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Using nonblockers in hyperspaces (Illanes and Krupski (2011) [3]), we characterize some
classes of locally connected continua: the simple closed curve, the arc, trees, and dendrites.
We prove that the simple closed curve is the unique locally connected continuum for which
the set of nonblockers of singletons is a continuum. We show that the set of nonblockers
is also a continuum for the circle of pseudo-arcs.
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1. Introduction

For a continuum X (nonempty, compact, connected metric space) the hyperspace of all nonempty closed subsets of X ,
with the Hausdorff metric, is denoted by 2X [5]. Given a continuum X we say that an element B of 2X \ {X} does not block
the singletons of X provided that, for each x ∈ X \ B , there exists a map, α : [0,1] → 2X , such that α(0) = {x}, α(1) = X and
α(t) ∩ B = ∅ for each 0 � t < 1 [3]. The set of all elements of the hyperspace that does not block the singletons is denoted
by NB(F1(X)). Using this set we present characterizations of some classes of locally connected continua: the simple closed
curve, the arc, trees, and dendrites (Section 3). We prove that the simple closed curve is the unique locally connected
continuum X for which NB(F1(X)) is a subcontinuum of 2X (Section 4). Moreover, we study the behavior of nonblockers
under open monotone maps and, as a consequence, we prove that the set of nonblockers of the circle of pseudo-arcs is also
a continuum (Section 5). First, we present necessary preliminaries (Section 2).

2. Definitions and basic facts

A continuum is a nonempty, compact, connected metric space. A subcontinuum is a continuum contained in a space.
An arc is a space homeomorphic to the closed interval [0,1]; a simple closed curve is a space homeomorphic to the circle
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S1 = {(x, y) ∈ R
2: x2 + y2 = 1}. A tree is a continuum which contains no simple closed curves and is the union of finitely

many arcs, any two of which are either disjoint or intersect only in one of their end points. A dendrite is a locally connected
continuum which contains no simple closed curves. A circle of pseudo-arcs is a circle-like continuum that has a continuous
decomposition into pseudo-arcs such that the decomposition space is a circle [7]. Bing and Jones have proved that the
circle of pseudo-arcs exists and it is topologically unique [2]. A subcontinuum A of a continuum X is said to be terminal if
each subcontinuum B of X that intersects A satisfies either A ⊂ B or B ⊂ A. Given a subset A of a space X , the interior,
the closure and the boundary of A in X are denoted respectively by int(A), A, and Bd(A). The cardinality of the set A is
denoted by |A|. The symbol N denotes the set of positive integers.

A point x in a continuum X is called a cut point of X if X \ {x} is not connected, otherwise x is called a non-cut point
of X . The point x ∈ X is called an end point of X provided that whenever U is an open subset of X such that x ∈ U , there
exists an open subset V of X such that x ∈ V ⊂ U and |Bd(V )| = 1. The symbol E(X) denotes the set of all end points of X .

A map (i.e. continuous function) f from a continuum X onto a continuum Y is said to be open provided that f (U ) is an
open subset of Y for each open subset U of X . The map f is monotone provided that f −1(y) is connected for each y ∈ Y .

Given a continuum X , the hyperspace of all nonempty closed subsets of X equipped with the Hausdorff metric, or equiva-
lently with the Vietoris topology, is denoted by 2X [5, (0.2), (0.13)]. The hyperspace of all subcontinua of X , i.e. the elements
of 2X which are connected, is denoted by C(X). For each n ∈ N we put Fn(X) = {A ∈ 2X : |A| � n}. Given A, B ∈ 2X such
that A ⊂ B �= A, an order arc from A to B is a map α : [0,1] → 2X such that α(0) = A, α(1) = B and s < t implies that
α(s) ⊂ α(t) �= α(s) [5, (1.8)].

For a continuum X and elements A and B of 2X we say that B does not block A provided that there exists a map,
α : [0,1] → 2X , such that α(0) = A, α(1) = X and α(t)∩ B = ∅ for each 0 � t < 1, [3, 0.1]. In this paper we restrict ourselves
to study the set of nonblockers of the singletons of a continuum X , it means the set of all elements B of 2X \ {X} such that B
does not block {x} for each x ∈ X \ B , which is denoted by NB(F1(X)).

