On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation

Khalida Inayat Noor *, Saqib Hussain

Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan

Received 14 May 2007
Available online 29 September 2007
Submitted by A.V. Isaev

Abstract

Using Ruscheweyh derivative and convolution operator, we introduce a new subclass of analytic functions defined in the unit disc. Some inclusion results, a radius problem and some other interesting properties of this class are investigated.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Convex; Radius rotation; Ruscheweyh derivative; Prestarlike; Convolution

1. Introduction

Let A denote the class of functions $f: f(z) = z + \sum_{m=2}^{\infty} a_m z^m$, which are analytic in the unit disc $E = \{z: |z| < 1\}$. Let $P_k(\gamma)$ be the class of functions $p(z)$ defined in E satisfying the properties $p(0) = 1$ and

$$\int_0^{2\pi} \left| \frac{\text{Re}(p(z) - \gamma)}{1 - \gamma} \right| d\theta \leq k\pi,$$

(1.1)

where $z = re^{it}$, $k \geq 2$ and $0 \leq \gamma < 1$. When $\gamma = 0$, we obtain the class P_k defined in [8] and for $k = 2$, $\gamma = 0$, we have the class P of functions with positive real part. We can write (1.1) as

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\gamma)ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

where $\mu(t)$ is a function with bounded variation on $[0, 2\pi]$ such that

$$\int_0^{2\pi} d\mu(t) = 2 \quad \text{and} \quad \int_0^{2\pi} |d\mu(t)| \leq k.$$

* Corresponding author.

E-mail addresses: khalidanoor@hotmail.com (K. Inayat Noor), saqib_math@yahoo.com (S. Hussain).

0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.09.038
From (1.1), we can write, for \(p \in P_k(\gamma) \),

\[
p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z),
\]

where \(z \in E \) and \(p_1, p_2 \in P_2(\gamma) = P(\gamma) \), where \(P(\gamma) \) is the class of functions with positive real part greater than \(\gamma \).

Let \(S, K, S^* \) and \(C \) denote the subclasses of \(\mathcal{A} \) which are univalent, close-to-convex, starlike and convex in \(E \), respectively. The class \(\mathcal{A} \) is closed under the Hadamard product or convolution

\[
(f \ast g)(z) = \sum_{m=0}^{\infty} a_m b_{m} z^{m+1},
\]

\[
f(z) = \sum_{m=0}^{\infty} a_m z^{m+1}, \quad g(z) = \sum_{m=0}^{\infty} b_m z^{m+1}.
\]

Let \(K_a(z) = \frac{z}{1-z^a} \), \(\Re(a) > 0 \), where we have chosen a suitable branch so that \(K_a \in \mathcal{A} \). Let \(f \in \mathcal{A} \), \(f(z) = z + \sum_{m=2}^{\infty} a_m z^m \), with properties that \(a_m \neq 0 \) for all \(m \) and \(\lim_{m \to \infty} |a_m|^{1/m} = 1 \). Then we denote by \(f^{(-1)} \) the unique well-defined function in \(\mathcal{A} \) for which \(f^{(-1)} \ast f = K_1 \).

Definition 1.1. Let \(f \in \mathcal{A} \) and let, for \(a > 0, \alpha \geq 0 \), \(\frac{(K_{a+1} \ast f)(z)}{z} \neq 0 \) and \(\frac{(K_a \ast f)(z)}{z} \neq 0 \), \(z \in E \),

\[
J(\alpha, a, f(z)) = \left[\alpha(a + 1) \left(\frac{(K_{a+2} \ast f)(z)}{(K_{a+1} \ast f)(z)} - \frac{a}{a + 1} \right) + a(1 - \alpha) \left(\frac{(K_{a+1} \ast f)(z)}{(K_a \ast f)(z)} - \frac{1}{a} \right) \right].
\]

Then

\[
f \in R_k(\alpha, a, \gamma) \quad \text{if and only if} \quad J(\alpha, a, f(z)) \in P_k(\gamma) \quad \text{for} \quad z \in E.
\]

As special cases of this definition, we note the following:

(i) For \(a = 1, \alpha = 0 \), we have \(R_k(0, 1, 0) = R_k \), the class of functions of bounded radius rotation, see [6–8].

(ii) \(R_2(\alpha, 1, 0) \) is the class of alpha-starlike functions and it is well known that \(R_2(\alpha, 1, 0) \subset S \).

