cells were main-

tained in a 5% CO2-humidified incubator. Stable cell lines

were established by lentiviral infection using CSCG-based

retroviral vectors and 293FT cells as packaging cells. HN13

and HN30 cells were infected with viral supernatants for

24 hours at 37jC in the presence of 8 mg/ml polybrene (hexa-

dimethrine bromide; Sigma, St. Louis, MO). Conditioned

media (CM) from HaCaT and HNSCC cell lines were pre-

pared by incubating subconfluent cultured cells for 24 hours

in DMEM without serum and supplements. Harvested CM

were then filtered through a 0.22-mm low-protein-binding

polyethylsulfonate membrane filter.

Transcription Factor Analysis

Nuclear extracts were prepared using a NE-PER Nuclear

and Cytoplasmic Extraction reagent (Pierce Biotechnology,

Inc.). The double-stranded oligonucleotide consensus se-

quence for NFnB (5V-AGTTGAGGGGACTTTCCCAGGC-3V)
and activating protein 1 (AP1; 5V-CGCTTGATGACTCAGC-

CGGAA-3V) (Santa Cruz Biotechnology, Inc., Santa Cruz

Biotechnology, CA) was labeled with [g32P]ATP using T4

polynucleotide kinase (Invitrogen Life Technologies), puri-

fied, and added to the reactions (20,000 cpm/reaction) for

15 minutes. Complexes were analyzed on nondenaturing

(4.5%) polyacrylamide gels. For supershift assays, 1 mg of

anti-NFnB (C-20) antibody (Santa Cruz Biotechnology, Inc.)

was added to the binding reaction before the addition of a

radiolabeled probe. In separate experiments, to identify the

NFnB subunit proteins in the complex, 2 ml of p65 antibody

was incubated with nuclear proteins before the addition of

the radiolabeled probe to visualize any supershift-retarded

bands in the NFnB complex. Protein–DNA complexes were

separated by electrophoresis on 4% polyacrylamide gel

in Tris–borate–EDTA buffer. NFnB DNA-binding activity

assays were also performed using Trans-AM enzyme-linked

immunosorbent assay (ELISA)–based kit from Active Motif

(Carlsbad, CA), according to the manufacturer’s protocol.

Briefly, cell extracts were incubated in a 96-well plate coated

with an oligonucleotide containing the NFnB consensus-

binding site. Activated transcription factors from extracts

specifically bound to the respective immobilized oligonucleo-

tides were detected using antibodies to NFnB p65, followed

by a secondary antibody conjugated to horseradish peroxi-

dase (HRP) in an ELISA-like assay.
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IjB Kinase (IKK) Knockdown

Cells were seeded in 24-well or 6-well plates and, on

reaching 70% confluence, the cells were washed twice in

serum-free medium and transfected with 12.5 nM double-

stranded RNA oligonucleotides directed against human IKKa

(NM_001278, SI00605115; Qiagen, Valencia, CA) and with

25 nM against IKKb (NM_001556, SI02777376; Qiagen)

using HyperFect (Qiagen), following the manufacturer’s

instructions.Optimal concentrations of siRNA and time points

were determined by performing a dilution curve of siRNA

for each target, and knockdown was determined by Western

blot analysis. After 72 hours, the cells were treated as

indicated, and nuclear extracts were isolated as described

above. The sequences of the negative siRNA (Qiagen)

oligonucleotides used as controls were as follows: 5V-UUCU-
CCGAACGUGUCACGUdTdT-3V and 5V-ACGUGACACGU-

UCGGAGAAdTdT-3V.

Immunoblotting

Cultured cells were harvested at the times indicated in

each experiment, washed with phosphate-buffered saline,

and lysed in 62.5 mM Tris, 2% sodium dodecyl sulfate (SDS),

and 10% glycerol (SDS sample buffer) with aprotinin, leu-

peptin, pepstatin, and 4-(2-aminoethyl) benzenesulfonyl

fluoride. Cell suspensions were briefly sonicated, and the

protein concentration for each cell lysate was determined

using DC protein assay (Bio-Rad, Hercules, CA). Twenty to

40 mg of total protein from whole cell lysates was loaded onto

each lane for gel electrophoresis. Immunoblotting was per-

formed using 0.1 M Tris (pH 7.5), 0.9% NaCl, 0.05% Tween-

20 with 5% nonfat dry milk as a blocking and antibody-dilution

buffer, and working antisera for STAT3, phospho-STAT3

(pSTAT3)–tyrosine705, IKKa, IKKb, phospho-IKKa/b (Cell

Signaling Technology, Beverly, MA), GFP (Covance, Inc.,

Denver, PA), and tubulin (Santa Cruz Biotechnology, Inc.).

We used 62.5 mM Tris (pH 6.8), 2% SDS, and 100 mM

b-mercaptoethanol to strip probed filters, as indicated in

each experiment.