Remark 2.1. Let X be a continuum, B ∈ 2X and x ∈ X \ B . If B does not block {x}, then int(B) = ∅ and X \ H is connected,
for each H ⊂ B [3, Proposition 1.1(b), (c), (f)]. In particular, B contains no cut points of X .

The following result is a particular case of Proposition 1.3 in [3].

Proposition 2.2. For a continuum X, B ∈ 2X and x ∈ X \ B, the following statements are equivalent:

(a) B does not block {x};
(b) there exists an order arc, α : [0,1] → C(X), from {x} to X such that α(t) ∩ B = ∅, for each 0 � t < 1;
(c) there exists a sequence {An}n∈N of elements in C(X), such that x ∈ An ⊂ An+1 ⊂ X \ B, n ∈ N, and

⋃
n∈N An is a dense set in X ;

(d)
⋃{A ∈ C(X): x ∈ A ⊂ X \ B} is a dense set in X.

Remark 2.3. If X is a continuum and α : [0,1] → 2X is a map such that α(1) = X , then
⋃{α(t): 0 � t < 1} is a dense set

in X . Indeed, denote An = ⋃
α([0,1 − 1

n ]), n ∈ N. Notice that {An}n∈N is a sequence in C(X) [5, (1.43)], which converges to

X in C(X). Since An ⊂ An+1, this sequence also converges to
⋃

n∈N An [4, 4.16]. Thus, X = ⋃
n∈N An , and the result follows.

3. Nonblockers in locally connected continua

In this section we show that nonblockers of singletons in a locally connected continuum are precisely the nonempty
closed sets with empty interior, that do not separate the continuum; we use this fact to characterize certain classes of
continua.

Theorem 3.1. If X is a locally connected continuum and B ∈ 2X , then B ∈NB(F1(X)) if and only if int(B) = ∅ and X \ B is connected.

Proof. The necessity is justified in Remark 2.1. For sufficiency, we fix B ∈ 2X such that int(B) = ∅ and X \ B is connected.
We note that X \ B is arcwise connected [6, 8.26]. Thus, for each x ∈ X \ B ,

⋃{A ∈ C(X): x ∈ A ⊂ X \ B} = X \ B . It follows
that

⋃{A ∈ C(X): x ∈ A ⊂ X \ B} is a dense subset in X . By Proposition 2.2(d), we have the conclusion. �
Theorem 3.2. A locally connected continuum X is a simple closed curve if and only if NB(F1(X)) = F1(X).

Proof. Suppose that X is a simple closed curve. It is clear that F1(X) ⊂ NB(F1(X)). To obtain the other inclusion, let
B ∈ 2X \ F1(X) and consider two different points, p and q, in B . Notice that X \ {p,q} is not connected. So, B blocks {x} for
each x ∈ X \ B (Remark 2.1), hence, B /∈NB(F1(X)). Thus, NB(F1(X)) ⊂ F1(X).

For the converse, we fix two different points p and q in X . By hypothesis, {p,q} /∈NB(F1(X)). By Theorem 3.1, X \ {p,q}
is not connected. It follows that X is a simple closed curve [6, 9.31]. �
Question 3.3. Is a simple closed curve the only continuum X such that NB(F1(X)) = F1(X)?
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Theorem 3.4. For a locally connected continuum X, the following statements are equivalent:

(a) X is an arc;
(b) there are two distinct points p and q in X such that NB(F1(X)) = {{p}, {q}, {p,q}};
(c) |NB(F1(X))| = 3.

Proof. It is clear that (a) implies (b), and (b) implies (c). We will prove that (c) implies (a). Suppose that X has three
distinct points, say p, q and r, which are non-cut points of X . By Theorem 3.1 and by hypothesis in (c), we have that
{{p}, {q}, {r}} = NB(F1(X)). So, if x and y are distinct points in X , then {x, y} /∈ NB(F1(X)). Hence, X \ {x, y} is not
connected (Theorem 3.1). It follows that X is a simple closed curve [6, 9.31]. By Theorem 3.2, we obtain that |X | = 3,
a contradiction. We have showed that X has at most two non-cut points. So, X is an arc [6, 6.17]. �
Theorem 3.5. A locally connected continuum X is a tree if and only if NB(F1(X)) is a finite set.