(iii) \(R_k(1, 1, 0) = V_k \), the well-known class of functions of bounded boundary rotation which was first introduced by Paatero [3].

(iv) \(R_k(\alpha, 1, 0) \) is the class of functions with bounded Mocanu variation [2].

(v) \(R_2(1, 1, 0) = C, R_2(0, 1, 0) = S^* \) and therefore \(R_2(1, 1, 0) \subset R_2(0, 1, 0) \subset S \), for \(z \in E \).

Remark 1.1. We define

\[
F_{a,b,c} = K_a^{(-1)} \ast \left((1-c)K_{b+1} + cK_b \right).
\]

We can easily verify the following:

(i) \(f \in R_k(0, a, 0) \) if and only if \((K_a \ast f) \in R_k(0, 1, \frac{1-a}{2}) \).

(ii) \(f \in R_k(1, a, 0) \) if and only if \((K_{a+1} \ast f) \in R_k(0, 1, \frac{a-1}{2}) \), and \(f \in R_k(1, a, \gamma) \) if and only if \((F_{a,a,0} \ast f) \in R_k(0, a, \gamma) \).

Let \(f \in \mathcal{A} \). Denote by \(D^\lambda : \mathcal{A} \to \mathcal{A} \) the operator defined by

\[
D^\lambda f(z) = \frac{z}{(1-z)^{\lambda+1}} \ast f(z), \quad (\lambda > -1).
\]

It is obvious that \(D^0 f(z) = f(z), D^1 f(z) = zf'(z) \) and

\[
D^n f(z) = \frac{z(z^{n-1} f(z))^{(n)}}{n!}, \quad n \in N_0 = \{0, 1, 2, \ldots\}.
\]
The following identity is easily established.

\[z(D^\lambda f)' = (\lambda + 1)D^{\lambda+1}f - \lambda D^\lambda f. \]

(1.5)

The operator \(D^\lambda f \) is called the Ruscheweyh derivative of \(f \).

From (1.3)–(1.5), we can write \(J(\alpha, \lambda, f(z)) \), for \(\lambda > -1 \), as follows:

\[J(\alpha, \lambda, f(z)) = \left(\alpha z \frac{(D^{\lambda+1} f(z))'}{D^{\lambda+1} f(z)} + (1 - \alpha) \frac{z(D^\lambda f(z))'}{D^\lambda f(z)} \right). \]

(1.6)

Therefore \(f \in R_k(\alpha, \lambda, \gamma) \), \(\lambda > -1 \), if and only if \(J(\alpha, \lambda, f) \in P_k(\gamma) \) in \(E \).

2. Preliminary results

We need the following results to obtain our results.

Lemma 2.1. (See [9].) Let \(\beta < 1 \), \(f(z) \) be prestarlike function of order \(\beta \) and \(g \in S^*(\beta) \). Then, for any analytic function \(F(z) \) in \(E \), \(f \ast (g F) \in \mathcal{Co}(F(E)) \), where \(\mathcal{Co}(F(E)) \) stands for the closed convex hull of \(F(E) \).

For our next lemma, we first define the class \(B(\beta + i\alpha) \) of Bazilevic functions. A function \(f \in A \) is in \(B(\beta + i\alpha) \) if, for some \(h \in P, g \in S^*, \alpha \) real and \(\beta > 0 \), it can be represented as

\[f(z) = \left(\beta + i\alpha \right) \int_0^z \xi^{\beta+i\alpha-1} \left(\frac{g(\xi)}{\xi} \right)^\beta h(\xi) d\xi \right]^{1/\beta+i\alpha}. \]

Here all powers are meant as principal values. It was shown [1] that \(f \in B(\beta + i\alpha) \) is univalent in \(E \).

Lemma 2.2. (See [11].) Let \(f \in A \) and \(\frac{f(z)f''(z)}{z} \neq 0 \) in \(E \). Then, \(f \in B(\beta + i\alpha) \), if and only if, for \(0 \leq \theta_1 < \theta_2 \leq 2\pi \) and \(0 < r < 1 \), we have

\[\int_{\theta_1}^{\theta_2} \left[\text{Re} \left\{ 1 + z\frac{f''(z)}{f'(z)} + (\beta - 1) \frac{zf'(z)}{f(z)} \right\} - \alpha \text{Im} \frac{zf'(z)}{f(z)} \right] d\theta \geq -\pi, \]

where \(z = re^{i\theta}, \beta > 0 \) and \(\alpha \) real.