Immunohistochemistry

Individual paraffin blocks of formalin-fixed tissues from

human squamous cell carcinomas of the oral cavity and

HNSCC tissue arrays containing approximately 460 cases

of oral SCC and normal control tissues were obtained from

the National Institute of Dental and Craniofacial Research,

National Institutes of Health Oral Cancer Tissue Array Initia-

tive (Bethesda, MD) (Molinolo et al., in preparation). Briefly,

individual paraffin-embedded HNSCC tissues from the oral

cavity were arrayed and processed following the standard

methodology of the Tissue Array Research Program (www.

cancer.gov/tarp). Immunohistochemistry was performed as

previously described [22]. In brief, the slides were dewaxed

in xylene and hydrated through graded alcohols. Antigen

retrieval was performed using 10 mM citrate buffer (pH 6.0)

placed in a microwave oven for 20 minutes (2 minutes at

100% power and 18 minutes at 10% power). The slides were

allowed to cool down for 30 minutes at room temperature,

rinsed twice with tris-buffered saline solution (TBST), and

Figure 1. HNSCC cells secrete IL-6 and exhibit enhanced NFjB DNA-

binding activity. (A) IL-6 levels in CM from the indicated cell lines were

measured and presented as bar graphs. Limited amounts of IL-6 were pro-

duced and secreted by HaCaT and HN6; in contrast, high levels were

detected in CM from the HN12, HN13, and HN30 cell lines. The data are

presented as the mean ± SE of triplicate measurements. (B) Levels of

activated NFjB contained in nuclear extracts were assessed by their ability to

bind to a consensus NFjB-binding site oligonucleotide, and an NFjB–DNA

binding complex was revealed by chemiluminescence on incubation with anti-

p65 antiserum followed by a secondary antibody conjugated to HRP. Bar

graphs represent the mean ± SE of quantitative measurements of NFjB in

arbitrary units, which were high in HN12, HN13, and HN30, but not in HaCaT

and HN6, under normal culture conditions. Cell lines were also stimulated

with TNF-a (10 ng/ml for 10 minutes), which stimulates NFjB activation.

HaCaT cells served as positive control. Data are presented as the mean ± SE

of triplicate measurements. (C) EMSA was performed using a 32P-labeled

consensus oligonucleotide containing the sequence for NFjB-binding sites.

Nuclear extracts were harvested from each cell line. Bands (black arrow)

represent shifted protein–DNA complexes, which are found in HN12, HN13,

and HN30, but not in HaCaT and HN6, under regular culture conditions.

HaCaT was also stimulated with TNF-a as a control, thus confirming the

binding and shifting of protein –DNA complexes. Preincubation of nuclear

extracts with anti-NFjB (p65) resulted in the appearance of a slower

migrating (supershifted) band (open arrow), confirming the presence of active

NFjB in protein–DNA complexes.
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incubated in 3% hydrogen peroxide for 30 minutes to quench

the endogenous peroxidase. The sections were then incu-

bated in blocking solution (5% bovine serum albumin) for

1 hour at room temperature, followed by treatment with anti–

IL-6 primary antibody (clone 6708.11; Sigma), NFnB p65 (A)

antibody (Santa Cruz Biotechnology, Inc.), and pSTAT3Y705–

specific antibody (Santa Cruz Biotechnology, Inc.), where

indicated, overnight at 4jC. After washing with TBST, the

slides were incubated with the labeled streptavidin biotin

reagent (LSAB+system HRP; DAKO Corporation, Carpinte-

ria, CA), following the manufacturer’s instructions. The slides

were developed in 3,3-diaminobenzidine (Sigma FASTDAB

tablet; Sigma) and counterstained with Mayer’s hematoxylin.

Images were taken using a SPOT digital camera attached to

a Zeiss Axiophot microscope (Carl Zeiss, Thornwood, NY).

All immunostainings were assessed by two experienced

pathologists. The tumors were classified as positive or

negative (no staining). Statistical analysis was performed
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by two-tailed Fisher’s exact test, and PV .05 was considered

statistically significant.

Reporter Assays

The NFnB and IL-6 promoter reporter constructs con-

taining the firefly luciferase cDNA (0.1–0.3 mg/well) and the

pRL-null normalization construct (0.01–0.03 mg/well) contain-
ing Renilla luciferase from Renilla reniformis were transfected

into HaCaT, HNSCC, and HEK293T cells (40% confluent in

six-well plates). The total amount of plasmid DNA was ad-

justed with pcDNA3-b-galactosidase. When indicated, the

cells were also transfected with pCEFL-p65 plasmid and pre-

treated with 10 ng/ml TNF-a or left untreated for 10 minutes.

The measurement of firefly and Renilla luciferase activities

present in cellular lysates was carried out using the dual-

luciferase reporter assay (Promega, Madison, WI) 24 hours

after adding DNA. Light emission was quantitated using a

Monolight 2010 luminometer (Analytical Luminescence Labo-

ratory, San Diego, CA). Data were presented as firefly lucif-

erase activity normalized by the Renilla luciferase activity

present in each sample, and the values plotted were the

average ± SE of triplicate samples from typical experiments,

which were repeated at least three to five times with nearly

identical results.

Chromatin Immunoprecipitation (ChIP) Assays

ChIP assays were performed using the ChIP Assay Kit

(Upstate Biotechnology, Waltham, MA). Briefly, HN cancer

cells were plated on two 100-mm dishes; cross-linking was

performed by adding formaldehyde directly to a tissue culture

medium to a final concentration of 1% and by incubating for

10 minutes at room temperature; and nuclear extracts were

isolated and sonicated to generate DNA fragments. Tran-

scription factors bound to chromatin were immunoprecipi-

tated with the specific antibody anti-NFnB (C-20; Santa Cruz

Biotechnology, Inc.), protein–DNA cross-linking was re-

versed, and isolated genomic DNA was amplified by PCR,

using specific primers encompassing the NFnB region of the

IL-6 promoter. PCR reactions were performed using 2 ml of a
50-ml DNA extraction in Tris–EDTA buffer with Hi-Fi Taq