Proof. Suppose that X is a tree. Let B ∈ NB(F1(X)). We note that B contains no cut points of X (Remark 2.1). It follows
that B ⊂ E(X) [6, 9.27]. Hence, NB(F1(X)) is a subset of the power set of E(X). Since E(X) is a finite set [6, 9.27 and
9.28], we conclude that NB(F1(X)) is finite.

Conversely, let p be a non-cut point of X . We have that {p} ∈NB(F1(X)) (Theorem 3.1). Then, by hypothesis, we obtain
that X has only finitely many non-cut points. Therefore, X is a tree [6, 9.28]. �
Theorem 3.6. A locally connected continuum X is a dendrite if and only if NB(F1(X)) = {B ∈ 2X : B ⊂ E(X)}.

Proof. Suppose that X is a dendrite. Let B ∈ NB(F1(X)). Notice that B contains no cut points of X (Remark 2.1). Hence,
B ⊂ E(X) [6, 10.7]. So, NB(F1(X)) ⊂ {B ∈ 2X : B ⊂ E(X)}. Now, let B ∈ 2X such that B ⊂ E(X). Thus, B contains no cut
points of X [6, 10.7]. Since the set of all cut points of a dendrite is a dense set [6, 5.5 and 10.8], it follows that int(B) = ∅.
Moreover, we have that X \ B is a connected set [6, 6.27]. So, by Theorem 3.1, we obtain that B ∈ NB(F1(X)). Thus,
{B ∈ 2X : B ⊂ E(X)} ⊂NB(F1(X)).

Conversely, suppose that X is a locally connected continuum such that NB(F1(X)) = {B ∈ 2X : B ⊂ E(X)}. Fix a point
x ∈ X \ E(X). We have that {x} /∈NB(F1(X)). By Theorem 3.1, x is a cut point of X . We have proved that each point of X is
either an end point of X or a cut point of X . This proves that X is a dendrite [6, 10.7]. �
Remark 3.7. Let X be the familiar sin( 1

x )-continuum with enlarged limit segment, that is X = ({0} × [−2,1]) ∪ {(x, sin( 1
x )):

0 < x � 1}. Denote p = (0,−2) and q = (1, sin(1)). It is easy to see that NB(F1(X)) = {{p}, {q}, {p,q}}. Thus local connect-
edness is a necessary condition in Theorems 3.4, 3.5, and 3.6.

4. A characterization of the circle with nonblockers

Here we show that the circle is the only locally connected continuum for which its set of nonblockers is a continuum.
We state the following three lemmas to ease the proof of this fact.

Lemma 4.1. If X is a locally connected continuum and NB(F1(X)) is a continuum, then F1(X) ⊂NB(F1(X)).

Proof. Suppose that there exists x ∈ X such that {x} is not an element of NB(F1(X)). By Lemma 3.1, x is a cut point of X .
Let U and V be nonempty, disjoint, open sets of X such that X \ {x} = U ∪ V . There are points p ∈ U and q ∈ V such that p
and q are non-cut points of X [6, 6.6]. By Theorem 3.1, {p}, {q} ∈NB(F1(X)). Denote A = ⋃

NB(F1(X)). By hypothesis and
[5, (1.43)], we have that A is a subcontinuum of X . Notice that p,q ∈ A. It follows that x ∈ A. So, there exists B ∈NB(F1(X))

such that x ∈ B . This is a contradiction (Remark 2.1). �
The following result can be proved as Exercise 8.45 in [6].

Lemma 4.2. If X is a locally connected continuum and {p1, . . . , pm} is a finite subset of X such that X \ {p1, . . . , pm} is a connected
set, then there exist pairwise disjoint open subsets of X , U1, . . . , Um, such that pi ∈ Ui , 1 � i � m, and X \ ⋃m

i=1 Ui is a connected set.