Lemma 2.3. (See [10].) Let \(p \) be an analytic function in \(E \) with \(p(0) = 1 \) and \(\text{Re}\{p(z)\} > 0, z \in E \). Then, for \(s > 0 \) and \(\mu \neq -1 \) (complex),

\[\text{Re}\left[p(z) + \frac{szp'(z)}{p(z) + \mu} \right] > 0 \quad \text{for } |z| < r_0, \]

where \(r_0 \) is given by

\[r_0 = \frac{|\mu + 1|}{\sqrt{A + (A^2 - |\mu^2 - 1|^2)^{1/2}}}, \]

(2.1)

\[A = 2(s + 1)^2 + |\mu|^2 - 1, \]

(2.2)

and this radius is best possible.
3. Main results

Theorem 3.1. For $\alpha > 0$, $\gamma \in [\gamma_0, 1)$ with $\gamma_0 = \text{Max}\{\frac{1-\lambda}{2} - \alpha, -\lambda\}$,

$$R_k(\alpha, \lambda, \gamma) \subset R_k(0, \lambda, \gamma), \quad z \in E,$$

where

$$\gamma_1 = \left\{ \frac{(1 + \lambda)}{2F_1(\frac{2}{\alpha}(1 - \gamma), 1, \frac{1 + \lambda + \alpha}{\alpha}; \frac{z}{z - 1})}, -\lambda \right\}$$

(3.1)

and $2F_1$ is hypergeometric function. This result is sharp.

Proof. Set

$$\frac{z(D^k f(z))^}{D^k f(z)} = H(z) = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) h_2(z),$$

(3.2)

where H is analytic in E with $H(0) = 1$. We want to show that $H \in P_k(\gamma_1)$ for $z \in E$. Now, from (1.5), (1.6) and (3.2), we have

$$J(\alpha, \lambda, f(z)) = \left\{ H(z) + \frac{\alpha z H'(z)}{H(z) + \lambda} \right\} \in P_k(\gamma), \quad z \in E.$$

Define

$$\phi_{\alpha, \lambda}(z) = (1 - \alpha) \frac{1}{(1 - z)^{k+2}} + \alpha \frac{1}{(1 - z)^{k+1}}.$$ (3.3)

From (3.2) and (3.3), we have

$$H * \phi_{\alpha, \lambda} = H + \alpha \frac{z H'}{H + \lambda} = \left(\frac{k}{4} + \frac{1}{2} \right) [h_1 * \phi_{\alpha, \lambda}] - \left(\frac{k}{4} - \frac{1}{2} \right) [h_2 * \phi_{\alpha, \lambda}]

= \left(\frac{k}{4} + \frac{1}{2} \right) \left[h_1 + \alpha \frac{z h'_1}{h_1 + \lambda} \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[h_2 + \alpha \frac{z h'_2}{h_2 + \lambda} \right],$$

where $(h_i + \alpha \frac{z h'_i}{h_i + \lambda}) \in P(\gamma_i), z \in E, i = 1, 2$.

We now use a result [4, Theorem 3.3e] to obtain that $h_i \in P(\gamma_1)$, where γ_1 is given by (3.1). Sharpness is given by the function $q(z)$ defined as follows.

$$q(z) = \frac{\alpha}{g(z)} - \lambda,$$

and

$$g(z) = \int_0^1 \left[\frac{1 + z}{1 - t z} \right]^\frac{1}{2(1 - \gamma)} t^{(\frac{1 + \lambda}{\alpha} - 1)} dt

= \left(\frac{\alpha}{1 + \lambda} \right) 2F_1\left(\frac{2}{\alpha}(1 - \gamma), 1, \frac{1 + \lambda + \alpha}{\alpha}; \frac{z}{z - 1} \right).$$

Since $h_i \in P(\gamma_1)$, $i = 1, 2$, it follows from (3.2) that $H \in P_k(\gamma_1)$ and this completes the proof. \(\square\)

As a particular case, we note that, for $\lambda = 0$, $\alpha = 1$, $\gamma = 0$, $V_k \subset R_k(\frac{1}{2})$. For $k = 2$, we obtain a well-known result that every convex univalent function is starlike of order $\frac{1}{2}$.