polymerase (Invitrogen Life Technologies). PCR mixtures

were amplified for 1 cycle at 94jC for 2 minutes; followed

by 32 cycles at 94jC for 30 seconds, annealing temperature

of 55jC for 30 seconds, and 68jC for 1 minute; and then

subjected to a final elongation at 68jC for 5 minutes. The

primers used were hIL-6P-NFnB-F3 (5V-GCTAGCCTCAAT-

GACGACCT-3V) and hIL-6P-NFnB-R3 (5V-GCCTCAGA-

CATCTCCAGTCC-3V), which amplify 227 bp of the hIL-6

promoter surrounding the NFnB site. hGAPDH (sense: 5V-
CCCCACACACATGCACTTACC-3 V; ant isense: 5 V-
CCTAGTCCCAGGGCTTTGATT-3V), which amplified a frag-

ment with an expected size of 96 bp, served as a control.

Protein Secretion Analysis

CM from stably infectedHNSCCcell lines andHaCaTcells

were prepared by incubating subconfluent cultured cells for

24 hours in DMEMwithout supplements. Harvested CMwere

then filtered through a 0.22-mm low-protein-binding poly-

ethylsulfonate membrane filter. IL-2, IL-5, IL-6, IL-8, IL-10,

IL-12(p70), IL-13, IL-17, GM-CSF, and G-CSF proteins in

the supernatant were assayed by the customized quantita-

tive multiplexed sandwich ELISA Searchlight (Pierce Bio-

technology, Inc.)

Results

HNSCC Cell Lines Constitutively Express IL-6: Correlation

with NFjB Activity

To begin exploring the mechanism(s) responsible for the

elevated IL-6 release from HNSCC, we first examined a

representative set of HNSCC for IL-6 secretion. As shown

in Figure 1A, only a limited amount of IL-6 was found in CM

from an immortalized nontumorigenic epithelial cell line,

HaCaT. In contrast, three representative HNSCC lines,

HN12, HN13, and HN30, secreted remarkable levels of

IL-6. Only one HNSCC from the many cells studied did not

secrete IL-6 to the cultured medium HN6, thus serving as an

internal control. IL-6 mRNA levels paralleled the pattern of

IL-6 secretion in these cells (not shown). Because of the

proposed role of NFnB in IL-6 expression and secretion in

other cellular systems [23], we next determined the activity

of NFnB in these cell lines. Under normal cultured condi-

tions, the nuclear extracts from HN12, HN13, and HN30

cells exhibited constitutively active NFnB activity, as judged

by its ability to bind to NFnB consensus oligonucleotides

Figure 2. Enhanced activity of the IL-6 promoter in HNSCC. A key role for NFjB. (A) Graphic representation of the human IL-6 promoter (IL-6p) and its regulatory

elements depicting their approximate locations relative to the transcription start site (+1). This promoter region includes response elements for the NFjB, AP1, and
helix – loop–helix transcription factors, multiple responsive element, a cAMP-responsive element, and glucocorticoid-responsive element. (B) Site-direct mutations

within the IL-6 promoter. Full-length IL-6pWT and site-direct mutations within the NFjB (DNFjB) andAP1 (DAP1) sites were inserted into the luciferase vector (pGL3-

Luc). Sequences of NFjB (red circle) and AP1 (green circle) transcriptional factor –binding sites and their point mutants (capital letters) are indicated. Full-length IL-6p

WT and its mutants (0.1 �g) were transiently transfected into HEK293T cells with p65 (1 �g) and the pRL-null construct (0.01 �g), and were cultured in serum-free

conditions. Dual-luciferase activity was determined, as described inMaterials andMethods section. Data were presented as firefly luciferase activity normalized by the

Renilla luciferase activity present in each sample, expressed as fold increase relative to control. Values plotted are the average ±SE of triplicate samples from a typical

experiment. (C) The HNSCC cell lines HN13 and HN30, and immortalized keratinocytes (HaCaT) were transiently transfected with pGL3-Luc, pGL3 IL-6p WT and

pGL3 IL-6p-DNFjB, and pGL3 IL-6p-DAP1 (0.3 �g), along with the pRL-null construct (0.01 �g), and cultured in serum-free conditions. Data are presented as firefly

luciferase activity normalized by the Renilla luciferase activity present in each sample, expressed as fold increase relative to the vector reporter control (pGL3-Luc).

Values plotted were the average ± SE of triplicate samples from a typical experiment that was repeated three to five times with nearly identical results. (D) AP1 activity

in HNSCC. EMSA was performed using a 32P-labeled consensus oligonucleotide containing the sequence for AP1-binding sites. Nuclear extracts were harvested

from serum-deprived cells. Bands (black arrow) represent shifted protein –DNA complexes, which are highly active only in HN13 under regular culture conditions.