In the following lemma, for a continuum X and an integer k � 2, we use the standard notation for the open basic sets
of the Vietoris topology in Fk(X), i.e., for a finite collection of open sets in X , U1, . . . , Un , we denote 〈U1, . . . , Un〉k = {A ∈
Fk(X): A ⊂ ⋃n

i=1 Ui, A ∩ Ui �= ∅, i ∈ {1, . . . ,n}}. We also use the following notation,

Mk = NB
(

F1(X)
) ∩ (

Fk(X) \ F1(X)
)
. (1)
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Lemma 4.3. If X is a locally connected continuum, k � 2, and Fk−1(X) is contained in NB(F1(X)), then Mk is an open set in Fk(X).

Proof. Let B ∈ Mk . We have that X \ B is connected (Remark 2.1), and there exist m ∈ {2, . . . ,k} and points p1, . . . , pm of
X such that B = {p1, . . . , pm}. We consider pairwise disjoint open sets in X , U1, . . . , Um , such that pi ∈ Ui and X \ ⋃m

i=1 Ui

is connected (Lemma 4.2). It is clear that B ∈ 〈U1, . . . , Um〉k . We will prove that 〈U1, . . . , Um〉k ⊂Mk .
Let A ∈ 〈U1, . . . , Um〉k . Denote A = {q1, . . . ,qn}. Notice that 2 � m � n � k, and so, 1 � |Ui ∩ A| � k − 1. Denote E =

X \ ⋃m
i=1 Ui , Ci = {L: L is a component of Ui \ A} and C∗

i = ⋃
Ci , 1 � i � m. Notice that C∗

i = Ui \ A.
We will prove that E ∪ C∗

i is a connected set for each i ∈ {1, . . . ,m}. Fix i ∈ {1, . . . ,m} and L ∈ Ci . First we will prove
that L ∩ E �= ∅; suppose on the contrary that L ∩ E = ∅. Notice that X \ (Ui ∩ A) = E ∪ C∗

i ∪ (
⋃{U j: 1 � j � m, j �= i}) =

L ∪ E ∪ (C∗
i \ L) ∪ (

⋃{U j: 1 � j � m, j �= i}). Since X is locally connected, the elements of Ci are open sets of X , thus L and
(C∗

i \ L) ∪ (
⋃{U j: 1 � j � m, j �= i}) are disjoint open sets. It follows that L and E ∪ (C∗

i \ L) ∪ (
⋃{U j: 1 � j � m, j �= i})

are separate sets. So, X \ (Ui ∩ A) is not connected. Then, by Theorem 3.1, Ui ∩ A /∈ NB(F1(X)). This is a contradiction to
the hypothesis, since Ui ∩ A ∈ Fk−1(X). Therefore, we have proved that L ∩ E �= ∅. Hence, E ∪ L is a connected set for each
L ∈ Ci . Since E ∪ C∗

i = ⋃{E ∪ L: L ∈ Ci}, it follows that E ∪ C∗
i is connected.

Now, we have that E ∪ (
⋃m

i=1 C∗
i ) is connected. Then, since E ∪ (

⋃m
i=1 C∗

i ) = E ∪ (
⋃m

i=1(Ui \ A)) = X \ A, we have that
X \ A is connected. Therefore A ∈ NB(F1(X)) (Theorem 3.1). We conclude that A ∈ Mk . So, we have proved that B ∈
〈U1, . . . , Um〉k ⊂Mk . �
Theorem 4.4. For a locally connected continuum X, the following statements are equivalent:

(a) X is a simple closed curve;
(b) NB(F1(X)) = F1(X);
(c) NB(F1(X)) is a continuum.

Proof. Theorem 3.2 shows that (a) implies (b). It is clear that (b) implies (c). We will prove that (c) implies (a). We consider
the set Mk as defined in (1). We assert that there exists an integer k � 2 such that Mk = ∅.