Following the similar technique, we can easily show that, for $-1 < \lambda_1 < \lambda_2$,

$$R_k(0, \lambda_2, \gamma_1) \subset R_k(0, \lambda_1, \gamma_1) \subset R_k(0, 0, \gamma_1), \quad z \in E,$$

and by using Theorem 3.1, it follows that $f \in R_k(\alpha, \lambda, \gamma)$ is a function of bounded radius rotation. Thus we deduce that $f \in R_2(\alpha, \lambda, \gamma)$ is starlike and hence univalent in E.

We now have the following.
Theorem 3.2. Let \(f \in R_k(\alpha, \lambda, \gamma) \). Then \(D^\lambda f \) univalent in \(E \), if \(k \leq \frac{2(\alpha - \gamma + 1)}{(1 - \gamma)}, \) \(\alpha > 0, \) \(0 \leq \gamma < 1 \).

Proof. Since \(f \in R_k(\alpha, \lambda, \gamma) \), we have
\[
\int_0^{2\pi} \left| \text{Re} \left\{ \frac{J(\alpha, \lambda, f) - \gamma}{1 - \gamma} \right\} \right| d\theta \leq k\pi
\]
and
\[
\int_0^{2\pi} \left\{ \text{Re} \left\{ \frac{J(\alpha, \lambda, f) - \gamma}{1 - \gamma} \right\} \right\} d\theta = 2\pi
\]
together imply
\[
\int_{\theta_1}^{\theta_2} \left\{ \text{Re} J(\alpha, \lambda, f(z)) \right\} d\theta \geq -\left\{ \frac{(1 - \gamma)k + 2(\gamma - 1)}{2} \right\} \pi,
\]
where \(z = re^{i\theta}, \) \(0 \leq r < 1, \) \(0 \leq \theta_1 < \theta_2 \leq 2\pi \).

This is equivalent to
\[
\int_{\theta_1}^{\theta_2} \text{Re} \left\{ \frac{z(D^{\lambda + 1} f)' + \left(\frac{1}{\alpha} - 1 \right) z(D^{\lambda} f)'}{D^{\lambda + 1} f + \frac{1}{\alpha} - 1} \right\} d\theta > -\left\{ \frac{(1 - \gamma)k + 2(\gamma - 1)}{2\alpha} \right\} \pi.
\]
Now using Lemma 2.2, we obtain the required result. \(\square \)

Theorem 3.3. Let \(-1 < \lambda_1 < \lambda_2\). Then
\(R_k(\alpha, \lambda_2, 0) \subset R_k(\alpha, \lambda_1, 0) \).

Proof. Define
\[
\phi(z) = z + \sum_{m=2}^{\infty} \frac{(\lambda_1 + 1)(\lambda_1 + 2) \cdots (\lambda_1 + m - 1)}{(\lambda_2 + 1)(\lambda_2 + 2) \cdots (\lambda_2 + m - 1)} z^m, \quad z \in E.
\]

Then \(\phi(z) \in A \) and, for \(z \in E \),
\[
\frac{z}{(1 - z)^{\lambda_2 + 1}} \ast \phi(z) = \frac{z}{(1 - z)^{\lambda_1 + 1}} (-1 < \lambda_1 < \lambda_2).
\]

This implies
\[
\frac{z}{(1 - z)^{\lambda_2 + 1}} \ast \phi(z) \in \mathcal{S}^{*} \left(\frac{1 - \lambda_2}{2} \right) \subset \mathcal{S}^{*} \left(\frac{1 - \lambda_1}{2} \right)
\]
and therefore \(\phi(z) \) is prestarlike of order \(\left(\frac{1 - \lambda_2}{2} \right) \).