HaCaT was also stimulated with TNF-a as a control. (E) In vivo binding of endogenous NFjB to the IL-6 promoter. Chromatin proteins were cross-linked to DNA by

formaldehyde, and purified nucleoprotein complexes were immunoprecipitated by anti-NFjB p65 antibody. The precipitated DNA and total nuclear extracts were

analyzed by PCR for the presence of NFjB IL-6 promoter region corresponding to a fragment of 217 bp (arrow), which was revealed by staining agarose gels with

ethidium bromide. Genomic DNA and TNF-a–stimulated HaCaT were used as a positive control confirming the binding of NFjB to the IL-6 promoter in vivo.
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(Figure 1B), whereas HaCaT and HN6 showed nearly unde-

tectable levels of protein–DNA complexes. As a control, the

treatment of HaCaT and HN6 cells with TNF-a led to en-

hanced NFnB activity. However, only a slight activation was

observed in HN12, HN13, and HN30 on TNF-a stimulation,

aligned with the fact that these cells exhibit elevated levels

of NFnB activity already under basal conditions. To confirm

these observations, we assessed the activity of NFnB in

each cell line. Indeed, as shown in Figure 1C, using an electro-

phoreticmobility shift assay (EMSA),weobserved that nuclear

extracts fromHN12, HN13,HN30, andTNF-a–treatedHaCaT

retarded the mobility of NFnB consensus oligonucleotides in

acrylamide gels. The identity of NFnB in these protein–DNA

complexes was confirmed by the supershift in the apparent

mobility of the complex through the addition of antisera against

the p65 subunit of NFnB (Figure 1C). Thus, the remarkable

secretion of IL-6 in this panel of HNSCC cell lines correlated

with their constitutive activity of NFnB.

Deregulated IL-6 Secretion in HNSCC Cells Correlates

with Enhanced Activity of the IL-6 Promoter: A Role

for the NFjB and AP1 Response Elements

To investigate whether the underlying mechanism leading

to deregulated IL-6 expression involves enhanced tran-

scription from the IL-6 promoter, we inserted the wild-type

(WT) 1.2-kb IL-6 promoter (Figure 2A) and an IL-6 promoter

containing a point mutation in its NFnB response element

(Figure 2B) upstreamof the firefly luciferase gene in the pGL3

reporter plasmid. As a control, we also used an IL-6 pro-

moter, including a point mutant in its AP1 site and in both

NFnB and AP1 sites. When we transfected these constructs

in HEK293T cells, the IL-6 promoter was greatly stimulated

by the coexpression of the p65 NFnB subunit. In contrast,

as expected, the IL-6 promoter harboring a point mutation in

its NFnB site did not respond to p65. Of interest, the AP1-

mutated IL-6 promoter still responded to p65, but the level of

luciferase expression was slightly reduced, suggesting a

potential interaction between these two transcriptional re-

sponse elements.

The reporter plasmids under the control of the WT IL-6

promoter and its mutants were then transiently transfected in

the HNSCC lines. For these experiments, we selected HN13

and HN30 HNSCC cells, as HN12 cells behaved very simi-

larly to HN30, and we used HaCaT cells as controls. When

compared with luciferase expression from the reporter plas-

mid without the IL-6 promoter, HaCaT cells showed a four-

fold activation of the IL-6 promoter. In contrast, HN13 and

HN30 both showed a 16-fold activation of the IL-6 promoter.

Mutations in the NFnB-binding site drastically reduced IL-6

promoter activity in all cell lines, indicating a critical role for

this transcription factor in IL-6 promoter activity. A less

pronounced reduction in IL-6 promoter activity was observed

with the point mutant in the AP1 site, particularly in HN13.

These observations suggested that NFnB is critical for the

activation of IL-6 in all cells, but that, in HN13 cells, AP1 may

cooperate with NFnB to regulate IL-6 expression (Figure 2C).

To examine this possibility, we analyzed the activity of AP1

in HNSCC cell lines by EMSA. AP1 activity was particularly

highly active in HN13 cells, as demonstrated by its ability

to bind to AP1 consensus oligonucleotides, whereas most

cells showed low levels of AP1 protein–DNA complexes. As

a positive control, HaCaT cells showed a high AP1 nuclear

activity on TNF-a stimulation (Figure 2D).

As both NFnB and AP1 were required to stimulate the IL-6

promoter in HN13 cells, we wanted to confirm whether

endogenous NFnB indeed binds to the IL-6 promoter in vivo

in these cells. Therefore, we immunoprecipitated NFnB
cross-linked to chromatin and amplified the human IL-6

promoter using PCR primers surrounding the NFnB-binding
site (ChIP assay). As shown in Figure 2E, whereas PCR

amplification of total genomic DNA from control, HaCaT,

and HN13 cells yielded a fragment of 217 bp, no amplification

was observed in NFnB immunoprecipitates from HaCaT

cells, unless they were stimulated with TNF-a. In contrast,

IL-6 promoter sequences were readily amplified in NFnB
immunoprecipitates from HN13 cells (Figure 2E ), demon-

strating that this transcription factor is constitutively bound

to the IL-6 promoter in vivo.

IKKa and IKK� Contribute to p65 Constitutive Activation

in HNSCC

The basal activity of p65 NFnB is repressed by its asso-

ciation with InB, an ankyrin repeat-containing protein that

binds to NFnB and masks its nuclear localization signal, thus

retaining NFnB in its inactive state in the cytosol. The acti-

vation of NFnB involves the phosphorylation of InB on two

serine residues, Ser32 and Ser36, which triggers the rapid

ubiquitination and degradation of phosphorylated InB in the

proteosome, and the consequent nuclear translocation and

activation of NFnB [16]. IKK includes a regulatory subunit,

NEMO (IKKg), and two catalytic kinases subunits, IKKa

(IKK1) and IKKb (IKK2), which are lysates readily detected

from HaCaT, HN12, HN13, and HN30 cells (Figure 3A).