To prove this, suppose that Mk �= ∅, for each k � 2. By Lemma 4.1, F1(X) ⊂ NB(F1(X)). Now, as inductive hypothesis,
assume that Fk(X) ⊂ NB(F1(X)) for an integer k � 2. Thus, by Lemma 4.3, Mk+1 is an open set in Fk+1(X), and so it
is open in Fk+1(X) \ F1(X). By hypothesis in (c) and definition (1), we also have that Mk+1 is a closed set in Fk+1(X) \
F1(X). On the other hand we know that Fk+1(X) \ F1(X) is a connected space [1, 4.2.3]. Since Mk+1 �= ∅, it follows that
Mk+1 = Fk+1(X) \ F1(X). Then, by (1), Fk+1(X) \ F1(X) ⊂NB(F1(X)), and so Fk+1(X) ⊂NB(F1(X)). Hence

⋃
k∈N Fk(X) ⊂

NB(F1(X)). Since
⋃

k∈N Fk(X) is a dense set in 2X [5, (0.66.6)], we obtain that NB(F1(X)) = 2X , which is a contradiction.
Thus, the assertion is proved.

Now, let k � 2 be such that Mk = ∅. Consider two distinct points x and y in X . We have that {x, y} ∈ Fk(X) \ F1(X). By
definition of Mk , it follows that {x, y} /∈NB(F1(X)). Then, by Theorem 3.1, X \ {x, y} is not connected. Thus, X is a simple
closed curve [6, 9.31]. �
Question 4.5. For which nonlocally connected continua X is NB(F1(X)) a continuum?

5. Nonblockers and open monotone maps

In this section we show results related to nonblockers and open monotone maps. As a consequence, we show that the
circle of pseudo-arcs is an example for Question 4.5.

Lemma 5.1. Let f be an open monotone map from a continuum X onto a continuum Y . If B is an element of 2Y , then B ∈NB(F1(Y ))

if and only if f −1(B) ∈NB(F1(X)).

Proof. For necessity, we fix a point x ∈ X \ f −1(B) and consider an order arc, α : [0,1] → C(Y ), from { f (x)} to Y such that
α(t) ∩ B = ∅ if 0 � t < 1 (Proposition 2.2(b)). For each n ∈N, denote An = f −1(α(1 − 1

n )). Since f is a monotone map, An is
a subcontinuum of X [8, (2.2), p. 138]. It is clear that x ∈ An ⊂ An+1 ⊂ X \ f −1(B), for each n ∈ N. Next, we will prove that⋃

n∈N An is a dense set in X . Let U be a nonempty open set in X . Since f is an open map, f (U ) is an open set in Y . Notice
that

⋃{α(t): 0 � t < 1} is a dense set in Y (Remark 2.3). So, there exists t ∈ [0,1) such that f (U ) ∩ α(t) �= ∅. Let k ∈ N

such that t < 1 − 1
k . We have that α(t) ⊂ α(1 − 1

k ), and so f (U ) ∩ α(1 − 1
k ) �= ∅. It follows that U ∩ Ak �= ∅. Thus

⋃
n∈N An

is dense in X . By Proposition 2.2(c), we conclude that f −1(B) ∈NB(F1(X)).
For sufficiency, let y ∈ Y \ B and x ∈ f −1(y). Notice that x ∈ X \ f −1(B). Consider a map, α : [0,1] → C(X), such that

α(0) = {x}, α(1) = X and α(t) ∩ f −1(B) = ∅ if 0 � t < 1. Define β : [0,1] → C(Y ) by β(t) = f (α(t)) for each t ∈ [0,1]. We
note that β is a continuous function [4, 13.3]. It is clear that β(0) = {y}, β(1) = Y and β(t) ∩ B = ∅ if 0 � t < 1. Thus
B ∈NB(F1(Y )). �
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Theorem 5.2. Let f be an open monotone map from a continuum X onto a continuum Y . If f −1(y) is a terminal subcontinuum of X
for each y ∈ Y , then NB(F1(X)) = { f −1(B): B ∈NB(F1(Y ))}.