Now let
\[
\frac{z(D^{\lambda_1} f)'}{D^{\lambda_1} f} = H = \left(\frac{k}{4} + \frac{1}{4} \right) h_1 - \left(\frac{k}{4} - \frac{1}{2} \right) h_2 = \left(\frac{k}{4} + \frac{1}{2} \right) z(D^{\lambda_1} f_1)' - \left(\frac{k}{4} - \frac{1}{2} \right) z(D^{\lambda_1} f_2)',
\]
and with
\[
\phi_{\alpha, \lambda_1}(z) = \alpha \frac{1}{(1 - z)^{\lambda_1 + 1}} + (1 - \alpha) \frac{1}{(1 - z)^{\lambda_1}},
\]
we have
\[H \ast \phi_{\alpha, \lambda_1} = H + \alpha \frac{z H'}{H + \lambda_1} \]
\[= \alpha \frac{z(D^{\lambda_1 + 1} f)' - D^{\lambda_1 + 1} f}{D^{\lambda_1 + 1} f} + (1 - \alpha) \frac{z(D^{\lambda_1} f)' - D^{\lambda_1} f}{D^{\lambda_1} f} \]
\[= \left(\frac{k}{4} + \frac{1}{2} \right) \left(h_1 + \alpha \frac{z h_1'}{h_1 + \lambda_1} \right) - \left(\frac{k}{4} - \frac{1}{2} \right) \left(h_2 + \alpha \frac{z h_2'}{h_2 + \lambda_1} \right) \]
\[= \left(\frac{k}{4} + \frac{1}{2} \right) \left(\alpha \frac{z(D^{\lambda_1 + 1} f_1)' - (1 - \alpha) z(D^{\lambda_1} f_1)'}{D^{\lambda_1 + 1} f_1} \right) \]
\[- \left(\frac{k}{4} - \frac{1}{2} \right) \left(\alpha \frac{z(D^{\lambda_1 + 1} f_2)' - (1 - \alpha) z(D^{\lambda_1} f_2)'}{D^{\lambda_1 + 1} f_2} \right). \tag{3.5} \]

We use (3.4) to write
\[\frac{z(D^{\lambda_1 + 1} f)'}{D^{\lambda_1 + 1} f} = \frac{\phi \ast z(D^{\lambda_1} f)'}{D^{\lambda_1} f} = \frac{\phi \ast \frac{z(D^{\lambda_2 + 1} f_1)'}{D^{\lambda_2 + 1} f_1}}{\phi \ast D^{\lambda_2 + 1} f_1}. \]

Thus we can write from (3.5),
\[\alpha \frac{z(D^{\lambda_1 + 1} f)' - D^{\lambda_1 + 1} f}{D^{\lambda_1 + 1} f} + (1 - \alpha) \frac{z(D^{\lambda_1} f)' - D^{\lambda_1} f}{D^{\lambda_1} f} = \left(\frac{k}{4} + \frac{1}{2} \right) (\alpha A_1 + (1 - \alpha) B_1) - \left(\frac{k}{4} - \frac{1}{2} \right) (\alpha A_2 + (1 - \alpha) B_2), \]

where
\[A_i = \frac{\phi \ast (\frac{z(D^{\lambda_2 + 1} f_1)'}{D^{\lambda_2 + 1} f_1})}{\phi \ast D^{\lambda_2 + 1} f_1}, \]
\[B_i = \frac{\phi \ast (\frac{z(D^{\lambda_2} f_1)'}{D^{\lambda_2} f_1})}{\phi \ast D^{\lambda_2} f_1}, \quad i = 1, 2. \]

This implies that \[\frac{z(D^{\lambda_2 + 1} f_1)'}{D^{\lambda_2 + 1} f_1} \] is in the convex hull of the image of \(E \) under \(z(D^{\lambda_2 + 1} f_1)'. \) Similarly \(\frac{\phi \ast z(D^{\lambda_2} f_1)'}{D^{\lambda_2} f_1} \)

is in the convex hull of the image of \(E \) under \(z(D^{\lambda_2} f_1)' \).

Since \(f \in R_k(\alpha, \lambda_2, 0) \), it follows, from Theorem 3.1,
\[\frac{z(D^{\lambda_2 + 1} f_1)'}{D^{\lambda_2 + 1} f_1} \in P_k, \quad \frac{z(D^{\lambda_2} f_1)'}{D^{\lambda_2} f_1} \in P_k, \quad z \in E. \]

Therefore
\[\frac{z(D^{\lambda_2 + 1} f_1)'}{D^{\lambda_2 + 1} f_1} \in P, \quad \frac{z(D^{\lambda_2} f_1)'}{D^{\lambda_2} f_1} \in P, \quad z \in E \text{ for } i = 1, 2. \]

Also \(\phi \) is prestarlike of order \(\left(\frac{1 - \lambda_2}{\lambda_2} \right) \). We use Lemma 2.1 to conclude that \(f \in R_k(\alpha, \lambda_1, 0) \) in \(E \). \(\square \)

Theorem 3.4. Let \(f \in R_k(0, \lambda, \gamma) \) for \(z \in E \). Then \(f \in R_k(\alpha, \lambda, \gamma) \) for \(|z| < r_0 \) where \(r_0 \) is given by (2.1) with \(\mu = \frac{\lambda + \gamma}{1 - \gamma} \) and \(s = \frac{\alpha}{1 - \gamma} \) and the value of \(r_0 \) is exact.