Whereas no phosphorylated IKKa/b could be detected in

HaCaT cells, the levels of phosphorylated (active) IKKa/b
increased dramatically in these cells on TNF-a stimulation

(Figure 3A). In contrast, HN12, HN13, and HN30 showed an

expression of phosphorylated IKKa/b under basal conditions.
To analyze the contribution of IKKs in the constitutive activa-

tion of p65 in these cells, we interfere with endogenous IKKa

and IKKb expression using siRNA. Using the interference in

HN13 as an example, we observed that IKKa- and IKKb-
specific siRNA effectively knocked down the expression of

corresponding kinases without altering the expression of

the untargeted IKK isoform (Figure 3B). Similar results were

obtained in other cell lines (not shown). When siRNA were

transfected into HaCaTcells, the inhibition of IKKa and IKKb
expression drastically reduced p65 activity (P < .001). Sim-

ilarly, the knockdown of these IKKs reduced the activation

of p65 by TNF-a (P < .05) (not shown). Furthermore, the

constitutive activation of NFnB was also repressed in the

HNSCC cell lines HN13 and HN30 by the knockdown of

IKKs, although, in general, the most striking results were

obtained by the interference of IKKb. Indeed, IKKb knock-

down reduced the constitutive activation of p65 in both HN13

(P < .05) and HN30 (P < .01) (Figure 3C).
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Inhibition of NFjB Diminishes IL-6 Promoter Activity

and IL-6 Protein Expression

To further analyze the contribution of NFnB to IL-6 secre-

tion from HNSCC cells, we asked whether interference with

NFnB function affected the production and release of IL-6

from these cells. As both IKKa and IKKb can contribute to

NFnB signaling in HNSCC, and (as previously described)

[24–26] as IKKa and IKKb have unique activities but can

partially compensate for each other’s function, we chose to

explore the role of NFnB through the use of the super re-

pressor InB. The super repressor InB harbors a substitution

of Ser32 and Ser36 for alanine, causing the blockade of InB
proteolysis and, consequently, the sequestration of NFnB in

the cytoplasm, thereby preventing the translocation of NFnB
to the nucleus and its transcriptional activity [16]. Initially,

we observed that this InB repressor inhibited transcription

from an NFnB reporter plasmid in HaCaT cells in a dose-

dependent matter, both under basal conditions or on expo-

sure to TNF-a, using a plasmid encoding the b-galactosidase
gene as a control (Figure 4A). The InB repressor also in-

hibited the activation of the IL-6 promoter by TNF-a in HaCaT

cells (Figure 4B). Similarly, this repressor of NFnB inhibited

the expression of luciferasewhen driven by the isolatedNFnB
response element or the WT IL-6 promoter in both HN13 and

HN30 cells (Figure 4, C and D).

We next engineered lentiviral constructs encoding the IjB
super repressor fused to GFP (Figure 5A) to analyze the

consequences of stably inhibiting NFnB in HNSCC cells. As

depicted in Figure 5B, the protein product of the GFP-IjB
super repressor was readily detected in HaCaTcells infected

with corresponding lentiviruses, using GFP virus as control.

Similarly, these constructs were highly expressed in HNSCC

cells, as visualized by the fluorescent detection of GFPand its

fusion protein (Figure 5, C–F ). As expected, GFP-IjB S32/

36A was restricted primarily to the cytoplasm, whereas GFP

also exhibited strong nuclear distribution. Infection of HNSCC

cells with the lentivirus encoding the super suppressor IjB
S32/36A dramatically diminished the level of IL-6 secreted

in the supernatants of both HN30 and HN13 HNSCC cell

lines, further supporting the notion that NFnB is crucial for

IL-6 promoter activity and protein expression.

Inhibition of NFjB Diminishes Cytokine Release

from HNSCC Cells

As NFnB plays a key role in the regulation of the expres-

sion of numerous inflammatory cytokines, we next explored

the contribution of NFnB to the release of cytokines known to

be expressed in HNSCC cells, in addition to IL-6. Indeed, on

infection with GFP-IjB, we observed a dramatic decrease in

the release of key cytokines from HNSCC cells, including

IL-2, IL-6, IL-8, IL-10, IL-12, GM-CSF, and G-CSF (Figure 6).

Interestingly, there appears to be a more marked inhibition

of certain cytokines in HN13 cells than in HN30 cells, as, for

example, IL-8, IL-12, and GM-CSF were inhibited by less

than 30% in HN30 cells, whereas they were greatly reduced

in HN13 cells.

Inhibition of NFjB Blocks the Autocrine/Paracrine Activation

of STAT3

The remarkable effect of NFnB inhibition on the secretion

of IL-6 and other cytokines from HNSCC cells prompted us to

examine the contribution of NFnB to the potential autocrine/

Figure 3. The role of IKKa and IKK� in NFjB regulation in HNSCC cells.

Serum-starved cell lines were immunoblotted with anti-IKKa, IKK�, and

phospho-IKKa/� antibodies. Tubulin was used as a loading control (A and B).