Proof. Let A ∈NB(F1(X)). We assert that if y ∈ Y and f −1(y) ∩ A �= ∅, then f −1(y) ⊂ A.
To prove this, assume that there exists a point x ∈ f −1(y) \ A. Consider a map α : [0,1] → C(X) such that α(0) = {x},

α(1) = X and α(t) ∩ A = ∅ if 0 � t < 1. Since
⋃{α(t) : 0 � t < 1} is a dense set in X (Remark 2.3), and X \ f −1(y) is a

nonempty open set of X , there exists r ∈ (0,1) such that α(r) ∩ (X \ f −1(y)) �= ∅. Notice that
⋃

α([0, r]) is a subcontinuum
of X [5, (1.43)]. Moreover, this subcontinuum intersects both f −1(y) and X \ f −1(y). So, since f −1(y) is a terminal sub-
continuum of X , we have that f −1(y) ⊂ ⋃

α([0, r]). Now, since A ∩ (
⋃

α([0, r])) = ∅, it follows that f −1(y) ∩ A = ∅. This
proves our assertion.

We note that f −1( f (A)) ⊂ A. To see this let x ∈ f −1( f (A)). So, there exists a ∈ A such that f (x) = f (a), thus f −1( f (x))∩
A �= ∅. By assertion at the beginning, we obtain that f −1( f (x)) ⊂ A, and so x ∈ A. This proves that f −1( f (A)) ⊂ A. It follows
that A = f −1( f (A)). Denote E = f (A). So, A = f −1(E) and f −1(E) ∈ NB(F1(X)). Then, by if part of Lemma 5.1, we have
that E ∈ NB(F1(Y )). Therefore A ∈ { f −1(B): B ∈ NB(F1(Y ))}. So, NB(F1(X)) ⊂ { f −1(B): B ∈ NB(F1(Y ))}. The converse
inclusion follows from only if part of Lemma 5.1. �
Theorem 5.3. Let f be an open monotone map from a continuum X onto a continuum Y . If f −1(y) is a terminal subcontinuum of X
for each y ∈ Y , and NB(F1(Y )) = F1(Y ), then NB(F1(X)) is a continuum homeomorphic to Y .

Proof. Denote D f = { f −1(y): y ∈ Y }. By Theorem 5.2, NB(F1(X)) = D f . Notice that the decomposition space D f , with
the quotient topology, is a continuum homeomorphic to Y [6, 3.21]. Moreover, since f is an open map, D f is a continuous
decomposition [6, 13.11], which implies that the quotient topology coincides with the Vietoris topology in D f [6, 13.10].
This proves that NB(F1(X)) is a continuum homeomorphic to Y . �

The quotient map from the circle of pseudo-arcs onto the circle is an open monotone map such that the preimages of
points are terminal continua. Hence, by considering Theorems 3.2 and 5.2, we obtain the following result.

Corollary 5.4. If X is the circle of pseudo-arcs, then NB(F1(X)) is a simple closed curve.

Acknowledgements

The authors wish to thank the participants at the Workshops on Continuum Theory and Hyperspaces, organized by
Alejandro Illanes and Verónica Martínez de la Vega in México, in 2008, 2009, and 2011 for useful discussions on the topic
of this paper. The authors also wish to thank the referee for his/her comments of this paper.

References

[1] F. Barragán, El n-ésimo producto simétrico suspensión de un continuo, Ph.D. thesis, Facultad de Ciencias Físico Matemáticas, B. Universidad Autónoma
de Puebla, México, 2010 (in Spanish).

[2] R.H. Bing, F.B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959) 171–192.
[3] A. Illanes, P. Krupski, Blockers in hyperspaces, Topology Appl. 158 (2011) 653–659.
[4] A. Illanes, S.B. Nadler Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math., vol. 216, Marcel

Dekker, Inc., New York, Basel, 1999.
[5] S.B. Nadler Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Math., vol. 49, Marcel Dekker, Inc., New York, Basel, 1978.
[6] S.B. Nadler Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Math., vol. 158, Marcel Dekker, Inc., New York,

1992.
[7] J.T. Rogers Jr., Almost everything you wanted to know about homogeneous, circle-like continua, Topology Proc. 3 (1978) 169–174.
[8] G.T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, RI, 1942.


	Nonblockers in hyperspaces
	1 Introduction
	2 Deﬁnitions and basic facts
	3 Nonblockers in locally connected continua
	4 A characterization of the circle with nonblockers
	5 Nonblockers and open monotone maps
	Acknowledgements
	References