Proof. Let \(H(z) \) be defined by (3.2) and since \(f \in R_k(0, \lambda, \gamma) \), it follows that \(H \in P_k(\gamma) \) for \(z \in E \). Proceeding as in Theorem 3.1, we have
\[J(\alpha, \lambda, f(z)) = H(z) + \alpha \frac{z H'}{H(z) + \lambda} \]
\[= \left(\frac{k}{4} + \frac{1}{2} \right) \left[h_1(z) + \alpha \frac{z h_1'}{h_1(z) + \lambda} \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[h_2(z) + \alpha \frac{z h_2'}{h_2(z) + \lambda} \right]. \]
Since $h_i \in P(\gamma), i = 1, 2$, we can write

$$h_i(z) = (1 - \gamma) p_i(z) + \gamma, \quad p_i \in P, \; i = 1, 2.$$

Thus

$$\frac{1}{1 - \gamma} \left[J(\alpha, \lambda, f(z)) - \gamma \right] = \left(\frac{k}{4} + \frac{1}{2} \right) \left[p_1(z) + \frac{zp'_1(z)}{(1 - \gamma) p_1(z) + \lambda + \gamma} \right]$$

$$- \left(\frac{k}{4} - \frac{1}{2} \right) \left[p_2(z) + \frac{zp'_2(z)}{(1 - \gamma) p_2(z) + \lambda + \gamma} \right]$$

$$= \left(\frac{k}{4} + \frac{1}{2} \right) \left[p_1(z) + \frac{\alpha \gamma}{(1 - \gamma) p_1(z) + \lambda + \gamma} \right]$$

$$- \left(\frac{k}{4} - \frac{1}{2} \right) \left[p_2(z) + \frac{\alpha \gamma}{p_2(z) + \lambda + \gamma} \right].$$

Using Lemma 2.3 with $\mu = \frac{\lambda + \gamma}{1 - \gamma} \neq -1$ and $s = \frac{\alpha}{1 - \gamma} > 0$, we see that $f \in R_k(\alpha, \lambda, \gamma)$ for $|z| < r_0$ where

$$r_0 = \frac{|\mu + 1|}{\sqrt{A + (A^2 - |\mu^2 - 1|^2) \frac{1}{2}}}$$

$$A = 2(s + 1)^2 + |\mu|^2 - 1,$$

and this radius is exact. \qed

As a special case, we note that, for $k = 2, \alpha = 1, \lambda = 0, \gamma = 0,$

$$r_0 = \frac{1}{\sqrt{7 + 48}} \simeq 0.268 \simeq 2 - \sqrt{3}.$$

Theorem 3.5. For $0 \leq \alpha_2 < \alpha_1,$

$$R_k(\alpha_1, \lambda, \gamma) \subset R_k(\alpha_2, \lambda, \gamma).$$

Proof. For $\alpha_2 = 0$ the proof is immediate from Theorem 3.1. Therefore we let $\alpha_2 > 0$ and $f \in R_k(\alpha_1, \lambda, \gamma)$. There exists $H_1, H_2 \in P_k(\gamma)$ such that

$$H_1(z) = \left[\alpha_1 \frac{z(D^{k+1} f)'}{D^{k+1} f} + (1 - \alpha_1) \frac{z(D^k f)'}{D^k f} \right],$$

$$H_2(z) = \frac{z(D^k f)'}{D^k f}.$$

Hence

$$\left[\alpha_2 \frac{z(D^{k+1} f)'}{D^{k+1} f} + (1 - \alpha_2) \frac{z(D^k f)'}{D^k f} \right] = \frac{\alpha_2}{\alpha_1} H_1 + \left(1 - \frac{\alpha_2}{\alpha_1} \right) H_2, \quad H_1, H_2 \in P_k(\gamma).$$

(3.6)

Since $P_k(\gamma)$ is a convex set, see [5], it follows that the right-hand side of (3.6) belongs to $P_k(\gamma)$ and this establishes the required result. \qed

Acknowledgments

We thank Dr. S.M. Junaid Zaidi, Rector, CIIT, for providing excellent research facilities and the referee for his/her useful comments and suggestions on the earlier version of this paper.
References