(A) HaCaT, HN12, HN13, and HN30 immunoblot analysis shows the level of

expression of IKKa and IKK�. Elevated levels of active phospho-IKKa/� in

HN12, HN13, and HN30 cells were detected under basal conditions, using

TNF-a–stimulated HaCaT cells as positive control. (B) A time-course

analysis was performed to assess the effective and selective knockdown of

IKKa and IKK� on transfection with their corresponding siRNA. Representa-

tive Western blot analyses depict the expression levels of IKKa/� and tubulin

as loading controls in each cellular lysate. Negative siRNA oligonucleotides

were used as control (C). (C) Nuclear extracts from HaCaT, HN13, and

HN30, with the use of indicated siRNA, were assayed for activated NFjB
levels, as assessed by their ability to bind to a consensus NFjB-binding site

oligonucleotide, and an NFjB–DNA binding complex was revealed by

chemiluminescence on incubation with anti-p65 antiserum followed by a

secondary antibody conjugated to HRP. Bar graphs represent the mean ± SE

of quantitative measurements of NFjB in arbitrary units. Asterisks denote a

significant inhibition of NFjB activity by each specific siRNA interference

(*P < .05, **P < .01, and ***P < .001; analysis of variance and Bonferroni’s

multiple comparison test).
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paracrine activation of the STAT3 signaling pathway in

HNSCC cells. As shown in Figure 7A, inhibition of NFnB did

not affect the expression levels of STAT3 in these cells, but

diminished dramatically the levels of tyrosine-phosphorylated

active STAT3 (pSTAT3Y705). Furthermore, whereas CM from

HN13 and HN30 promote the accumulation of activated

pSTAT3Y705 when added to HaCaT cells, we observed that

the inhibition of NFnB in HN13 and HN30 HNSCC cells

and the consequent reduction in IL-6 and other cytokine

expressions diminished the ability of their CM to activate

STAT3 (Figure 7B).

Nuclear Localization of NFjB Correlates with IL-6

Expression and STAT3 Activation in HNSCC

These findings prompted us to explore whether the acti-

vation status of NFnB correlates with the expression of IL-6

and the phosphorylation of STAT3 in HNSCC tumors using

an immunohistochemical approach. We detected a robust

immunohistochemical stain for p65 in the cytoplasm and the

nucleus (Figure 8A), which is more clearly seen at a higher

magnification (Figure 8B). The nuclear staining of p65 was

present in all areas of the carcinoma, including invading

islands. Indeed, NFnB was present in most of the cases

analyzed (n = 196) (Figure 8F ). pSTAT3Y705 was also ex-

pressed in the majority of tumor cells (Figure 8C). A close-up

view demonstrates the specific nuclear staining of their

phosphorylated form of STAT3 (Figure 8D). IL-6 presented

a generalized cytoplasmic immunoreactivity (Figure 8E ),

which was positive in a large fraction of cases (n = 144)

(Figure 8F ). Immunohistochemical analyses of human

HNSCC tissue array samples demonstrated an excellent

correlation in vivo between the expressions of NFnB, IL-6,
and pSTAT3 in the same tissue tumor cores (Table 1). Indeed,

a significant correlation was present between NFnB and

IL-6 (P V .02), between IL-6 and pSTAT3Y705 (P V .001),

and between NFnB and pSTAT3Y705 (P V .005).

Together, these data are aligned with our observations in

HNSCC cells and support the existence of the autocrine/

paracrine activation of STAT3, which can be initiated by the

NFnB-dependent release of IL-6 and other inflammatory

cytokines from HNSCC cells (Figure 9).

Discussion

A better understanding of the molecular mechanisms under-

lying the development of HNSCC may help identify novel

targets for pharmacological intervention in this disease [27].

In this regard, the nature of signal transduction pathways

Figure 4. Inhibition of NFjB decreases the activity of the IL-6 promoter. HaCaT (A and B) and HNSCC cell lines HN13 (C) and HN30 (D) were transiently

transfected with pNFjB-Luc (0.3 �g) (A; 5 in C and D), pIL-6p-Luc (0.3 �g) (B; n in C and D), the pRL-null construct (0.01 �g), and increased concentrations of

pCEFL IjB S32/36A, and cultured in serum-free conditions. The total amount of plasmid DNA was adjusted to 1 �g with pcDNA3-�-galactosidase. HaCaT was

stimulated with TNF-a (10 ng/ml for 10 min), where indicated (A). Lysates were assayed for dual-luciferase activities. Data were presented as firefly luciferase

activity normalized by the Renilla luciferase activity present in each sample, expressed as fold increase relative to control with only pcDNA3-�-galactosidase (A and

B) or as percentage (C and D) of the activity without NFjB inhibition by pCEFL IjB S32/36A. Values plotted were the average ± SE of triplicate samples from typical

experiments, which were repeated at least three to five times with nearly identical results.
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whose aberrant activity promotes the unregulated growth

and survival of HNSCC cells has just begun to be elucidated.

These include the overexpression and enhanced phosphor-

ylation of EGFR [10], the elevated activity of the Akt–mTOR

pathway [11,12,28], and the persistent activation of the NFnB
and STAT3 transcription factors [9,29,30]. Whereas EGFR

can stimulate NFnB and STAT3, recent observations indi-

cate that HNSCC can also exhibit EGFR-independent acti-

vation of these key signaling routes [13]. We now show that

the aberrant function of the transcription factor NFnB can

lead to the stimulation of STAT3 by an autocrine/paracrine

mechanism that involves the release of IL-6, thus providing

evidence of the existence of a molecular cross-talk between

the NFnB and STAT3 signaling systems in HNSCC.

IL-6 is a pleiotropic cytokine expressed by a variety of cell

types, including macrophages, fibroblasts, endothelial cells,

T cells, and B cells (reviewed in Oppenheim et al. [31]). It

plays an important role in immune responses, acute-phase

reactions, hematopoiesis, and regeneration, and its produc-

tion is induced by different stimuli, such as T-cell mitogens,

antigenic stimulation, viral infection, and peptide factors, such

as IL-1, TNF-a, IL-2, interferon b, and PGDF [32]. IL-6 is

expressed in psoriatic skin and in cancerous epithelial cells

in HNSCC [33–37]; however, what leads to IL-6 secretion

in human HNSCC is still poorly understood.

The human IL-6 gene, located on chromosome 7p21, is

approximately 5 kb, and its promoter contains important cis-

acting response elements, including NFnB and AP1 sites,

located between nucleotides 75–63 and 286–265 upstream

of the IL-6 mRNA cap site, respectively [38]. In this study,

we found that the high expression of IL-6 in HNSCC cells

correlates with the enhanced activity of the IL-6 promoter,

whereas in certain HNSCC cells, the AP1 transcription factor,

whose activity is associated with malignant transformation

of squamous cell epithelia [39], also contributed partially.

This situation is not unique, as NFnB and AP1 have an addi-

tive effect on the activation of a number of genes associated

with metabolic and inflammatory responses [40,41], which

Figure 5. IL-6 production and secretion are dependent on NFjB activation. Lentiviral vectors were engineered for GFP and the full-length IjB harboring a

substitution of Ser32 and Ser36 for alanine (A, top), which acts as an NFjB super repressor by blocking IjB proteolysis, tagged with a GFP-IjB. The expression

levels of GFP-IjB (B, empty arrow) and GFP (B, black arrow) in HaCaT cells 72 hours after infection with these lentiviruses were documented by immunoblotting

with anti-GFP antibody. Similar results were observed in the HNSCC cell lines HN13 and HN30. GFP-IjB (C and D) and GFP (E) were visualized in vivo in HN13

cells, as well as in HaCaT and HN30 cells (not shown), by fluorescence microscopy at the indicated magnification. High magnification (original magnification, �63)

revealed a cytoplasmatic expression of GFP-IjB (D) and a mostly nuclear expression of GFP (E, inset). After serum starvation, CM from the HNSCC cell lines were

analyzed for IL-6 (F). Data were presented as a percentage of IL-6 secreted in GFP-IjB–expressing cells with respect to GFP-infected controls. Values plotted

were the average ± SE of triplicate samples.
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may enable rapid changes in gene expression in response to

the stimulation of EGFR and the Ras/Raf signal transduction

pathway, which controls AP1 activity [42], in coordination

with proinflammatory cytokines that stimulate NFnB [43]. In

particular, for IL-6 expression, AP1 can cooperate with NFnB,
but the latter appears to have a more prominent and general

role. Indeed, NFnB was found to be bound to the endoge-

nous IL-6 promoter, as judged by chromatin inmmuno-

precipitation assays, and mutations in the NFnB site reduce

IL-6 promoter activity in all HNSCC cells tested. Furthermore,

inhibition of this transcription factor is sufficient to downreg-

ulate IL-6 gene and protein expression. Thus, available evi-

dence suggests that NFnB plays a central role in promoting

IL-6 secretion from HNSCC cells.

Constitutive activation of NFnB is a frequent event in a

variety of neoplasias, including melanoma [44], breast and

prostate carcinoma [45,46], T-cell leukemia [47], Hodgkin’s

and B-cell lymphomas [48,49], multiple myeloma [50], and

HNSCC [29], and the aberrant activity of NFnB has been

shown to contribute to tumor cell survival, proliferation,

migration, and radiation resistance. As previously reported

[51], we observed constitutive NFnB activation in the majority

of HNSCC cells examined, as reflected by the presence of

elevated NFnB DNA-binding activity. The activation of NFnB
in HNSCC depends on IKKa and IKKb activity, as suggested
by knockdown experiments using kinase specific-siRNA.

However, in general, IKKa is less efficient in activating NFnB
B and cannot be substituted by IKKb in animal knockout

studies [24–26,52–54]. Aligned with these observations,

our results suggest that IKKb plays a more prominent role

Figure 6. NFjB-dependent production and secretion of multiple cytokines in HNSCC cells. CM from the HNSCC cell lines HN13 and HN30 stably expressing IjB
S32/36A (GFP-IjB) and GFP were analyzed for the secretion of IL-2, IL-8, IL-10, IL-12, G-CSF, and GM-CSF using a proteomic array. Bar graphs represent the

quantitative measurement of proteins secreted in the CM. Values plotted were the average ± SE of triplicate samples.

Figure 7. Blockade of NFjB inhibits the autocrine/paracrine activation of

STAT3. The HaCaT and HNSCC cell lines HN13 and HN30 were

immunoblotted with anti-pSTAT3Y705 antibody and anti-STAT3. Tubulin was

used as a loading control. (A) Immunoblot analysis shows a decreased level of

active STAT3Y705 inHN13 andHN30 cells stably expressingGFP-IjBS32/36A

with respect to control cells expressing GFP. (B) HaCaT cells were serum-

starved and stimulated for 10 minutes with IL-6 (10 ng/ml), or CM from HN13

and HN30 stably expressing GFP-IjB S32/36A and GFP, or CM from HaCaT

cells (C) as a control. The addition of IL-6 and CM from HN13 and HN30 cells

induces remarkable STAT3 activation (STAT3Y705). The effects of CM on

HN13 and HN30 were prevented by the inhibition of NFjB.
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in NFnB activation in HNSCC tissues. This observation may

facilitate future efforts aimed at elucidating which of the

many molecular events that converge in the phosphorylation

and activation of IKKb are in turn activated in HNSCC cells.

The persistent activation of NFnB can lead to the elevated

expression and secretion of IL-6 in HNSCC, similar to what

was recently described in prostate cancer cells [23]. Further-

more, the transcription factor NFnB also regulates the ex-

pression of other cytokines involved in both inflammatory

and immune responses in HNSCC. In particular, we ob-

served high levels of secretion of IL-2, IL-6, IL-8, IL-10, IL-

12, GM-CSF, and G-CSF, whose expressions were reduced

by NFnB inhibition. Other cytokines were also analyzed,

demonstrating elevated levels of IL-13 followed by lower

levels of IL-5 and IL-17 (data not shown) secreted by HNSCC

Figure 8. NFjB, pSTAT3, and IL-6 are highly expressed in head and neck (HN) clinical samples. Human oral SCC individual samples and tissue arrays were

stained for NFjB p65, pSTAT3Y705, and IL-6. Photographs show representative tumor areas. (A) NFjB is predominantly observed in tumor cells. (B) Cytoplasmatic

and nuclear stainings for NFjB are seen at a higher magnification. (C) pSTAT3Y705 is present in the nucleus of tumor cells. (D) Higher magnification. (E) IL-6 is

strongly expressed in the cytoplasm of tumor cells. (F) The bar graphs summarize the expression of NFjB, pSTAT3Y705, and IL-6 in the HNSCC tissue array. The

number of positive cases is presented as the percentage of tumor tissue samples (n = total number of samples analyzed).

Table 1. Correlation between the Expressions of NFnB, IL-6, and

pSTAT3Y705 in HNSCC [n (%)].

NFnB� NFnB+ P pSTAT3Y705
�

pSTAT3Y705
+

P

IL-6� 8 (6.7) 30 (25.0) V .02 12 (14.3) 18 (21.4) V .001

IL-6+ 4 (3.3) 78 (65) 4 (4.7) 50 (59.6)

NFnB� 6 (6.3) 8 (8.3) V .005

NFnB+ 8 (8.3) 74 (77.1)
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cells. Some of these cytokines have been associated with

increased tumor growth and metastasis, and overall de-

crease of survival [55,56].

IL-6 is readily detected in the serum, tissues, and saliva of

HNSCC patients [36,37,57]; once released, IL-6 secretion

may contribute to HNSCC tumor progression andmetastasis,

as well as to inflammatory and angiogenic responses [58,59]

that characterize this tumor type. An interesting possibility

is that IL-6 secretion may also facilitate the immune evasion

of HNSCC cancer cells. Patients with HNSCC exhibit a

number of functional defects in their tumor-infiltrating and cir-

culating T cells, which may compromise their antitumor im-

mune responses (reviewed in Whiteside [60]). In particular,

recent attention has focused on CD4+ T helper (Th) cells, one

of whose functions is to prime and stimulate the cell-mediated

antitumor immunity initiated byCD8+ cytotoxic T lymphocytes

[61]. In this regard, the release of IL-6 from HNSCC cells can

inhibit the differentiation of CD4+ Th cells into type 1 cells

(which is a subset of CD4+ Th cells that promote the tumor-

icidal activity of CD8+ cytotoxic T lymphocytes) while favoring

the differentiation of CD4+ Th cells into type 2 cells (which

inhibit cell-mediated immune response to tumor cells but

stimulate a less effective humoral response) [62]. The IL-

6– initiated autocrine activation of STAT3 in HNSCC cells

Figure 9. Proposed mechanism of cross-talk between the NFjB and the STAT3 pathways. Constitutive activation of NFjB leads to the production and secretion of

cytokines such as IL-6, which acts on the gp130 cytokine receptor family in an autocrine/paracrine manner and causes the consequent activation of STAT3 in an

EGFR-independent fashion. Inhibition of NFjB by IjB S32/36A diminishes the secretion of those molecules, thereby blocking the activation of the STAT3 pathway.
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may in turn influence the overall pattern of cytokines released

by tumor cells, which can inhibit the maturation and activa-

tion of dendritic cells [63], thus providing an additional mech-

anism that facilitates HNSCC cells to evade the immune

surveillance system.

Remarkably, we observed here that blocking NFnB dimin-

ished the accumulation of active STAT3 in HNSCC cells, thus

suggesting the existence of cross-talk between theNFnB and

the STAT3 pathways through the release of IL-6 and other

cytokines and the autocrine/paracrine activation of cytokine

receptors expressed in HNSCC cells. Indeed, most of the

HNSCCclinical samples that exhibit NFnBalso expressed IL-

6 and exhibited nuclear accumulation of pSTAT3. Only a few

tumors that exhibit pSTAT3 do not show elevated levels of

IL-6 expression, which may represent a subgroup of HNSCC

patients in which the activation of STAT3 is dependent on

EGFR or on another tumor or stromal-released cytokine

[64]. Together, our findings support the emerging view that

a deregulated signaling network, rather than the alteration of

a single biochemical route, underlies the aberrant growth of

HNSCC cells. Conversely, considering that STAT3 is consti-

tutively activated in oral HNSCC (but not in the normal oral

epithelium) [9,10] and that inhibition of STAT3 function leads

to the growth inhibition of HNSCC [65], the observation that

NFnB can in turn enhance the activity of STAT3 in HNSCC

cancer cells may now provide a molecular framework for the

future clinical evaluation of targeting NFnB and/or IL-6 in

HNSCC patients, together with EGFR inhibitors, as a com-

bined treatmentmodality. Thiswould be particularly important

in HNSCC patients displaying elevated local and serum

levels of IL-6, in which their enhanced tyrosine phosphor-

ylation of STAT3 could be resistant to EGFR inhibition.
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